
CKAN documentation
Release 2.10.0a0

CKAN contributors

Jun 04, 2022





CONTENTS

1 User guide 1
1.1 What is CKAN? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Using CKAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Sysadmin guide 17
2.1 Creating a sysadmin account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Customizing look and feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Managing organizations and datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Permanently deleting datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Managing users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Maintainer’s guide 23
3.1 Installing CKAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Upgrading CKAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Database Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Command Line Interface (CLI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Organizations and authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Data preview and visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8 FileStore and file uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.9 DataStore extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.10 Apps & Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.11 Tag Vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.12 Form Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.13 Linked Data and RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.14 Background jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.15 Email notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.16 Page View Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.17 Multilingual Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.18 Stats Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.19 Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 API guide 169
4.1 Legacy APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.2 Making an API request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.3 Example: Importing datasets with the CKAN API . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.4 API versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.5 Authentication and API tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.6 GET-able API functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.7 JSONP support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

i



4.8 API Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.9 Action API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5 Extending guide 219
5.1 Writing extensions tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.2 Using custom config settings in extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.3 Making configuration options runtime-editable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.4 Testing extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.5 Best practices for writing extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.6 Customizing dataset and resource metadata fields using IDatasetForm . . . . . . . . . . . . . . . . . 244
5.7 Plugin interfaces reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.8 Plugins toolkit reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
5.9 Validator functions reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.10 Internationalizing strings in extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.11 Migration from Pylons to Flask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.12 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

6 Theming guide 311
6.1 Customizing CKAN’s templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
6.2 Adding static files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.3 Customizing CKAN’s CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
6.4 Adding CSS and JavaScript files using Webassets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.5 Customizing CKAN’s JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
6.6 Best practices for writing CKAN themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
6.7 Custom Jinja2 tags reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
6.8 Variables and functions available to templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
6.9 Objects and methods available to JavaScript modules . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.10 Template helper functions reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
6.11 Template snippets reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.12 JavaScript sandbox reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.13 JavaScript API client reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.14 CKAN jQuery plugins reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

7 Contributing guide 371
7.1 Reporting issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.2 Translating CKAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
7.3 Testing CKAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
7.4 Writing commit messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
7.5 Making a pull request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
7.6 Reviewing and merging a pull request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
7.7 Writing documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.8 Projects for beginner CKAN developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
7.9 CKAN code architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
7.10 CSS coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
7.11 HTML coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
7.12 JavaScript coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
7.13 Python coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
7.14 String internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
7.15 Unicode handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
7.16 Testing coding standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
7.17 Frontend development guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
7.18 Database migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
7.19 Upgrading CKAN’s dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
7.20 Doing a CKAN release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

ii



8 Changelog 487
8.1 v.2.9.5 2022-01-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
8.2 v.2.9.4 2021-09-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.3 v.2.9.3 2021-05-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
8.4 v.2.9.2 2021-02-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
8.5 v.2.9.1 2020-10-21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
8.6 v.2.9.0 2020-08-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.7 v.2.8.10 2022-01-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
8.8 v.2.8.9 2021-09-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
8.9 v.2.8.8 2021-05-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
8.10 v.2.8.7 2021-02-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.11 v.2.8.6 2020-10-21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.12 v.2.8.5 2020-08-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.13 v.2.8.4 2020-04-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.14 v.2.8.3 2019-07-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
8.15 v.2.8.2 2018-12-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
8.16 v.2.8.1 2018-07-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.17 v.2.8.0 2018-05-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.18 v.2.7.12 2021-09-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
8.19 v.2.7.11 2021-05-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.20 v.2.7.10 2021-02-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8.21 v.2.7.9 2020-10-21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
8.22 v.2.7.8 2020-08-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
8.23 v.2.7.7 2020-04-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.24 v.2.7.6 2019-07-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.25 v2.7.5 2018-12-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.26 v2.7.4 2018-05-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.27 v2.7.3 2018-03-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
8.28 v2.7.2 2017-09-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.29 v2.7.1 2017-09-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.30 v2.7.0 2017-08-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.31 v.2.6.9 2020-04-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
8.32 v.2.6.8 2019-07-03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
8.33 v2.6.7 2018-12-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
8.34 v2.6.6 2018-05-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
8.35 v2.6.5 2018-03-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
8.36 v2.6.4 2017-09-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
8.37 v2.6.3 2017-08-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.38 v2.6.2 2017-03-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.39 v2.6.1 2017-02-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.40 v2.6.0 2016-11-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
8.41 v2.5.9 2018-05-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
8.42 v2.5.8 2018-03-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
8.43 v2.5.7 2017-09-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
8.44 v2.5.6 2017-08-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
8.45 v2.5.5 2017-03-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.46 v2.5.4 2017-02-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.47 v2.5.3 2016-11-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.48 v2.5.2 2016-03-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
8.49 v2.5.1 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
8.50 v2.5.0 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
8.51 v2.4.9 2017-09-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
8.52 v2.4.8 2017-08-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
8.53 v2.4.7 2017-03-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

iii



8.54 v2.4.6 2017-02-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.55 v2.4.5 2017-02-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.56 v2.4.4 2016-11-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.57 v2.4.3 2016-03-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
8.58 v2.4.2 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
8.59 v2.4.1 2015-09-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
8.60 v2.4.0 2015-07-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.61 v2.3.5 2016-11-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.62 v2.3.4 2016-03-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.63 v2.3.3 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.64 v2.3.2 2015-09-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.65 v2.3.1 2015-07-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.66 v2.3 2015-03-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.67 v2.2.4 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.68 v2.2.3 2015-07-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.69 v2.2.2 2015-03-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.70 v2.2.1 2014-10-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
8.71 v2.2 2014-02-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
8.72 v2.1.6 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.73 v2.1.5 2015-07-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.74 v2.1.4 2015-03-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.75 v2.1.3 2014-10-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.76 v2.1.2 2014-02-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.77 v2.1.1 2013-11-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.78 v2.1 2013-08-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
8.79 v2.0.8 2015-12-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.80 v2.0.7 2015-07-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.81 v2.0.6 2015-03-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.82 v2.0.5 2014-10-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.83 v2.0.4 2014-02-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.84 v2.0.3 2013-11-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.85 v2.0.2 2013-08-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.86 v2.0.1 2013-06-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
8.87 v2.0 2013-05-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
8.88 v1.8.2 2013-08-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
8.89 v1.8.1 2013-05-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
8.90 v1.8 2012-10-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
8.91 v1.7.4 2013-08-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
8.92 v1.7.3 2013-05-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
8.93 v1.7.2 2012-10-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
8.94 v1.7.1 2012-06-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
8.95 v1.7 2012-05-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
8.96 v1.6 2012-02-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
8.97 v1.5.1 2012-01-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
8.98 v1.5 2011-11-07 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
8.99 v1.4.3.1 2011-09-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
8.100 v1.4.3 2011-09-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
8.101 v1.4.2 2011-08-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
8.102 v1.4.1 2011-06-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
8.103 v1.4 2011-05-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
8.104 v1.3.3 2011-04-08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
8.105 v1.3.2 2011-03-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
8.106 v1.3 2011-02-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
8.107 v1.2 2010-11-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

iv



8.108 v1.1 2010-08-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
8.109 v1.0.2 2010-08-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
8.110 v1.0.1 2010-06-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
8.111 v1.0 2010-05-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
8.112 v0.11 2010-01-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
8.113 v0.10 2009-09-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
8.114 v0.9 2009-07-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.115 v0.8 2009-04-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
8.116 v0.7 2008-10-31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.117 v0.6 2008-07-08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.118 v0.5 2008-01-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.119 v0.4 2007-07-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
8.120 v0.3 2007-04-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
8.121 v0.2 2007-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
8.122 v0.1 2006-05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Python Module Index 567

Index 569

v



vi



CHAPTER

ONE

USER GUIDE

This user guide covers using CKAN’s web interface to organize, publish and find data. CKAN also has a powerful API
(machine interface), which makes it easy to develop extensions and links with other information systems. The API is
documented in API guide.

Some web UI features relating to site administration are available only to users with sysadmin status, and are docu-
mented in Sysadmin guide.

1.1 What is CKAN?

CKAN is a tool for making open data websites. (Think of a content management system like WordPress - but for data,
instead of pages and blog posts.) It helps you manage and publish collections of data. It is used by national and local
governments, research institutions, and other organizations who collect a lot of data.

Once your data is published, users can use its faceted search features to browse and find the data they need, and preview
it using maps, graphs and tables - whether they are developers, journalists, researchers, NGOs, citizens, or even your
own staff.

1.1.1 Datasets and resources

For CKAN purposes, data is published in units called “datasets”. A dataset is a parcel of data - for example, it could
be the crime statistics for a region, the spending figures for a government department, or temperature readings from
various weather stations. When users search for data, the search results they see will be individual datasets.

A dataset contains two things:

• Information or “metadata” about the data. For example, the title and publisher, date, what formats it is available
in, what license it is released under, etc.

• A number of “resources”, which hold the data itself. CKAN does not mind what format the data is in. A resource
can be a CSV or Excel spreadsheet, XML file, PDF document, image file, linked data in RDF format, etc. CKAN
can store the resource internally, or store it simply as a link, the resource itself being elsewhere on the web. A
dataset can contain any number of resources. For example, different resources might contain the data for different
years, or they might contain the same data in different formats.

Note: On early CKAN versions, datasets were called “packages” and this name has stuck in some places, specially
internally and on API calls. Package has exactly the same meaning as “dataset”.

1



CKAN documentation, Release 2.10.0a0

1.1.2 Users, organizations and authorization

CKAN users can register user accounts and log in. Normally (depending on the site setup), login is not needed to
search for and find data, but is needed for all publishing functions: datasets can be created, edited, etc by users with
the appropriate permissions.

Normally, each dataset is owned by an “organization”. A CKAN instance can have any number of organizations. For
example, if CKAN is being used as a data portal by a national government, the organizations might be different gov-
ernment departments, each of which publishes data. Each organization can have its own workflow and authorizations,
allowing it to manage its own publishing process.

An organization’s administrators can add individual users to it, with different roles depending on the level of autho-
rization needed. A user in an organization can create a dataset owned by that organization. In the default setup, this
dataset is initially private, and visible only to other users in the same organization. When it is ready for publication, it
can be published at the press of a button. This may require a higher authorization level within the organization.

Datasets cannot normally be created except within organizations. It is possible, however, to set up CKAN to allow
datasets not owned by any organization. Such datasets can be edited by any logged-in user, creating the possibility of
a wiki-like datahub.

Note: The user guide covers all the main features of the web user interface (UI). In practice, depending on how the
site is configured, some of these functions may be slightly different or unavailable. For example, in an official CKAN
instance in a production setting, the site administrator will probably have made it impossible for users to create new
organizations via the UI. You can try out all the features described at http://demo.ckan.org.

1.2 Using CKAN

1.2.1 Registering and logging in

Note: Registration is needed for most publishing features and for personalization features, such as “following” datasets.
It is not needed to search for and download data.

To create a user ID, use the “Register” link at the top of any page. CKAN will ask for the following:

• Username – choose a username using only letters, numbers, - and _ characters. For example, “jbloggs” or
“joe_bloggs93”.

• Full name – to be displayed on your user profile

• E-mail address – this will not be visible to other users

• Password – enter the same password in both boxes

2 Chapter 1. User guide

http://demo.ckan.org


CKAN documentation, Release 2.10.0a0

If there are problems with any of the fields, CKAN will tell you the problem and enable you to correct it. When the
fields are filled in correctly, CKAN will create your user account and automatically log you in.

Note: It is perfectly possible to have more than one user account attached to the same e-mail address. For this reason,
choose a username you will remember, as you will need it when logging in.

1.2.2 Features for publishers

Adding a new dataset

Note: You may need to be a member of an organization in order to add and edit datsets. See the section Creating
an organization below. On https://demo.ckan.org, you can add a dataset without being in an organization, but dataset
features relating to authorization and organizations will not be available.

Step 1. You can access CKAN’s “Create dataset” screen in two ways.

a) Select the “Datasets” link at the top of any page. From this, above the search box, select the “Add Dataset”
button.

b) Alternatively, select the “organizations” link at the top of a page. Now select the page for the organization that
should own your new dataset. Provided that you are a member of this organization, you can now select the “Add
Dataset” button above the search box.

Step 2. CKAN will ask for the following information about your data. (The actual data will be added in step 4.)

1.2. Using CKAN 3

https://demo.ckan.org


CKAN documentation, Release 2.10.0a0

• Title – this title will be unique across CKAN, so make it brief but specific. E.g. “UK population density by
region” is better than “Population figures”.

• Description – You can add a longer description of the dataset here, including information such as where the data
is from and any information that people will need to know when using the data.

• Tags – here you may add tags that will help people find the data and link it with other related data. Examples
could be “population”, “crime”, “East Anglia”. Hit the <return> key between tags. If you enter a tag wrongly,
you can use its delete button to remove it before saving the dataset.

• License – it is important to include license information so that people know how they can use the data. This field
should be a drop-down box. If you need to use a license not on the list, contact your site administrator.

• Organization - If you are a member of any organizations, this drop-down will enable you to choose which one
should own the dataset. Ensure the default chosen is the correct one before you proceed. (Probably most users
will be in only one organization. If this is you, CKAN will have chosen your organization by default and you
need not do anything.)

Note: By default, the only required field on this page is the title. However, it is good practice to include, at the
minimum, a short description and, if possible, the license information. You should ensure that you choose the correct
organization for the dataset, since at present, this cannot be changed later. You can edit or add to the other fields later.

Step 3. When you have filled in the information on this page, select the “Next: Add Data” button. (Alternatively select
“Cancel” to discard the information filled in.)

Step 4. CKAN will display the “Add data” screen.

4 Chapter 1. User guide



CKAN documentation, Release 2.10.0a0

This is where you will add one or more “resources” which contain the data for this dataset. Choose a file or link for
your data resource and select the appropriate choice at the top of the screen:

• If you are giving CKAN a link to the data, like http://example.com/mydata.csv, then select “Link to a file”
or “Link to an API”. (If you don’t know what an API is, you don’t need to worry about this option - select “Link
to a file”.)

• If the data to be added to CKAN is in a file on your computer, select “Upload a file”. CKAN will give you a file
browser to select it.

Step 5. Add the other information on the page. CKAN does not require this information, but it is good practice to add
it:

• Name – a name for this resource, e.g. “Population density 2011, CSV”. Different resources in the dataset should
have different names.

• Description – a short description of the resource.

• Format – the file format of the resource, e.g. CSV (comma-separated values), XLS, JSON, PDF, etc.

Step 6. If you have more resources (files or links) to add to the dataset, select the “Save & add another” button. When
you have finished adding resources, select “Next: Additional Info”.

Step 7. CKAN displays the “Additional data” screen.

• Visibility – a Public dataset is public and can be seen by any user of the site. A Private dataset can only be
seen by members of the organization owning the dataset and will not show up in searches by other users.

• Author – The name of the person or organization responsible for producing the data.

• Author e-mail – an e-mail address for the author, to which queries about the data should be sent.

• Maintainer / maintainer e-mail – If necessary, details for a second person responsible for the data.

1.2. Using CKAN 5



CKAN documentation, Release 2.10.0a0

• Custom fields – If you want the dataset to have another field, you can add the field name and value here. E.g.
“Year of publication”. Note that if there is an extra field that is needed for a large number of datasets, you should
talk to your site administrator about changing the default schema and dataset forms.

Note: Everything on this screen is optional, but you should ensure the “Visibility” is set correctly. It is also good
practice to ensure an Author is named.

Changed in version 2.2: Previous versions of CKAN used to allow adding the dataset to existing groups in this step.
This was changed. To add a dataset to an existing group now, go to the “Group” tab in the Dataset’s page.

Step 8. Select the ‘Finish’ button. CKAN creates the dataset and shows you the result. You have finished!

You should be able to find your dataset by typing the title, or some relevant words from the description, into the search
box on any page in your CKAN instance. For more information about finding data, see the section Finding data.

Editing a dataset

You can edit the dataset you have created, or any dataset owned by an organization that you are a member of. (If a
dataset is not owned by any organization, then any registered user can edit it.)

1. Go to the dataset’s page. You can find it by entering the title in the search box on any page.

2. Select the “Edit” button, which you should see above the dataset title.

3. CKAN displays the “Edit dataset” screen. You can edit any of the fields (Title, Description, Dataset, etc), change
the visibility (Private/Public), and add or delete tags or custom fields. For details of these fields, see Adding a
new dataset.

4. When you have finished, select the “Update dataset” button to save your changes.

6 Chapter 1. User guide



CKAN documentation, Release 2.10.0a0

Adding, deleting and editing resources

1. Go to the dataset’s “Edit dataset” page (steps 1-2 above).

2. In the left sidebar, there are options for editing resources. You can select an existing resource (to edit or delete
it), or select “Add new resource”.

3. You can edit the information about the resource or change the linked or uploaded file. For details, see steps 4-5
of “Adding a new resource”, above.

4. When you have finished editing, select the button marked “Update resource” (or “Add”, for a new resource) to
save your changes. Alternatively, to delete the resource, select the “Delete resource” button.

Deleting a dataset

1. Go to the dataset’s “Edit dataset” page (see “Editing a dataset”, above).

2. Select the “Delete” button.

3. CKAN displays a confirmation dialog box. To complete deletion of the dataset, select “Confirm”.

Note: The “Deleted” dataset is not completely deleted. It is hidden, so it does not show up in any searches, etc.
However, by visiting the URL for the dataset’s page, it can still be seen (by users with appropriate authorization), and
“undeleted” if necessary. If it is important to completely delete the dataset, contact your site administrator.

1.2. Using CKAN 7



CKAN documentation, Release 2.10.0a0

Creating an organization

In general, each dataset is owned by one organization. Each organization includes certain users, who can modify its
datasets and create new ones. Different levels of access privileges within an organization can be given to users, e.g.
some users might be able to edit datasets but not create new ones, or to create datasets but not publish them. Each
organization has a home page, where users can find some information about the organization and search within its
datasets. This allows different data publishing departments, bodies, etc to control their own publishing policies.

To create an organization:

1. Select the “Organizations” link at the top of any page.

2. Select the “Add Organization” button below the search box.

3. CKAN displays the “Create an Organization” page.

4. Enter a name for the organization, and, optionally, a description and image URL for the organization’s home
page.

5. Select the “Create Organization” button. CKAN creates your organization and displays its home page. Initially,
of course, the organization has no datasets.

You can now change the access privileges to the organization for other users - see Managing an organization below.
You can also create datasets owned by the organization; see Adding a new dataset above.

Note: Depending on how CKAN is set up, you may not be authorized to create new organizations. In this case, if you
need a new organization, you will need to contact your site administrator.

8 Chapter 1. User guide



CKAN documentation, Release 2.10.0a0

Managing an organization

When you create an organization, CKAN automatically makes you its “Admin”. From the organization’s page you
should see an “Admin” button above the search box. When you select this, CKAN displays the organization admin
page. This page has two tabs:

• Info – Here you can edit the information supplied when the organization was created (title, description and image).

• Members – Here you can add, remove and change access roles for different users in the organization. Note: you
will need to know their username on CKAN.

By default CKAN allows members of organizations with three roles:

• Member – can see the organization’s private datasets

• Editor – can edit and publish datasets

• Admin – can add, remove and change roles for organization members

1.2.3 Finding data

Searching the site

To find datasets in CKAN, type any combination of search words (e.g. “health”, “transport”, etc) in the search box on
any page. CKAN displays the first page of results for your search. You can:

• View more pages of results

• Repeat the search, altering some terms

• Restrict the search to datasets with particular tags, data formats, etc using the filters in the left-hand column

1.2. Using CKAN 9



CKAN documentation, Release 2.10.0a0

If there are a large number of results, the filters can be very helpful, since you can combine filters, selectively adding
and removing them, and modify and repeat the search with existing filters still in place.

If datasets are tagged by geographical area, it is also possible to run CKAN with an extension which allows searching
and filtering of datasets by selecting an area on a map.

Searching within an organization

If you want to look for data owned by a particular organization, you can search within that organization from its home
page in CKAN.

1. Select the “Organizations” link at the top of any page.

2. Select the organization you are interested in. CKAN will display your organization’s home page.

3. Type your search query in the main search box on the page.

CKAN will return search results as normal, but restricted to datasets from the organization.

If the organization is of interest, you can opt to be notified of changes to it (such as new datasets and modifications to
datasets) by using the “Follow” button on the organization page. See the section Managing your news feed below. You
must have a user account and be logged in to use this feature.

10 Chapter 1. User guide



CKAN documentation, Release 2.10.0a0

Exploring datasets

When you have found a dataset you are interested and selected it, CKAN will display the dataset page. This includes

• The name, description, and other information about the dataset

• Links to and brief descriptions of each of the resources

The resource descriptions link to a dedicated page for each resource. This resource page includes information about
the resource, and enables it to be downloaded. Many types of resource can also be previewed directly on the resource
page. .CSV and .XLS spreadsheets are previewed in a grid view, with map and graph views also available if the data is
suitable. The resource page will also preview resources if they are common image types, PDF, or HTML.

The dataset page also has two other tabs:

• Activity stream – see the history of recent changes to the dataset

• Groups – see any group associated with this dataset.

If the dataset is of interest, you can opt to be notified of changes to it by using the “Follow” button on the dataset page.
See the section Managing your news feed below. You must have a user account and be logged in to use this feature.

1.2. Using CKAN 11



CKAN documentation, Release 2.10.0a0

1.2.4 Search in detail

CKAN supports two search modes, both are used from the same search field. If the search terms entered into the search
field contain no colon (“:”) CKAN will perform a simple search. If the search expression does contain at least one
colon (“:”) CKAN will perform an advanced search.

Simple Search

CKAN defers most of the search to Solr and by default it uses the DisMax Query Parser that was primarily designed
to be easy to use and to accept almost any input without returning an error.

The search words typed by the user in the search box defines the main “query” constituting the essence of the search.
The + and - characters are treated as mandatory and prohibited modifiers for terms. Text wrapped in balanced quote
characters (for example, “San Jose”) is treated as a phrase. By default, all words or phrases specified by the user are
treated as optional unless they are preceded by a “+” or a “-“.

Note: CKAN will search for the complete word and when doing simple search are wildcards are not supported.

Simple search examples:

• census will search for all the datasets containing the word “census” in the query fields.

• census +2019 will search for all the datasets contaning the word “census” and filter only those matching also
“2019” as it is treated as mandatory.

• census -2019 will search for all the datasets containing the word “census” and will exclude “2019” from the
results as it is treated as prohibited.

• "european census" will search for all the datasets containing the phrase “european census”.

Solr applies some preprocessing and stemming when searching. Stemmers remove morphological affixes from words,
leaving only the word stem. This may cause, for example, that searching for “testing” or “tested” will show also results
containing the word “test”.

• Testing will search for all the datasets containing the word “Testing” and also “Test” as it is the stem of “Test-
ing”.

Note: If the Name of the dataset contains words separated by “-” it will consider each word independently in the
search.

Advanced Search

If the query has a colon in it it will be considered a fielded search and the query syntax of Solr will be used to search.
This will allow us to use wildcards “*”, proximity matching “~” and general features described in Solr docs. The basic
syntax is field:term.

Advanced Search Examples:

• title:european this will look for all the datasets containing in its title the word “european”.

• title:europ* this will look for all the datasets containing in its title a word that starts with “europ” like “europe”
and “european”.

• title:europe || title:africa will look for datasets containing “europe” or “africa” in its title.

12 Chapter 1. User guide

https://solr.apache.org/guide/8_11/the-dismax-query-parser.html


CKAN documentation, Release 2.10.0a0

• title: "european census" ~ 4A proximity search looks for terms that are within a specific distance from
one another. This example will look for datasets which title contains the words “european” and “census” within
a distance of 4 words.

• author:powell~ CKAN supports fuzzy searches based on the Levenshtein Distance, or Edit Distance algo-
rithm. To do a fuzzy search use the “~” symbol at the end of a single-word term. In this example words like
“jowell” or “pomell” will also be found.

Note: Field names used in advanced search may differ from Datasets Attributes, the mapping rules are defined in the
schema.xml file. You can use title to search by the dataset name and text to look in a catch-all field that includes
author, license, mantainer, tags, etc.

Note: CKAN uses Apache Solr as its search engine. For further details check the Solr documentation. Please note
that CKAN sometimes uses different values than what is mentioned in that documentation. Also note that not the
whole functionality is offered through the simplified search interface in CKAN or it can differ due to extensions or
local development in your CKAN instance.

1.2.5 Personalization

CKAN provides features to personalize the experience of both searching for and publishing data. You must be logged
in to use these features.

Managing your news feed

At the top of any page, select the dashboard symbol (next to your name). CKAN displays your News feed. This shows
changes to datasets that you follow, and any changed or new datasets in organizations that you follow. The number by
the dashboard symbol shows the number of new notifications in your News feed since you last looked at it. As well as
datasets and organizations, it is possible to follow individual users (to be notified of changes that they make to datasets).

1.2. Using CKAN 13

https://lucene.apache.org/solr/guide/6_6/searching.html#searching


CKAN documentation, Release 2.10.0a0

If you want to stop following a dataset (or organization or user), go to the dataset’s page (e.g. by selecting a link to it
in your News feed) and select the “Unfollow” button.

Managing your user profile

You can change the information that CKAN holds about you, including what other users see about you by editing your
user profile. (Users are most likely to see your profile when you edit a dataset or upload data to an organization that
they are following.) To do this, select the gearwheel symbol at the top of any page.

14 Chapter 1. User guide



CKAN documentation, Release 2.10.0a0

CKAN displays the user settings page. Here you can change:

• Your username

• Your full name

• Your e-mail address (note: this is not displayed to other users)

• Your profile text - an optional short paragraph about yourself

• Your password

Make the changes you require and then select the “Update Profile” button.

Note: If you change your username, CKAN will log you out. You will need to log back in using your new username.

1.2. Using CKAN 15



CKAN documentation, Release 2.10.0a0

16 Chapter 1. User guide



CHAPTER

TWO

SYSADMIN GUIDE

This guide covers the administration features of CKAN 2.0, such as managing users and datasets. These features are
available via the web user interface to a user with sysadmin rights. The guide assumes familiarity with the User guide.

Certain administration tasks are not available through the web UI but need access to the server where CKAN is installed.
These include the range of configuration options using the site’s “config” file, documented in Configuration Options,
and those available via Command Line Interface (CLI).

Warning: A sysadmin user can access and edit any organizations, view and change user details, and permanently
delete datasets. You should carefully consider who has access to a sysadmin account on your CKAN system.

2.1 Creating a sysadmin account

Normally, a sysadmin account is created as part of the process of setting up CKAN. If one does not already exist, you
will need to create a sysadmin user, or give sysadmin rights to an existing user. To do this requires access to the server;
see Creating a sysadmin user for details. If another organization is hosting CKAN, you will need to ask them to create
a sysadmin user.

Adding more sysadmin accounts is done in the same way. It cannot be done via the web UI.

17



CKAN documentation, Release 2.10.0a0

2.2 Customizing look and feel

Some simple customizations to customize the ‘look and feel’ of your CKAN site are available via the UI, at http://
<my-ckan-url>/ckan-admin/config/.

Here you can edit the following:

Site title This title is used in the HTML <title> of pages served by CKAN (which may be displayed on your browser’s
title bar). For example if your site title is “CKAN Demo”, the home page is called “Welcome - CKAN Demo”.
The site title is also used in a few other places, e.g. in the alt-text of the main site logo.

Style Choose one of five colour schemes for the default theme.

Site tag line This is not used in CKAN’s current default themes, but may be used in future.

Site tag logo A URL for the site logo, used at the head of every page of CKAN.

About Text that appears on the “about” page, http://<my-ckan-url>/about. You can use Markdown here. If it is
left empty, a standard text describing CKAN will appear.

Intro text This text appears prominently on the home page of your site.

Custom CSS For simple style changes, you can add CSS code here which will be added to the <head> of every page.

18 Chapter 2. Sysadmin guide

http://daringfireball.net/projects/markdown/basics


CKAN documentation, Release 2.10.0a0

2.3 Managing organizations and datasets

A sysadmin user has full access to user accounts, organizations and datasets. For example, you have access to every
organization as if you were a member of that organization. Thus most management operations are done in exactly the
same way as in the normal web interface.

For example, to add or delete users to an organization, change a user’s role in the organization, delete the organization
or edit its description, etc, visit the organization’s home page. You will see the ‘Admin’ button as if you were a member
of the organization. You can use this to perform all organization admin functions. For details, see the User guide.

Similarly, to edit, update or delete a dataset, go to the dataset page and use the ‘Edit’ button. As an admin user you can
see all datasets including those that are private to an organization. They will show up when doing a dataset search.

2.3.1 Moving a dataset between organizations

To move a dataset between organizations, visit the dataset’s Edit page. Choose the appropriate entry from the “organi-
zation” drop-down list, and press “Save”.

2.3. Managing organizations and datasets 19



CKAN documentation, Release 2.10.0a0

2.4 Permanently deleting datasets

A dataset which has been deleted is not permanently removed from CKAN; it is simply marked as ‘deleted’ and will
no longer show up in search, etc. The dataset’s URL cannot be re-used for a new dataset.

To permanently delete (“purge”) a dataset:

• Navigate to the dataset’s “Edit” page, and delete it.

• Visit http://<my-ckan-url>/ckan-admin/trash/.

This page shows all deleted datasets and allows you to delete them permanently.

Warning: This operation cannot be reversed!

Note: At present, it is not possible to purge organizations or groups using the web UI. This can only be done with
access to the server, by directly deleting them from CKAN’s database.

2.5 Managing users

To find a user’s profile, go to http://<my-ckan-url>/user/. You can search for users in the search box provided.

You can search by any part of the user profile, including their e-mail address. This is useful if, for example, a user has
forgotten their user ID. For non-sysadmin users, the search on this page will only match public parts of the profile, so
they cannot search by e-mail address.

On their user profile, you will see a “Manage” button. CKAN displays the user settings page. You can delete the user
or change any of its settings, including their username, name and password.

20 Chapter 2. Sysadmin guide



CKAN documentation, Release 2.10.0a0

New in version 2.2: Previous versions of CKAN didn’t allow you to delete users through the web interface.

2.5. Managing users 21



CKAN documentation, Release 2.10.0a0

22 Chapter 2. Sysadmin guide



CHAPTER

THREE

MAINTAINER’S GUIDE

The sections below document how to setup and maintain a CKAN site, including installing, upgrading and configuring
CKAN and its features and extensions.

3.1 Installing CKAN

Before you can use CKAN on your own computer, you need to install it. There are three ways to install CKAN:

1. Install from an operating system package

2. Install from source

3. Install from Docker Compose

CKAN 2.9 supports Python 3.7 and Python 3.8 plus 2.7. The next version of CKAN will support Python 3 only.

Additional deployment tips can be found in our wiki, such as the recommended Hardware Requirements.

Installing from package is the quickest and easiest way to install CKAN, but it requires Ubuntu 18.04 64-bit or Ubuntu
20.04 64-bit.

You should install CKAN from package if :

• You want to install CKAN on an Ubuntu 18.04 or 20.04, 64-bit server, and

• You only want to run one CKAN website per server

See Installing CKAN from package.

You should install CKAN from source if :

• You want to install CKAN on a 32-bit computer, or

• You want to install CKAN on a different version of Ubuntu, not 18.04 or 20.04, or

• You want to install CKAN on another operating system (eg. RHEL, CentOS, OS X), or

• You want to run multiple CKAN websites on the same server, or

• You want to install CKAN for development

See Installing CKAN from source.

The provided Docker Compose configuration provides a clean and quick way to deploy a vanilla CKAN without ex-
tensions, while still allowing the addition (and customization) of extensions. This option comes with the caveat that
some further steps need to be taken to deploy a production-ready CKAN. You should install CKAN from Docker
Compose if :

• You want to install CKAN with less effort than a source install and more flexibility than a package install, or

23

https://github.com/ckan/ckan/wiki/Hardware-Requirements


CKAN documentation, Release 2.10.0a0

• You want to run or even develop extensions with the minimum setup effort, or

• You want to see whether and how CKAN, Docker and your respective infrastructure will fit together.

See Installing CKAN with Docker Compose.

If you’ve already setup a CKAN website and want to upgrade it to a newer version of CKAN, see Upgrading CKAN .

3.1.1 Installing CKAN from package

This section describes how to install CKAN from package. This is the quickest and easiest way to install CKAN, but it
requires Ubuntu 18.04 or 20.04 64-bit. If you’re not using any of these Ubuntu versions, or if you’re installing CKAN
for development, you should follow Installing CKAN from source instead.

At the end of the installation process you will end up with two running web applications, CKAN itself and the Data-
Pusher, a separate service for automatically importing data to CKAN’s DataStore extension. Additionally, there will
be a process running the worker for running Background jobs. All these processes will be managed by Supervisor.

For Python 3 installations, the minimum Python version required is 3.6.

• Ubuntu 20.04 includes Python 3.8 as part of its distribution

• Ubuntu 18.04 includes Python 3.6 as part of its distribution

Host ports requirements:

Service Port Used for
NGINX 80 Proxy
uWSGI 8080 Web Server
uWSGI 8800 DataPusher
Solr/Jetty 8983 Search
PostgreSQL 5432 Database
Redis 6379 Search

1. Install the CKAN package

On your Ubuntu system, open a terminal and run these commands to install CKAN:

1. Update Ubuntu’s package index:

sudo apt update

2. Install the Ubuntu packages that CKAN requires (and ‘git’, to enable you to install CKAN extensions):

sudo apt install -y libpq5 redis-server nginx supervisor

3. Download the CKAN package:

• On Ubuntu 18.04:

wget https://packaging.ckan.org/python-ckan_2.9-bionic_amd64.deb

• On Ubuntu 20.04, for Python 3 (recommended):

wget https://packaging.ckan.org/python-ckan_2.9-py3-focal_amd64.deb

4. Install the CKAN package:

24 Chapter 3. Maintainer’s guide

https://supervisord.org/


CKAN documentation, Release 2.10.0a0

• On Ubuntu 18.04:

sudo dpkg -i python-ckan_2.9-bionic_amd64.deb

• On Ubuntu 20.04, for Python 3:

sudo dpkg -i python-ckan_2.9-py3-focal_amd64.deb

2. Install and configure PostgreSQL

Tip: You can install PostgreSQL and CKAN on different servers. Just change the sqlalchemy.url setting in your
/etc/ckan/default/ckan.ini file to reference your PostgreSQL server.

Note: The commands mentioned below are tested for Ubuntu system

Install PostgreSQL, running this command in a terminal:

sudo apt install -y postgresql

orphan

Note: If you are facing a problem in case postgresql is not running, execute the command sudo service
postgresql start

Check that PostgreSQL was installed correctly by listing the existing databases:

sudo -u postgres psql -l

Check that the encoding of databases is UTF8, if not you might find issues later on with internationalisation. Since
changing the encoding of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before
continuing with the CKAN install.

Next you’ll need to create a database user if one doesn’t already exist. Create a new PostgreSQL user called
ckan_default, and enter a password for the user when prompted. You’ll need this password later:

sudo -u postgres createuser -S -D -R -P ckan_default

Create a new PostgreSQL database, called ckan_default, owned by the database user you just created:

sudo -u postgres createdb -O ckan_default ckan_default -E utf-8

Note: If PostgreSQL is run on a separate server, you will need to edit postgresql.conf and pg_hba.conf. On Ubuntu,
these files are located in etc/postgresql/{Postgres version}/main.

Uncomment the listen_addresses parameter and specify a comma-separated list of IP addresses of the network interfaces
PostgreSQL should listen on or ‘*’ to listen on all interfaces. For example,

listen_addresses = 'localhost,192.168.1.21'

Add a line similar to the line below to the bottom of pg_hba.conf to allow the machine running the web server to
connect to PostgreSQL. Please change the IP address as desired according to your network settings.

host all all 192.168.1.22/32 md5

3.1. Installing CKAN 25



CKAN documentation, Release 2.10.0a0

Edit the sqlalchemy.url option in your CKAN configuration file (/etc/ckan/default/ckan.ini) file and set the correct pass-
word, database and database user.

3. Install and configure Solr

Tip: You can install Solr and CKAN on different servers. Just change the solr_url setting in your
/etc/ckan/default/ckan.ini /etc/ckan/default/production.ini file to reference your Solr server.

orphan

CKAN uses Solr as its search engine, and uses a customized Solr schema file that takes into account CKAN’s specific
search needs. Now that we have CKAN installed, we need to install and configure Solr.

Warning: CKAN supports Solr 8. Starting from CKAN 2.10 this is the only Solr version supported. CKAN 2.9
can run with Solr 8 as long as it is patched to at least 2.9.5. CKAN 2.9 can also run against Solr 6 but this is not
recommended as this Solr version does no longer receive security updates.

There are two supported ways to install Solr.

1. Using CKAN’s official Docker images. This is generally the easiest one and the recommended one if you are
developing CKAN locally

2. Installing Solr locally and configuring it with the CKAN schema. You can use this option if you can’t or don’t
want to use Docker.

Installing Solr using Docker

You will need to have Docker installed. Please refer to its installation documentation for details.

There are pre-configured Docker images for Solr for each CKAN version. Make sure to pick the image tag that matches
your CKAN version (they are named ckan/ckan-solr:<Major version>.<Minor version>). To start a local
Solr service you can run:

docker run --name ckan-solr -p 8983:8983 -d ckan/ckan-solr:2.10

Todo: Switch to |current_minor_version| when we branch dev-v2.10

You can now jump to the Next steps section.

Installing Solr manually

1. Download the latest supported version from the Solr downloads page. CKAN supports Solr version 8.x.

2. Extract the downloaded file to your desired location (adjust the Solr version number to the one you are using):

tar xzf solr-8.11.0.tgz

3. Change into the extracted directory:

26 Chapter 3. Maintainer’s guide

https://solr.apache.org/
https://www.docker.com/
https://docs.docker.com/engine/install/
https://solr.apache.org/downloads.html


CKAN documentation, Release 2.10.0a0

cd solr-8.11.0/

4. Start Solr:

bin/solr start

5. Create a new core for CKAN:

bin/solr create -c ckan

6. Replace the standard schema located in server/solr/ckan/conf/managed-schema with the CKAN one:

wget -O server/solr/ckan/conf/managed-schema https://raw.githubusercontent.com/ckan/
→˓ckan/master/ckan/config/solr/schema.xml

Todo: Switch to |current_release_tag| when we branch dev-v2.10

1. Restart Solr:

bin/solr restart

Next steps with Solr

To check that Solr started you can visit the web interface at http://localhost:8983/solr

Warning: The two installation methods above will leave you with a setup that is fine for local development, but
Solr should never be exposed publicly in a production site. Pleaser refer to the Solr documentation to learn how to
secure your Solr instance.

If you followed any of the instructions above, the CKAN Solr core will be available at http://localhost:8983/solr/ckan.
If for whatever reason you ended up with a different one (eg with a different port, host or core name), you need to
change the solr_url setting in your CKAN configuration file (/etc/ckan/default/ckan.ini) to point to your Solr server, for
example:

solr_url=http://my-solr-host:8080/solr/ckan-2.10

4. Update the configuration and initialize the database

1. Edit the CKAN configuration file (/etc/ckan/default/ckan.ini) to set up the following options:

site_id Each CKAN site should have a unique site_id, for example:

ckan.site_id = default

site_url Provide the site’s URL. For example:

ckan.site_url = http://demo.ckan.org

2. Initialize your CKAN database by running this command in a terminal:

3.1. Installing CKAN 27

http://localhost:8983/solr
https://solr.apache.org/guide/securing-solr.html
http://localhost:8983/solr/ckan


CKAN documentation, Release 2.10.0a0

sudo ckan db init

3. Optionally, setup the DataStore and DataPusher by following the instructions in DataStore extension.

4. Also optionally, you can enable file uploads by following the instructions in FileStore and file uploads.

5. Start the Web Server and restart Nginx

Reload the Supervisor daemon so the new processes are picked up:

sudo supervisorctl reload

After a few seconds run the following command to check the status of the processes:

sudo supervisorctl status

You should see three processes running without errors:

ckan-datapusher:ckan-datapusher-00 RUNNING pid 1963, uptime 0:00:12
ckan-uwsgi:ckan-uwsgi-00 RUNNING pid 1964, uptime 0:00:12
ckan-worker:ckan-worker-00 RUNNING pid 1965, uptime 0:00:12

If some of the processes reports an error, make sure you’ve run all the previous steps and check the logs located in
/var/log/ckan for more details.

Restart Nginx by running this command:

sudo service nginx restart

6. You’re done!

Open http://localhost in your web browser. You should see the CKAN front page, which will look something like this:

28 Chapter 3. Maintainer’s guide

http://localhost


CKAN documentation, Release 2.10.0a0

You can now move on to Getting started to begin using and customizing your CKAN site.

Note: The default authorization settings on a new install are deliberately restrictive. Regular users won’t be able
to create datasets or organizations. You should check the Organizations and authorization documentation, configure
CKAN accordingly and grant other users the relevant permissions using the sysadmin account.

Note: There may be a PermissionError: [Errno 13] Permission denied: message when restarting super-
visor or accessing CKAN via a browser for the first time. This happens when a different user is used to execute the
web server process than the user who installed CKAN and the support software. A workaround would be to open up
the permissions on the /usr/lib/ckan/default/src/ckan/ckan/public/base/i18n/ directory so that this user
could write the .js files into it. Accessing CKAN will generate these files for a new install, or you could run ckan -c
/etc/ckan/default/ckan.ini translation js to explicitly generate them.

3.1.2 Installing CKAN from source

This section describes how to install CKAN from source. Although Installing CKAN from package is simpler, it requires
Ubuntu 18.04 64-bit or Ubuntu 16.04 64-bit. Installing CKAN from source works with other versions of Ubuntu and
with other operating systems (e.g. RedHat, Fedora, CentOS, OS X). If you install CKAN from source on your own
operating system, please share your experiences on our How to Install CKAN wiki page.

For Python 3 installations, the minimum Python version required is 3.7

• Ubuntu 20.04 includes Python 3.8 as part of its distribution

• Ubuntu 18.04 includes Python 3.6 as part of its distribution

From source is also the right installation method for developers who want to work on CKAN.

1. Install the required packages

If you’re using a Debian-based operating system (such as Ubuntu) install the required packages with this command:

sudo apt-get install python3-dev postgresql libpq-dev python3-pip python3-venv git-core␣
→˓solr-tomcat openjdk-8-jdk redis-server

If you’re not using a Debian-based operating system, find the best way to install the following packages on your operating
system (see our How to Install CKAN wiki page for help):

3.1. Installing CKAN 29

https://github.com/ckan/ckan/wiki/How-to-Install-CKAN
https://github.com/ckan/ckan/wiki/How-to-Install-CKAN


CKAN documentation, Release 2.10.0a0

Package Description
Python The Python programming language, v3.7 or newer
PostgreSQL The PostgreSQL database system, v10 or newer
libpq The C programmer’s interface to PostgreSQL
pip A tool for installing and managing Python packages
python3-venv The Python3 virtual environment builder (or for Python 2 use ‘virtualenv’ instead)
Git A distributed version control system
Apache Solr A search platform
Jetty An HTTP server (used for Solr).
OpenJDK JDK The Java Development Kit (used by Jetty)
Redis An in-memory data structure store

2. Install CKAN into a Python virtual environment

Tip: If you’re installing CKAN for development and want it to be installed in your home directory, you can symlink the
directories used in this documentation to your home directory. This way, you can copy-paste the example commands
from this documentation without having to modify them, and still have CKAN installed in your home directory:

mkdir -p ~/ckan/lib
sudo ln -s ~/ckan/lib /usr/lib/ckan
mkdir -p ~/ckan/etc
sudo ln -s ~/ckan/etc /etc/ckan

a. Create a Python virtual environment (virtualenv) to install CKAN into, and activate it:

sudo mkdir -p /usr/lib/ckan/default
sudo chown `whoami` /usr/lib/ckan/default
python3 -m venv /usr/lib/ckan/default
. /usr/lib/ckan/default/bin/activate

Important: The final command above activates your virtualenv. The virtualenv has to remain active for the rest of
the installation and deployment process, or commands will fail. You can tell when the virtualenv is active because its
name appears in front of your shell prompt, something like this:

(default) $ _

For example, if you logout and login again, or if you close your terminal window and open it again, your virtualenv
will no longer be activated. You can always reactivate the virtualenv with this command:

. /usr/lib/ckan/default/bin/activate

b. Install the recommended setuptools version and up-to-date pip:

pip install setuptools==44.1.0
pip install --upgrade pip

c. Install the CKAN source code into your virtualenv.

To install the latest stable release of CKAN (CKAN 2.9.5), run:

pip install -e 'git+https://github.com/ckan/ckan.git@ckan-2.9.5
→˓#egg=ckan[requirements]'

30 Chapter 3. Maintainer’s guide

https://www.python.org/getit/
https://www.postgresql.org/docs/10/libpq.html
http://www.postgresql.org/docs/8.1/static/libpq.html
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/latest/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://lucene.apache.org/solr/
https://www.eclipse.org/jetty/
https://openjdk.java.net/install/
https://redis.io/
https://virtualenv.pypa.io/en/latest/


CKAN documentation, Release 2.10.0a0

If you’re installing CKAN for development, you may want to install the latest development version (the most
recent commit on the master branch of the CKAN git repository). In that case, run this command instead:

pip install -e 'git+https://github.com/ckan/ckan.git#egg=ckan[requirements,dev]'

Warning: The development version may contain bugs and should not be used for production websites! Only
install this version if you’re doing CKAN development.

d. Deactivate and reactivate your virtualenv, to make sure you’re using the virtualenv’s copies of commands like
ckan rather than any system-wide installed copies:

deactivate
. /usr/lib/ckan/default/bin/activate

3. Setup a PostgreSQL database

orphan

Note: If you are facing a problem in case postgresql is not running, execute the command sudo service
postgresql start

Check that PostgreSQL was installed correctly by listing the existing databases:

sudo -u postgres psql -l

Check that the encoding of databases is UTF8, if not you might find issues later on with internationalisation. Since
changing the encoding of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before
continuing with the CKAN install.

Next you’ll need to create a database user if one doesn’t already exist. Create a new PostgreSQL user called
ckan_default, and enter a password for the user when prompted. You’ll need this password later:

sudo -u postgres createuser -S -D -R -P ckan_default

Create a new PostgreSQL database, called ckan_default, owned by the database user you just created:

sudo -u postgres createdb -O ckan_default ckan_default -E utf-8

Note: If PostgreSQL is run on a separate server, you will need to edit postgresql.conf and pg_hba.conf. On Ubuntu,
these files are located in etc/postgresql/{Postgres version}/main.

Uncomment the listen_addresses parameter and specify a comma-separated list of IP addresses of the network interfaces
PostgreSQL should listen on or ‘*’ to listen on all interfaces. For example,

listen_addresses = 'localhost,192.168.1.21'

Add a line similar to the line below to the bottom of pg_hba.conf to allow the machine running the web server to
connect to PostgreSQL. Please change the IP address as desired according to your network settings.

host all all 192.168.1.22/32 md5

3.1. Installing CKAN 31



CKAN documentation, Release 2.10.0a0

4. Create a CKAN config file

Create a directory to contain the site’s config files:

sudo mkdir -p /etc/ckan/default
sudo chown -R `whoami` /etc/ckan/

Create the CKAN config file:

ckan generate config /etc/ckan/default/ckan.ini

Edit the ckan.ini file in a text editor, changing the following options:

sqlalchemy.url This should refer to the database we created in 3. Setup a PostgreSQL database above:

sqlalchemy.url = postgresql://ckan_default:pass@localhost/ckan_default

Replace pass with the password that you created in 3. Setup a PostgreSQL database above.

Tip: If you’re using a remote host with password authentication rather than SSL authentication, use:

sqlalchemy.url = postgresql://ckan_default:pass@<remotehost>/ckan_default?
→˓sslmode=disable

site_id Each CKAN site should have a unique site_id, for example:

ckan.site_id = default

site_url Provide the site’s URL (used when putting links to the site into the FileStore, notification emails etc). For
example:

ckan.site_url = http://demo.ckan.org

Do not add a trailing slash to the URL.

5. Setup Solr

orphan

CKAN uses Solr as its search engine, and uses a customized Solr schema file that takes into account CKAN’s specific
search needs. Now that we have CKAN installed, we need to install and configure Solr.

Warning: CKAN supports Solr 8. Starting from CKAN 2.10 this is the only Solr version supported. CKAN 2.9
can run with Solr 8 as long as it is patched to at least 2.9.5. CKAN 2.9 can also run against Solr 6 but this is not
recommended as this Solr version does no longer receive security updates.

There are two supported ways to install Solr.

1. Using CKAN’s official Docker images. This is generally the easiest one and the recommended one if you are
developing CKAN locally

2. Installing Solr locally and configuring it with the CKAN schema. You can use this option if you can’t or don’t
want to use Docker.

32 Chapter 3. Maintainer’s guide

mailto:pass@localhost/
https://solr.apache.org/
https://www.docker.com/


CKAN documentation, Release 2.10.0a0

Installing Solr using Docker

You will need to have Docker installed. Please refer to its installation documentation for details.

There are pre-configured Docker images for Solr for each CKAN version. Make sure to pick the image tag that matches
your CKAN version (they are named ckan/ckan-solr:<Major version>.<Minor version>). To start a local
Solr service you can run:

docker run --name ckan-solr -p 8983:8983 -d ckan/ckan-solr:2.10

Todo: Switch to |current_minor_version| when we branch dev-v2.10

You can now jump to the Next steps section.

Installing Solr manually

1. Download the latest supported version from the Solr downloads page. CKAN supports Solr version 8.x.

2. Extract the downloaded file to your desired location (adjust the Solr version number to the one you are using):

tar xzf solr-8.11.0.tgz

3. Change into the extracted directory:

cd solr-8.11.0/

4. Start Solr:

bin/solr start

5. Create a new core for CKAN:

bin/solr create -c ckan

6. Replace the standard schema located in server/solr/ckan/conf/managed-schema with the CKAN one:

wget -O server/solr/ckan/conf/managed-schema https://raw.githubusercontent.com/ckan/
→˓ckan/master/ckan/config/solr/schema.xml

Todo: Switch to |current_release_tag| when we branch dev-v2.10

1. Restart Solr:

bin/solr restart

3.1. Installing CKAN 33

https://docs.docker.com/engine/install/
https://solr.apache.org/downloads.html


CKAN documentation, Release 2.10.0a0

Next steps with Solr

To check that Solr started you can visit the web interface at http://localhost:8983/solr

Warning: The two installation methods above will leave you with a setup that is fine for local development, but
Solr should never be exposed publicly in a production site. Pleaser refer to the Solr documentation to learn how to
secure your Solr instance.

If you followed any of the instructions above, the CKAN Solr core will be available at http://localhost:8983/solr/ckan.
If for whatever reason you ended up with a different one (eg with a different port, host or core name), you need to
change the solr_url setting in your CKAN configuration file (/etc/ckan/default/ckan.ini) to point to your Solr server, for
example:

solr_url=http://my-solr-host:8080/solr/ckan-2.10

6. Link to who.ini

who.ini (the Repoze.who configuration file) needs to be accessible in the same directory as your CKAN config file,
so create a symlink to it:

ln -s /usr/lib/ckan/default/src/ckan/who.ini /etc/ckan/default/who.ini

7. Create database tables

Now that you have a configuration file that has the correct settings for your database, you can create the database tables:

cd /usr/lib/ckan/default/src/ckan
ckan -c /etc/ckan/default/ckan.ini db init

You should see Initialising DB: SUCCESS.

Tip: If the command prompts for a password it is likely you haven’t set up the sqlalchemy.url option in your CKAN
configuration file properly. See 4. Create a CKAN config file.

8. Set up the DataStore

Note: Setting up the DataStore is optional. However, if you do skip this step, the DataStore features will not be
available and the DataStore tests will fail.

Follow the instructions in DataStore extension to create the required databases and users, set the right permissions and
set the appropriate values in your CKAN config file.

Once you have set up the DataStore, you may then wish to configure either the DataPusher or XLoader extensions to
add data to the DataStore. To install DataPusher refer to this link: https://github.com/ckan/datapusher and to install
XLoader refer to this link: https://github.com/ckan/ckanext-xloader

34 Chapter 3. Maintainer’s guide

http://localhost:8983/solr
https://solr.apache.org/guide/securing-solr.html
http://localhost:8983/solr/ckan
https://github.com/ckan/datapusher
https://github.com/ckan/ckanext-xloader


CKAN documentation, Release 2.10.0a0

9. You’re done!

You can now run CKAN from the command-line. This is a simple and lightweight way to serve CKAN that is useful
for development and testing:

cd /usr/lib/ckan/default/src/ckan
ckan -c /etc/ckan/default/ckan.ini run

Open http://127.0.0.1:5000/ in a web browser, and you should see the CKAN front page.

Now that you’ve installed CKAN, you should:

• Run CKAN’s tests to make sure that everything’s working, see Testing CKAN .

• If you want to use your CKAN site as a production site, not just for testing or development purposes, then deploy
CKAN using a production web server such as uWSGI or Nginx. See Deploying a source install.

• Begin using and customizing your site, see Getting started.

Note: The default authorization settings on a new install are deliberately restrictive. Regular users won’t be able
to create datasets or organizations. You should check the Organizations and authorization documentation, configure
CKAN accordingly and grant other users the relevant permissions using the sysadmin account.

Source install troubleshooting

Solr setup troubleshooting

Solr requests and errors are logged in the web server log files.

• For Jetty servers, the log files are:

/var/log/jetty/<date>.stderrout.log

• For Tomcat servers, they’re:

/var/log/tomcat6/catalina.<date>.log

Unable to find a javac compiler

If when running Solr it says:

Unable to find a javac compiler; com.sun.tools.javac.Main is not on the classpath. Perhaps JAVA_HOME
does not point to the JDK.

See the note in 5. Setup Solr about JAVA_HOME. Alternatively you may not have installed the JDK. Check by seeing if
javac is installed:

which javac

If javac isn’t installed, do:

sudo apt-get install openjdk-8-jdk

and then restart Solr:

For Ubuntu 18.04:

3.1. Installing CKAN 35

http://127.0.0.1:5000/


CKAN documentation, Release 2.10.0a0

sudo service jetty9 restart

or for Ubuntu 16.04:

sudo service jetty8 restart

AttributeError: ‘module’ object has no attribute ‘css/main.debug.css’

This error is likely to show up when debug is set to True. To fix this error, install frontend dependencies. See Frontend
development guidelines.

After installing the dependencies, run npm run build and then start ckan server again.

If you do not want to compile CSS, you can also copy the main.css to main.debug.css to get CKAN running:

cp /usr/lib/ckan/default/src/ckan/ckan/public/base/css/main.css \
/usr/lib/ckan/default/src/ckan/ckan/public/base/css/main.debug.css

ImportError: No module named ‘flask_debugtoolbar’

This may show up if you have enabled debug mode in the config file. Simply install the development requirements:

pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt

3.1.3 Installing CKAN with Docker Compose

This chapter is a tutorial on how to install the latest CKAN (master or any stable version) with Docker Compose. The
scenario shown here is one of many possible scenarios and environments in which CKAN can be used with Docker.

This chapter aims to provide a simple, yet fully customizable deployment - easier to configure than a source install,
more customizable than a package install.

The discussed setup can be useful as a development / staging environment; additional care has to be taken to use this
setup in production.

Note: Some design decisions are opinionated (see notes), which does not mean that the alternatives are any worse.
Some decisions may or may not be suitable for production scenarios, e.g. the use of CKAN master. Notably, this
tutorial does not use Docker Swarm; additional steps may need to be taken to adapt the setup to use Docker Swarm.

1. Environment

This tutorial was tested on Ubuntu 20.04 LTS. The hosts can be local environments or cloud VMs. It is assumed that
the user has direct access (via terminal / ssh) to the systems and root permissions.

a. Storage

Using a cloud based VM, external storage volumes are cheaper than VMs and easy to backup. In our use case, we use a
cloud based VM with 16 GB storage, have mounted a 100 GB btrfs-formatted external storage volume, and symlinked
/var/lib/docker to the external volume. This allows us to store the bulky and/or precious cargo – Docker images,
Docker data volumes containing the CKAN databases, filestore, and config – on a cheaper service. On the other hand,

36 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

a snapshotting filesystem like btrfs is ideal for rolling backups. The same cost consideration might apply to other
cloud-based providers.

Note: This setup stores data in named volumes, mapped to folder locations which can be networked or local storage.
An alternative would be to re-write docker-compose.yml to map local storage directly, bypassing named volumes.
Both solutions will save data to a specified location.

Further reading: Docker Volumes.

b. Docker

Docker is installed system-wide following the official Docker CE installation guidelines.

To verify a successful Docker installation, run docker run hello-world. docker version should output versions
for client and server.

c. Docker Compose

Docker Compose is installed system-wide following the official Docker Compose installation guidelines. Alternatively,
Docker Compose can be installed inside a virtualenv, which would be entirely separate from the virtualenv used inside
the CKAN container, and would need to be activated before running Docker Compose commands.

To verify a successful Docker Compose installation, run docker-compose version.

d. CKAN source

Clone CKAN into a directory of your choice:

cd /path/to/my/projects
git clone https://github.com/ckan/ckan.git

This will use the latest CKAN master, which may not be stable enough for production use. To use a stable version,
checkout the respective tag, e.g.:

git checkout tags/ckan-2.9.5

2. Build Docker images

In this step we will build the Docker images and create Docker data volumes with user-defined, sensitive settings (e.g.
database passwords).

a. Sensitive settings and environment variables

Copy contrib/docker/.env.template to contrib/docker/.env and follow instructions within to set passwords
and other sensitive or user-defined variables. The defaults will work fine in a development environment on Linux. For
Windows and OSX, the CKAN_SITE_URL must be updated.

Note: Related reading:

• Docker-compose .env file

• Environment variables in Compose

• Newcomers to Docker should read the excellent write-up on Docker variables by Vladislav Supalov (GitHub
@th4t)

b. Build the images

Inside the CKAN directory:

3.1. Installing CKAN 37

https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/env-file/
https://docs.docker.com/compose/environment-variables/
http://vsupalov.com/docker-env-vars/


CKAN documentation, Release 2.10.0a0

cd contrib/docker
docker-compose up -d --build

For the remainder of this chapter, we assume that docker-compose commands are all run inside contrib/docker,
where docker-compose.yml and .env are located.

On first runs, the postgres container could need longer to initialize the database cluster than the ckan container will
wait for. This time span depends heavily on available system resources. If the CKAN logs show problems connecting
to the database, restart the ckan container a few times:

docker-compose restart ckan
docker ps | grep ckan
docker-compose logs -f ckan

Note: Earlier versions of ckan-entrypoint.sh used to wait and ping the db container using detailed db credentials
(host, port, user, password). While this delay sometimes worked, it also obfuscated other possible problems. How-
ever, the db cluster needs to initialize only once, and starts up quickly in subsequent runs. This setup chose the very
opinionated option of doing away with the delay altogether in favour of failing early.

After this step, CKAN should be running at CKAN_SITE_URL.

There should be five containers running (docker ps):

• ckan: CKAN with standard extensions

• db: CKAN’s database, later also running CKAN’s datastore database

• redis: A pre-built Redis image.

• solr: A pre-built SolR image set up for CKAN.

• datapusher: A pre-built CKAN Datapusher image.

There should be four named Docker volumes (docker volume ls | grep docker). They will be prefixed with the
Docker Compose project name (default: docker or value of host environment variable COMPOSE_PROJECT_NAME.)

• docker_ckan_config: home of production.ini

• docker_ckan_home: home of ckan venv and source, later also additional CKAN extensions

• docker_ckan_storage: home of CKAN’s filestore (resource files)

• docker_pg_data: home of the database files for CKAN’s default and datastore databases

The location of these named volumes needs to be backed up in a production environment. To migrate CKAN data
between different hosts, simply transfer the content of the named volumes. A detailed use case of data transfer will be
discussed in step 5.

You have the option of using environment variables rather than hard coding the actual docker container name. For
example, if you want to remove the “db” container name replace “db” with name of your environment variable in
docker-compose.yml:

links:

• db

depends_on:

• db

db: container_name: ${POSTGRES_HOST}

38 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

c. Convenience: paths to named volumes

The files inside named volumes reside on a long-ish path on the host. Purely for convenience, we’ll define environment
variables for these paths. We’ll use a prefix VOL_ to avoid overriding variables in docker-compose.yml.:

# Find the path to a named volume
docker volume inspect docker_ckan_home | jq -c '.[] | .Mountpoint'
# "/var/lib/docker/volumes/docker_ckan_config/_data"

export VOL_CKAN_HOME=`docker volume inspect docker_ckan_home | jq -r -c '.[] | .
→˓Mountpoint'`
echo $VOL_CKAN_HOME

export VOL_CKAN_CONFIG=`docker volume inspect docker_ckan_config | jq -r -c '.[] | .
→˓Mountpoint'`
echo $VOL_CKAN_CONFIG

export VOL_CKAN_STORAGE=`docker volume inspect docker_ckan_storage | jq -r -c '.[] | .
→˓Mountpoint'`
echo $VOL_CKAN_STORAGE

We won’t need to access files inside docker_pg_data directly, so we’ll skip creating the shortcut. As shown further
below, we can use psql from inside the ckan container to run commands against the database and import / export files
from $VOL_CKAN_HOME.

3. Datastore and datapusher

The datastore database and user are created when the db container is first started, however we need to do some additional
configuration before enabling the datastore and datapusher settings in the production.ini.

a. Configure datastore database

With running CKAN containers, execute the built-in setup script against the db container:

docker exec ckan /usr/local/bin/ckan -c /etc/ckan/production.ini datastore set-
→˓permissions | docker exec -i db psql -U ckan

The script pipes in the output of ckan datastore set-permissions - however, as this output can change in fu-
ture versions of CKAN, we set the permissions directly. The effect of this script is persisted in the named volume
docker_pg_data.

Note: We re-use the already privileged default user of the CKAN database as read/write user for the datastore. The
database user (ckan) is hard-coded, the password is supplied through the``.env`` variable POSTGRES_PASSWORD. A new
user datastore_ro is created (and also hard-coded) as readonly user with password DATASTORE_READONLY_USER.
Hard-coding the database table and usernames allows to prepare the set-permissions SQL script, while not exposing
sensitive information to the world outside the Docker host environment.

After this step, the datastore database is ready to be enabled in the production.ini.

b. Enable datastore and datapusher in production.ini

Edit the production.ini (note: requires sudo):

sudo vim $VOL_CKAN_CONFIG/production.ini

3.1. Installing CKAN 39



CKAN documentation, Release 2.10.0a0

Add datastore datapusher to ckan.plugins and enable the datapusher option ckan.datapusher.formats.

The remaining settings required for datastore and datapusher are already taken care of:

• ckan.storage_path (/var/lib/ckan) is hard-coded in ckan-entrypoint.sh, docker-compose.yml and
CKAN’s Dockerfile. This path is hard-coded as it remains internal to the containers, and changing it would
have no effect on the host system.

• ckan.datastore.write_url = postgresql://ckan:POSTGRES_PASSWORD@db/datastore and ckan.
datastore.read_url = postgresql://datastore:DATASTORE_READONLY_PASSWORD@db/datastore
are provided by docker-compose.yml.

Restart the ckan container to apply changes to the production.ini:

docker-compose restart ckan

Now the datastore API should return content when visiting:

CKAN_SITE_URL/api/3/action/datastore_search?resource_id=_table_metadata

4. Create CKAN admin user

With all images up and running, create the CKAN admin user (johndoe in this example):

docker exec -ti ckan /usr/local/bin/ckan -c /etc/ckan/production.ini sysadmin add johndoe

Now you should be able to login to the new, empty CKAN. The admin user’s API key will be instrumental in tranferring
data from other instances.

5. Migrate data

This section illustrates the data migration from an existing CKAN instance SOURCE_CKAN into our new Docker Com-
pose CKAN instance assuming direct (ssh) access to SOURCE_CKAN.

a. Transfer resource files

Assuming the CKAN storage directory on SOURCE_CKAN is located at /path/to/files (containing resource files and
uploaded images in resources and storage), we’ll simply rsync SOURCE_CKAN’s storage directory into the named
volume docker_ckan_storage:

sudo rsync -Pavvr USER@SOURCE_CKAN:/path/to/files/ $VOL_CKAN_STORAGE

b. Transfer users

Users could be exported using the python package ckanapi, but their password hashes will be excluded. To transfer
users preserving their passwords, we need to dump and restore the user table.

On source CKAN host with access to source db ckan_default, export the user table:

pg_dump -h CKAN_DBHOST -P CKAN_DBPORT -U CKAN_DBUSER -a -O -t user -f user.sql ckan_
→˓default

On the target host, make user.sql accessible to the source CKAN container. Transfer user.sql into the named volume
docker_ckan_home and chown it to the docker user:

40 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

rsync -Pavvr user@ckan-source-host:/path/to/user.sql $VOL_CKAN_HOME/venv/src

# $VOL_CKAN_HOME is owned by the user "ckan" (UID 900) as created in the CKAN Dockerfile
sudo ls -l $VOL_CKAN_HOME
# drwxr-xr-x 1 900 900 62 Jul 17 16:13 venv

# Chown user.sql to the owner of $CKAN_HOME (ckan, UID 900)
sudo chown 900:900 $VOL_CKAN_HOME/venv/src/user.sql

Now the file user.sql is accessible from within the ckan container:

docker exec -it ckan /bin/bash -c "export TERM=xterm; exec bash"

ckan@eca111c06788:/$ psql -U ckan -h db -f $CKAN_VENV/src/user.sql

c. Export and upload groups, orgs, datasets

Using the python package ckanapi we will dump orgs, groups and datasets from the source CKAN instance, then use
ckanapi to load the exported data into the target instance. The datapusher will automatically ingest CSV resources
into the datastore.

d. Rebuild search index

Trigger a Solr index rebuild:

docker exec -it ckan /usr/local/bin/ckan -c /etc/ckan/production.ini search-index rebuild

6. Add extensions

There are two scenarios to add extensions:

• Maintainers of production instances need extensions to be part of the ckan image and an easy way to enable
them in the production.ini. Automating the installation of existing extensions (without needing to change
their source) requires customizing CKAN’s Dockerfile and scripted post-processing of the production.ini.

• Developers need to read, modify and use version control on the extensions’ source. This adds additional steps to
the maintainers’ workflow.

For maintainers, the process is in summary:

• Run a bash shell inside the running ckan container, download and install extension. Alternatively, add a pip
install step for the extension into a custom CKAN Dockerfile.

• Restart ckan service, read logs.

a. Download and install extension from inside ckan container into docker_ckan_home volume

The process is very similar to installing extensions in a source install. The only difference is that the installation steps
will happen inside the running container, and they will use the virtualenv created inside the ckan image by CKAN’s
Dockerfile.

The downloaded and installed files will be persisted in the named volume docker_ckan_home.

In this example we’ll enter the running ckan container to install ckanext-geoview from source, ckanext-showcase from
GitHub, and ckanext-envvars from PyPi:

3.1. Installing CKAN 41

https://github.com/ckan/ckanext-geoview
https://github.com/ckan/ckanext-showcase
https://github.com/okfn/ckanext-envvars


CKAN documentation, Release 2.10.0a0

# Enter the running ckan container:
docker exec -it ckan /bin/bash -c "export TERM=xterm; exec bash"

# Inside the running container, activate the virtualenv
source $CKAN_VENV/bin/activate && cd $CKAN_VENV/src/

# Option 1: From source
git clone https://github.com/ckan/ckanext-geoview.git
cd ckanext-geoview
pip install -r pip-requirements.txt
python setup.py install
python setup.py develop
cd ..

# Option 2: Pip install from GitHub
pip install -e "git+https://github.com/ckan/ckanext-showcase.git#egg=ckanext-showcase"

# Option 3: Pip install from PyPi
pip install ckanext-envvars

# exit the ckan container:
exit

Some extensions require database upgrades, often through the ckan CLI. E.g., ckanext-spatial:

# Enter the running ckan container:
docker exec -it ckan /bin/bash -c "export TERM=xterm; exec bash"

# Inside the running ckan container
source $CKAN_VENV/bin/activate && cd $CKAN_VENV/src/
git clone https://github.com/ckan/ckanext-spatial.git
cd ckanext-spatial
pip install -r pip-requirements.txt
python setup.py install && python setup.py develop
exit

# On the host
docker exec -it db psql -U ckan -f /docker-entrypoint-initdb.d/20_postgis_permissions.sql
docker exec -it ckan /usr/local/bin/ckan -c /etc/ckan/production.ini spatial initdb

sudo vim $VOL_CKAN_CONFIG/production.ini

# Inside production.ini, add to [plugins]:
spatial_metadata spatial_query

ckanext.spatial.search_backend = solr

b. Modify CKAN config

Follow the respective extension’s instructions to set CKAN config variables:

sudo vim $VOL_CKAN_CONFIG/production.ini

42 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-spatial.git


CKAN documentation, Release 2.10.0a0

Todo: Demonstrate how to set production.ini settings from environment variables using ckanext-envvars.

c. Reload and debug

docker-compose restart ckan
docker-compose logs ckan

d. Develop extensions: modify source, install, use version control

While maintainers will prefer to use stable versions of existing extensions, developers of extensions will need access
to the extensions’ source, and be able to use version control.

The use of Docker and the inherent encapsulation of files and permissions makes the development of extensions harder
than a CKAN source install.

Firstly, the absence of private SSH keys inside Docker containers will make interacting with GitHub a lot harder. On
the other hand, two-factor authentication on GitHub breaks BasicAuth (HTTPS, username and password) and requires
a “personal access token” in place of the password.

To use version control from inside the Docker container:

• Clone the HTTPS version of the GitHub repo.

• On GitHub, create a personal access token with “full control of private repositories”.

• Copy the token code and use as password when running git push.

Secondly, the persisted extension source at VOL_CKAN_HOME is owned by the CKAN container’s docker user (UID
900) and therefore not writeable to the developer’s host user account by default. There are various workarounds. The
extension source can be accessed from both outside and inside the container.

Option 1: Accessing the source from inside the container:

docker exec -it ckan /bin/bash -c "export TERM=xterm; exec bash"
source $CKAN_VENV/bin/activate && cd $CKAN_VENV/src/
# ... work on extensions, use version control ...
# in extension folder:
python setup.py install
exit
# ... edit extension settings in production.ini and restart ckan container
sudo vim $VOL_CKAN_CONFIG/production.ini
docker-compose restart ckan

Option 2: Accessing the source from outside the container using sudo:

sudo vim $VOL_CKAN_CONFIG/production.ini
sudo vim $VOL_CKAN_HOME/venv/src/ckanext-datawagovautheme/ckanext/datawagovautheme/
→˓templates/package/search.html

Option 3: The Ubuntu package bindfs makes the write-protected volumes accessible to a system user:

sudo apt-get install bindfs
mkdir ~/VOL_CKAN_HOME
sudo chown -R `whoami`:docker $VOL_CKAN_HOME
sudo bindfs --map=900/`whoami` $VOL_CKAN_HOME ~/VOL_CKAN_HOME

cd ~/VOL_CKAN_HOME/venv/src
(continues on next page)

3.1. Installing CKAN 43



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# Do this with your own extension fork
# Assumption: the host user running git clone (you) has write access to the repository
git clone https://github.com/parksandwildlife/ckanext-datawagovautheme.git

# ... change files, use version control...

Changes in HTML templates and CSS will be visible right away. For changes in code, we’ll need to unmount the
directory, change ownership back to the ckan user, and follow the previous steps to python setup.py install and
pip install -r requirements.txt from within the running container, modify the production.ini and restart
the container:

sudo umount ~/VOL_CKAN_HOME
sudo chown -R 900:900 $VOL_CKAN_HOME
# Follow steps a-c

Note: Mounting host folders as volumes instead of using named volumes may result in a simpler development work-
flow. However, named volumes are Docker’s canonical way to persist data. The steps shown above are only some of
several possible approaches.

7. Environment variables

Sensitive settings can be managed in (at least) two ways, either as environment variables, or as Docker secrets. This
section illustrates the use of environment variables provided by the Docker Compose .env file.

This section is targeted at CKAN maintainers seeking a deeper understanding of variables, and at CKAN developers
seeking to factor out settings as new .env variables.

Variable substitution propagates as follows:

• .env.template holds the defaults and the usage instructions for variables.

• The maintainer copies .env from .env.template and modifies it following the instructions.

• Docker Compose interpolates variables in docker-compose.yml from .env.

• Docker Compose can pass on these variables to the containers as build time variables (when building the images)
and / or as run time variables (when running the containers).

• ckan-entrypoint.sh has access to all run time variables of the ckan service.

• ckan-entrypoint.sh injects environment variables (e.g. CKAN_SQLALCHEMY_URL) into the running ckan
container, overriding the CKAN config variables from production.ini.

See Configuration Options for a list of environment variables (e.g. CKAN_SQLALCHEMY_URL) which CKAN will accept
to override production.ini.

After adding new or changing existing .env variables, locally built images and volumes may need to be dropped and
rebuilt. Otherwise, docker will re-use cached images with old or missing variables:

docker-compose down
docker-compose up -d --build

# if that didn't work, try:
docker rmi $(docker images -q -f dangling=true)

(continues on next page)

44 Chapter 3. Maintainer’s guide

https://docs.docker.com/engine/swarm/secrets/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

docker-compose up -d --build

# if that didn't work, try:
docker rmi $(docker images -q -f dangling=true)
docker volume prune
docker-compose up -d --build

Warning: Removing named volumes will destroy data. docker volume prune will delete any volumes not
attached to a running(!) container. Backup all data before doing this in a production setting.

8. Steps towards production

As mentioned above, some design decisions may not be suitable for a production setup.

A possible path towards a production-ready environment is:

• Use the above setup to build docker images.

• Add and configure extensions.

• Make sure that no sensitive settings are hard-coded inside the images.

• Push the images to a docker repository.

• Create a separate “production” docker-compose.yml which uses the custom built images.

• Run the “production” docker-compose.yml on the production server with appropriate settings.

• Transfer production data into the new server as described above using volume orchestration tools or transferring
files directly.

• Bonus: contribute a write-up of working production setups to the CKAN documentation.

3.1.4 Deploying a source install

Once you’ve installed CKAN from source by following the instructions in Installing CKAN from source, you can follow
these instructions to deploy your CKAN site using a rudimentary web server, so that it’s available to the Internet.

Because CKAN uses WSGI, a standard interface between web servers and Python web applications, CKAN can be used
with a number of different web server and deployment configurations, however the CKAN project has now standardized
on one NGINX with uwsgi

This guide explains how to deploy CKAN using a uwsgi web server and proxied with NGINX on an Ubuntu server.
These instructions have been tested on Ubuntu 18.04.

3.1. Installing CKAN 45

http://nginx.org/


CKAN documentation, Release 2.10.0a0

1. Install Nginx

Install NGINX (a web server) which will proxy the content from one of the WSGI Servers and add a layer of caching:

sudo apt-get install nginx

2. Create the WSGI script file

The WSGI script file can be copied from the CKAN distribution: sudo cp /usr/lib/ckan/default/src/ckan/
wsgi.py /etc/ckan/default/

Here is the file:

# -- coding: utf-8 --

import os
from ckan.config.middleware import make_app
from ckan.cli import CKANConfigLoader
from logging.config import fileConfig as loggingFileConfig
config_filepath = os.path.join(

os.path.dirname(os.path.abspath(__file__)), 'ckan.ini')
abspath = os.path.join(os.path.dirname(os.path.abspath(__file__)))
loggingFileConfig(config_filepath)
config = CKANConfigLoader(config_filepath).get_config()
application = make_app(config)

The WSGI Server (configured next) will redirect requests to this WSGI script file. The script file then handles those
requests by directing them on to your CKAN instance (after first configuring the Python environment for CKAN to run
in).

3. Create the WSGI Server

Make sure you have activated the Python virtual environment before running this command:

. /usr/lib/ckan/default/bin/activate

uwsgi

Run pip install uwsgi The uwsgi configuration file can be copied from the CKAN distribution: sudo cp /usr/
lib/ckan/default/src/ckan/ckan-uwsgi.ini /etc/ckan/default/

Here is the file:

[uwsgi]

http = 127.0.0.1:8080
uid = www-data
gid = www-data
wsgi-file = /etc/ckan/default/wsgi.py
virtualenv = /usr/lib/ckan/default
module = wsgi:application
master = true
pidfile = /tmp/%n.pid

(continues on next page)

46 Chapter 3. Maintainer’s guide

http://nginx.org/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

harakiri = 50
max-requests = 5000
vacuum = true
callable = application
strict = true

4. Install Supervisor for the uwsgi

Install Supervisor (a Process Control System) used to control starting, stopping the uwsgi or gunicorn servers:

sudo apt-get install supervisor
sudo service supervisor restart

uwsgi

Create the /etc/supervisor/conf.d/ckan-uwsgi.conf file

[program:ckan-uwsgi]

command=/usr/lib/ckan/default/bin/uwsgi -i /etc/ckan/default/ckan-uwsgi.ini

; Start just a single worker. Increase this number if you have many or
; particularly long running background jobs.
numprocs=1
process_name=%(program_name)s-%(process_num)02d

; Log files - change this to point to the existing CKAN log files
stdout_logfile=/etc/ckan/default/uwsgi.OUT
stderr_logfile=/etc/ckan/default/uwsgi.ERR

; Make sure that the worker is started on system start and automatically
; restarted if it crashes unexpectedly.
autostart=true
autorestart=true

; Number of seconds the process has to run before it is considered to have
; started successfully.
startsecs=10

; Need to wait for currently executing tasks to finish at shutdown.
; Increase this if you have very long running tasks.
stopwaitsecs = 600

; Required for uWSGI as it does not obey SIGTERM.
stopsignal=QUIT

3.1. Installing CKAN 47

http://http://supervisord.org/


CKAN documentation, Release 2.10.0a0

5. Install an email server

If one isn’t installed already, install an email server to enable CKAN’s email features (such as sending traceback emails
to sysadmins when crashes occur, or sending new activity email notifications to users). For example, to install the
Postfix email server, do:

sudo apt-get install postfix

When asked to choose a Postfix configuration, choose Internet Site and press return.

6. Create the NGINX config file

Create your site’s NGINX config file at /etc/nginx/sites-available/ckan, with the following contents:

proxy_cache_path /tmp/nginx_cache levels=1:2 keys_zone=cache:30m max_size=250m;
proxy_temp_path /tmp/nginx_proxy 1 2;

server {
client_max_body_size 100M;
location / {

proxy_pass http://127.0.0.1:8080/;
proxy_set_header X-Forwarded-For $remote_addr;
proxy_set_header Host $host;
proxy_cache cache;
proxy_cache_bypass $cookie_auth_tkt;
proxy_no_cache $cookie_auth_tkt;
proxy_cache_valid 30m;
proxy_cache_key $host$scheme$proxy_host$request_uri;
# In emergency comment out line to force caching
# proxy_ignore_headers X-Accel-Expires Expires Cache-Control;

}

}

To prevent conflicts, disable your default nginx sites and restart:

sudo rm -vi /etc/nginx/sites-enabled/default
sudo ln -s /etc/nginx/sites-available/ckan /etc/nginx/sites-enabled/ckan
sudo service nginx restart

48 Chapter 3. Maintainer’s guide

http://www.postfix.org/


CKAN documentation, Release 2.10.0a0

7. Access your CKAN site

You should now be able to visit your server in a web browser and see your new CKAN instance.

8. Setup a worker for background jobs

CKAN uses asynchronous Background jobs for long tasks. These jobs are executed by a separate process which is
called a worker.

To run the worker in a robust way, install and configure Supervisor.

Deployment changes for CKAN 2.9

This section describes how to update your deployment for CKAN 2.9 or later, if you have an existing deployment of
CKAN 2.8 or earlier. This is necessary, whether you continue running CKAN on Python 2 or Python 3, because the
WSGI entry point for running CKAN has changed. If your existing deployment is different to that described in the
official CKAN 2.8 deployment instructions (apache2 + mod_wsgi + nginx) then you’ll need to adapt these instructions
to your setup.

We now recommend you activate the Python virtual environment in a different place, compared to earlier CKAN
versions. For the WSGI server, activation is done in the uwsgi server config file (/etc/ckan/default/ckan-uwsgi.ini).

(In CKAN 2.8.x and earlier, the virtual environment was activated in the WSGI script file.)

3.2 Upgrading CKAN

This document describes the different types of CKAN release, and explains how to upgrade a site to a newer version
of CKAN.

See also:

Changelog The changelog lists all CKAN releases and the main changes introduced in each release.

Doing a CKAN release Documentation of the process that the CKAN developers follow to do a CKAN release.

3.2.1 CKAN releases

CKAN follows a predictable release cycle so that users can depend on stable releases of CKAN, and can plan their
upgrades to new releases.

Each release has a version number of the form M.m (eg. 2.1) or M.m.p (eg. 1.8.2), where M is the major version, m is
the minor version and p is the patch version number. There are three types of release:

Major Releases Major releases, such as CKAN 1.0 and CKAN 2.0, increment the major version number. These
releases contain major changes in the CKAN code base, with significant refactorings and breaking changes, for
instance in the API or the templates. These releases are very infrequent.

Minor Releases Minor releases, such as CKAN 1.8 and CKAN 2.1, increment the minor version number. These
releases are not as disruptive as major releases, but backwards-incompatible changes may be introduced in minor
releases. The Changelog will document any breaking changes. We aim to release a minor version of CKAN
roughly every three months.

Patch Releases Patch releases, such as CKAN 1.8.1 or CKAN 2.0.1, increment the patch version number. These
releases do not break backwards-compatibility, they include only bug fixes and security fixes, ensured to be
non-breaking. Patch releases do not contain:

3.2. Upgrading CKAN 49

https://docs.ckan.org/en/2.8/maintaining/installing/deployment.html


CKAN documentation, Release 2.10.0a0

• Database schema changes or migrations

• Function interface changes

• Plugin interface changes

• New dependencies (unless absolutely necessary)

• Big refactorings or new features in critical parts of the code

Note: Users should always run the latest patch release for the minor release they are on, as patch releases contain
important bug fixes and security updates. Because patch releases don’t include backwards incompatible changes, the
upgrade process (as described in Upgrading a CKAN 2 package install to a new patch release) should be straightforward.

Outdated patch releases will no longer be supported after a newer patch release has been released. For example once
CKAN 2.0.2 has been released, CKAN 2.0.1 will no longer be supported.

Releases are announced on the ckan-announce mailing list, a low-volume list that CKAN instance maintainers can
subscribe to in order to be up to date with upcoming releases.

3.2.2 Upgrading CKAN

This section will walk you through the steps to upgrade your CKAN site to a newer version of CKAN.

Note: Before upgrading your version of CKAN you should check that any custom templates or extensions you’re
using work with the new version of CKAN. For example, you could install the new version of CKAN in a new virtual
environment and use that to test your templates and extensions.

Note: You should also read the Changelog to see if there are any extra notes to be aware of when upgrading to the
new version.

1. Backup your database

You should always backup your CKAN database before upgrading CKAN. If something goes wrong with the CKAN
upgrade you can use the backup to restore the database to its pre-upgrade state.

1. Activate your virtualenv and switch to the ckan source directory, e.g.:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

2. Backup your CKAN database

50 Chapter 3. Maintainer’s guide

https://groups.google.com/a/ckan.org/g/ckan-announce


CKAN documentation, Release 2.10.0a0

2. Upgrade CKAN

The process of upgrading CKAN differs depending on whether you have a package install or a source install of CKAN,
and whether you’re upgrading to a major, minor or patch release of CKAN. Follow the appropriate one of these docu-
ments:

Upgrading a CKAN 1 package install to CKAN 2.x

Note: If you want to upgrade a CKAN 1.x package install to a newer version of CKAN 1 (as opposed to upgrading to
CKAN 2), see the documentation relevant to the old CKAN packaging system.

The CKAN 2.x packages require Ubuntu 20.04 64-bit or 18.04 64-bit, whereas previous CKAN packages used Ubuntu
10.04. CKAN 2.x also introduces many backwards-incompatible feature changes (see the changelog). So it’s not
possible to automatically upgrade to a CKAN 2.x package install.

However, you can install CKAN 2.x (either on the same server that contained your CKAN 1.x site, or on a different
machine) and then manually migrate your database and any custom configuration, extensions or templates to your new
CKAN 2.x site. We will outline the main steps for migrating below.

1. Create a dump of your CKAN 1.x database.

2. If you want to install CKAN 2.x on the same server that your CKAN 1.x site was on, uninstall the CKAN 1.x
package first:

sudo apt-get autoremove ckan

3. Install CKAN 2.x, either from a package install if you have Ubuntu 20.04 or 18.04 64-bit, or from a source install
otherwise.

4. Load your database dump from CKAN 1.x into CKAN 2.x. This will migrate all of your datasets, resources,
groups, tags, user accounts, and other data to CKAN 2.x. Your database schema will be automatically upgraded,
and your search index rebuilt.

First, activate your CKAN virtual environment and change to the ckan dir:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

Now load your database dump into CKAN 2.x. If you’ve installed CKAN 2.x on a different machine from 1.x,
first copy the database dump file to that machine.

5. If you had any custom config settings in your CKAN 1.x instance that you want to copy across to your CKAN
2.x instance, then update your CKAN 2.x /etc/ckan/default/production.ini file with these config settings. Note
that not all CKAN 1.x config settings are still supported in CKAN 2.x, see Configuration Options for details.

In particular, CKAN 2.x introduces an entirely new authorization system and any custom authorization settings
you had in CKAN 1.x will have to be reconsidered for CKAN 2.x. See Organizations and authorization for
details.

6. If you had any extensions installed in your CKAN 1.x instance that you also want to use with your CKAN 2.x
instance, install those extensions in CKAN 2.x. Not all CKAN 1.x extensions are compatible with CKAN 2.x.
Check each extension’s documentation for CKAN 2.x compatibility and install instructions.

7. If you had any custom templates in your CKAN 1.x instance, these will need to be adapted before they can be
used with CKAN 2.x. CKAN 2.x introduces an entirely new template system based on Jinja2 rather than on
Genshi. See Theming guide for details.

3.2. Upgrading CKAN 51

http://docs.ckan.org/en/ckan-1.8/install-from-package.html#upgrading-a-package-install


CKAN documentation, Release 2.10.0a0

Upgrading a CKAN 2 package install to a new patch release

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN .

Patch releases are distributed in the same package as the minor release they belong to, so for example CKAN 2.0,
2.0.1, 2.0.2, etc. will all be installed using the CKAN 2.0 package (python-ckan_2.0_amd64.deb):

1. Download the CKAN package:

wget https://packaging.ckan.org/python-ckan_2.0_amd64.deb

You can check the actual CKAN version from a package running the following command:

dpkg --info python-ckan_2.0_amd64.deb

Look for the Version field in the output:

...
Package: python-ckan
Version: 2.0.1-3
...

2. Install the package with the following command:

sudo dpkg -i python-ckan_2.0_amd64.deb

Your CKAN instance should be upgraded straight away.

Note: If you have changed the Apache, Nginx or who.ini configuration files, you will get a prompt like the
following, asking whether to keep your local changes or replace the files. You generally would like to keep your
local changes (option N, which is the default), but you can look at the differences between versions by selecting
option D:

Configuration file `/etc/apache2/sites-available/ckan_default'
==> File on system created by you or by a script.
==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:
Y or I : install the package maintainer's version
N or O : keep your currently-installed version
D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.
*** ckan_default (Y/I/N/O/D/Z) [default=N] ?

Your local CKAN configuration file in /etc/ckan/default will not be replaced.

Note: The install process will uninstall any existing CKAN extensions or other libraries located in the src
directory of the CKAN virtualenv. To enable them again, the installation process will iterate all folders in the src
directory, reinstall the requirements listed in pip-requirements.txt and requirements.txt files and run

52 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

python setup.py develop for each. If you are using a custom extension which does not use this requirements
file names or is located elsewhere, you will need to manually reenable it.

3. Finally, restart uWSGI and Nginx:

sudo supervisorctl restart ckan-uwsgi:*
sudo service nginx restart

4. You’re done!

You should now be able to visit your CKAN website in your web browser and see that it’s running the new version of
CKAN.

Upgrading a CKAN 2 package install to a new minor release

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN .

Each minor release is distributed in its own package, so for example CKAN 2.0.X and 2.1.X will be installed using
the python-ckan_2.0_amd64.deb and python-ckan_2.1_amd64.deb packages respectively.

1. Download the CKAN package for the new minor release you want to upgrade to (replace the version number
with the relevant one):

wget https://packaging.ckan.org/python-ckan_2.1_amd64.deb

2. Install the package with the following command:

sudo dpkg -i python-ckan_2.1_amd64.deb

Note: If you have changed the Apache, Nginx or who.ini configuration files, you will get a prompt like the
following, asking whether to keep your local changes or replace the files. You generally would like to keep your
local changes (option N, which is the default), but you can look at the differences between versions by selecting
option D:

Configuration file `/etc/apache2/sites-available/ckan_default'
==> File on system created by you or by a script.
==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:
Y or I : install the package maintainer's version
N or O : keep your currently-installed version
D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.
*** ckan_default (Y/I/N/O/D/Z) [default=N] ?

Your local CKAN configuration file in /etc/ckan/default will not be replaced.

Note: The install process will uninstall any existing CKAN extensions or other libraries located in the src
directory of the CKAN virtualenv. To enable them again, the installation process will iterate over all folders in
the src directory, reinstall the requirements listed in pip-requirements.txt and requirements.txt files

3.2. Upgrading CKAN 53



CKAN documentation, Release 2.10.0a0

and run python setup.py develop for each. If you are using a custom extension which does not use this
requirements file name or is located elsewhere, you will need to manually reinstall it.

3. If there have been changes in the database schema (check the Changelog to find out) you need to upgrade your
database schema.

4. If there have been changes in the Solr schema (check the Changelog to find out) you need to restart Jetty for the
changes to take effect:

sudo service jetty restart

5. If you have any CKAN extensions installed from source, you may need to checkout newer versions of the exten-
sions that work with the new CKAN version. Refer to the documentation for each extension. We recommend
disabling all extensions on your ini file and re-enable them one by one to make sure they are working fine.

6. If new configuration options have been introduced (check the Changelog to find out) then check whether you
need to change them from their default values. See Configuration Options for details.

7. Rebuild your search index by running the ckan search-index rebuild command:

sudo ckan search-index rebuild -r

See search-index: Rebuild search index for details of the ckan search-index rebuild command.

8. Finally, restart the web server and Nginx, eg for a CKAN package install running uWSGI:

sudo supervisorctl restart ckan-uwsgi:*
sudo service nginx restart

Upgrading a source install

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN .

The process for upgrading a source install is the same, no matter what type of CKAN release you’re upgrading to:

1. Check the Changelog for changes regarding the required 3rd-party packages and their minimum versions (e.g.
web, database and search servers) and update their installations if necessary.

2. Activate your virtualenv and switch to the ckan source directory, e.g.:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

3. Checkout the new CKAN version from git, for example:

git fetch
git checkout ckan-2.9.5

If you have any CKAN extensions installed from source, you may need to checkout newer versions of the exten-
sions at this point as well. Refer to the documentation for each extension.

As of CKAN 2.6 branch naming has changed. See Doing a CKAN release for naming conventions. Specific
patches and minor versions can be checked-out using tags.

4. Update CKAN’s dependencies:

54 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

pip install --upgrade -r requirements.txt

5. Register any new or updated plugins:

python setup.py develop

6. If there have been changes in the Solr schema (check the Changelog to find out) you need to restart Jetty for the
changes to take effect:

sudo service jetty restart

7. If there have been changes in the database schema (check the Changelog to find out) you need to upgrade your
database schema.

8. If new configuration options have been introduced (check the Changelog to find out) then check whether you
need to change them from their default values. See Configuration Options for details.

9. Rebuild your search index by running the ckan search-index rebuild command:

ckan -c /path/to/ckan.ini search-index rebuild -r --config=/etc/ckan/default/ckan.
→˓ini

See search-index: Rebuild search index for details of the ckan search-index rebuild command.

10. Finally, restart your web server. For example if you have deployed CKAN using a package install, run this
command:

sudo supervisorctl restart ckan-uwsgi:*

11. You’re done!

You should now be able to visit your CKAN website in your web browser and see that it’s running the new version of
CKAN.

Upgrading Postgres for the CKAN 2.9 release

CKAN 2.9 requires PostgreSQL to be of version 9.5 or newer. This is a guide to doing the upgrade if necessary.

What are CKAN’s PostgreSQL connection settings?

Find out the PostgreSQL connection settings, as used by CKAN and Datastore:

grep sqlalchemy.url /etc/ckan/default/ckan.ini
grep ckan.datastore.write_url /etc/ckan/default/ckan.ini

where the format of the connection strings is one of these:

postgres://USERNAME:PASSWORD@HOST/DBNAME
postgres://USERNAME:PASSWORD@HOST:PORT/DBNAME

Note: If the ‘host’ is not configured as localhost then CKAN is using a PostgreSQL that is running on another
machine. In this case, many of the commands below will need running on the remote machine, or if you also have
PostgreSQL installed on the CKAN machine then PostgreSQL tools can usually run them on the remote host by using
the –host parameter.

3.2. Upgrading CKAN 55



CKAN documentation, Release 2.10.0a0

What version are you running?

To ask PostgreSQL its version:

sudo -u postgres psql -c 'SHOW server_version;'

Or if PostgreSQL is on a remote host then you can either run the command on that machine or if you have psql installed
locally you can use:

psql --host=HOSTNAME --username=USERNAME -W -c 'SHOW server_version;'

(replace HOSTNAME and USERNAME with the values from your connection settings, as previously mentioned. It will
prompt you for the password).

The version will look like this:

server_version
----------------
9.1.9
(1 row)

Ignoring the last number of the three, if your PostgreSQL version number is lower than 9.5 then you should upgrade
PostgreSQL before you upgrade to CKAN 2.9 or later.

Upgrading

Note: These instructions install the new PostgreSQL version alongside the existing one, so any install issues can
be dealt before switching. However it is still wise to test the whole process on a test machine before upgrading for a
public-facing CKAN.

Note: These instructions are for Ubuntu, but can be adapted to other distributions.

1. If the PostgreSQL cluster that ckan uses is not running on localhost then log-in to the PostgreSQL machine now.

2. Check to see what PostgreSQL packages are installed:

aptitude search '~i postgres'

These instructions assume you have been using the installed package postgresql-9.1. If using ckanext-spatial
then you will also have PostGIS too (e.g. postgresql-9.1-postgis), which needs upgrading at the same time.

3. Install the Postgres Apt repository, containing newer versions. The PostgreSQL Apt Repository supports the cur-
rent LTS versions of Ubuntu i.e.,20.04 - for other versions and more information, refer to: http://www.postgresql.
org/download/linux/ubuntu/

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-
→˓pgdg main" > /etc/apt/sources.list.d/pgdg.list'
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key␣
→˓add -
sudo apt-get update
aptitude search postgresql-9.

56 Chapter 3. Maintainer’s guide

http://www.postgresql.org/download/linux/ubuntu/
http://www.postgresql.org/download/linux/ubuntu/


CKAN documentation, Release 2.10.0a0

You should now see there are packages for postgresql-9.5 etc.

4. Install the newer PostgreSQL version. It is suggested you pick the newest stable version (from those listed in the
previous step). Here we’ll use 9.5, if you want a specific version then change the version number below

sudo apt-get install postgresql-9.5

And if you need PostGIS:

sudo apt-get install postgresql-9.5-postgis-2.2 postgresql-9.5-postgis-2.2-scripts

Here we have install PostGIS 2.2, if you want a specific version then change the version number above.

5. If you have customized any PostgreSQL options, insert them into the new version’s config files.

You can probably just copy the authentication rules straight:

sudo cp /etc/postgresql/9.1/main/pg_hba.conf /etc/postgresql/9.5/main/pg_hba.conf

And you should read through the differences in postgresql.conf. This is a handy way to do this whilst ignoring
changes in the comment lines:

diff -u -B <(grep -vE '^\s*(#|$)' /etc/postgresql/9.1/main/postgresql.conf) <(grep␣
→˓-vE '^\s*(#|$)' /etc/postgresql/9.5/main/postgresql.conf)

Once you’ve finished your changes, restart both versions of PostgreSQL:

sudo /etc/init.d/postgresql restart 9.5

6. Follow the instructions in 3. Setup a PostgreSQL database to setup PostgreSQL with a user and database. Ensure
your username, password and database name match those in your connection settings (see previous section.)

7. Now log-in to the CKAN machine, if you have a separate PostgreSQL machine.

8. Activate your virtualenv and switch to the ckan source directory, e.g.:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

9. Stop your web server to prevent further writes to the database (because those changes would be lost).

10. Create a back-up of the database roles:

sudo -u postgres pg_dumpall --roles-only > backup_roles.sql

or for a remote database:

pg_dumpall --host=HOSTNAME --username=USERNAME -W --roles-only -f backup_roles.sql

11. Make a note of the names of all the databases in your PostgreSQL so that you can create dumps of them. List
them using:

sudo -u postgres psql -l

or remotely:

psql --host=HOSTNAME --username=USERNAME -W -l

The databases listed should comprise:

3.2. Upgrading CKAN 57



CKAN documentation, Release 2.10.0a0

• CKAN database - as given in sqlalchemy.url. Default: ‘ckan_default’

• Datastore database - as given in ckan.datastore.write_url. Default: ‘datastore_default’

• template0 - should not be dumped

• template1 - you’ll only need to dump this if you have edited it for some reason

You may also have:

• Test CKAN database - default ‘ckan_test’

• Test Datastore database - default ‘datastore_test’

which do not need to be migrated - they will be regenerated later on.

Warning: If you have other databases apart from these (or have created any PostgreSQL tablespaces) then
you’ll have to decide how to deal with them - they are outside the scope of this guide.

12. Create the backups of the databases you are migrating e.g.:

sudo -u postgres pg_dump -Fc -b -v ckan_default > backup_ckan.dmp
sudo -u postgres pg_dump -Fc -b -v datastore_default > backup_datastore.dmp

or remotely:

pg_dump --host=HOSTNAME --username=USERNAME -W ckan_default -f backup_ckan.sql
pg_dump --host=HOSTNAME --username=USERNAME -W datastore_default -f backup_
→˓datastore.sql

You need to use the -Fc -b options because that is required by PostGIS migration.

13. Optional: If necessary, update the PostGIS objects (known as a ‘hard upgrade’). Please refer to the documentation
if you find any issues.

perl /usr/share/postgresql/9.5/contrib/postgis-2.2/postgis_restore.pl backup_ckan.
→˓sql > backup_ckan_postgis.sql

14. Restore your PostgreSQL roles into the new PostgreSQL version cluster. If you’re not upgrading to PostgreSQL
version 9.5, you’ll need to change the number in this psql command and future ones too. So:

sudo -u postgres psql --cluster 9.5/main -f backup_roles.sql

Expect there will be one error:

psql:backup_roles.sql:22: ERROR: role "postgres" already exists

which you can ignore - it should carry on regardless and finish ok.

15. Create the databases:

sudo -u postgres createdb --cluster 9.5/main ckan_default
sudo -u postgres createdb --cluster 9.5/main datastore_default

16. Optional: If necessary, enable PostGIS on the main database:

sudo -u postgres psql --cluster 9.5/main -d ckan_default -f /usr/share/postgresql/9.
→˓5/contrib/postgis-2.2/postgis.sql
sudo -u postgres psql --cluster 9.5/main -d ckan_default -f /usr/share/postgresql/9.
→˓5/contrib/postgis-2.2/spatial_ref_sys.sql

58 Chapter 3. Maintainer’s guide

http://postgis.net/docs/postgis_installation.html#hard_upgrade


CKAN documentation, Release 2.10.0a0

sudo -u postgres psql --cluster 9.5/main -d ckan_default -c 'ALTER TABLE geometry_
→˓columns OWNER TO ckan_default;'
sudo -u postgres psql --cluster 9.5/main -d ckan_default -c 'ALTER TABLE spatial_
→˓ref_sys OWNER TO ckan_default;'

To check if PostGIS was properly installed:

sudo -u postgres psql --cluster 9.5/main -d ckan_default -c "SELECT postgis_full_
→˓version()"

17. Now restore your databases:

sudo -u postgres pg_restore --cluster 9.5/main -Fc backup_ckan.dmp
sudo -u postgres pg_restore --cluster 9.5/main -Fc backup_datastore.dmp

If you have create backup remotely in step 12 then:

sudo -u postgres psql --cluster 9.5/main -f backup_ckan.sql
sudo -u postgres psql --cluster 9.5/main -f backup_datastore.sql

18. Tell CKAN to use the new PostgreSQL database by switching the PostgreSQL port number in the
/etc/ckan/default/ckan.ini. First find the correct port:

sudo pg_lsclusters

It is likely that the old PostgreSQL is port 5432 and the new one is on 5433.

Now edit the /etc/ckan/default/ckan.ini to insert the port number into the sqlalchemy.url. e.g.:

sqlalchemy.url = postgresql://ckan_default:pass@localhost:5433/ckan_default

And restart CKAN e.g.:

|restart_apache|

19. If you run the ckan tests then you should recreate the test databases, as described in Testing CKAN .

20. Once you are happy everything is running ok, you can delete your old PostgreSQL version’s config and database
files:

sudo apt-get purge postgresql-9.1

If you also have PostGIS installed, remove that too:

sudo apt-get remove postgresql-9.1-postgis

21. Download the CKAN package for the new minor release you want to upgrade to (replace the version number
with the relevant one):

On Ubuntu 18.04: wget https://packaging.ckan.org/python-ckan_2.9-bionic_amd64.deb
On Ubuntu 20.04: wget https://packaging.ckan.org/python-ckan_2.9-py3-focal_amd64.
→˓deb (for Python 3)

3.2. Upgrading CKAN 59

mailto:pass@localhost


CKAN documentation, Release 2.10.0a0

Upgrading a CKAN install from Python 2 to Python 3

These instructions describe how to upgrade a source install of CKAN 2.9 from Python 2 to Python 3, which is necessary
because Python 2 is end of life, as of January 1st, 2020.

Preparation

• Backup your CKAN source, virtualenv and databases, just in case.

• Upgrade to CKAN 2.9, if you’ve not done already.

Upgrade

You’ll probably need to deactivate your existing virtual environment:

deactivate

The existing setup has the virtual environment here: /usr/lib/ckan/default and the CKAN source code underneath in
/usr/lib/ckan/default/src. We’ll move that aside in case we need to roll-back:

sudo mv /usr/lib/ckan/default /usr/lib/ckan/py2

From this doc: Installing CKAN from source you need to do these sections:

• 1. Install the required packages

• 2. Install CKAN into a Python virtual environment

• 6. Link to who.ini

Note: For changes about CKAN deployment see: Installing CKAN from source and specifically the changes with
CKAN 2.9: Deployment changes for CKAN 2.9.

3.3 Getting started

Once you’ve finished installing CKAN , this section will walk you through getting started with your new CKAN website,
including creating a CKAN sysadmin user, some test data, and the basics of configuring your CKAN site.

3.3.1 Creating a sysadmin user

You have to use CKAN’s command line interface to create your first sysadmin user, and it can also be useful to cre-
ate some test data from the command line. For full documentation of CKAN’s command line interface (including
troubleshooting) see Command Line Interface (CLI).

Note: CKAN commands are executed using the ckan command on the server that CKAN is installed on. Before
running the ckan commands below, you need to make sure that your virtualenv is activated and that you’re in your ckan
source directory. For example:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

60 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

You have to create your first CKAN sysadmin user from the command line. For example, to create a new user called
seanh and make him a sysadmin:

ckan -c /etc/ckan/default/ckan.ini sysadmin add seanh email=seanh@localhost name=seanh

You’ll be prompted to enter a password during account creation.

Or, if you already have an existing user, you could promote him to a sysadmin:

ckan -c /etc/ckan/default/ckan.ini sysadmin add seanh

For a list of other command line commands for managing sysadmins, run:

ckan -c /etc/ckan/default/ckan.ini sysadmin --help

Read the Sysadmin guide to learn what you can do as a CKAN sysadmin.

3.3.2 Creating test data

It can be handy to have some test data to start with, to quickly check that everything works. You can add a random set
of test data to your site from the command line with the following generate fake-data commands:

ckan -c /etc/ckan/default/ckan.ini generate fake-data organization
# check the output and save the ID of organization into variable:
owner_org=<Organization ID from the previous command>

ckan -c /etc/ckan/default/ckan.ini generate fake-data dataset --owner_org=$owner_org

If you later want to delete this test data and start again with an empty database, you can use the db clean command.

For a short description of this subcommand, run:

ckan -c /etc/ckan/default/ckan.ini generate fake-data --help

3.3.3 Config file

All of the options that can be set in the admin page and many more can be set by editing CKAN’s config file. By default,
from CKAN 2.9 the config file is located at /etc/ckan/default/ckan.ini. (For older versions, the config file is located at
/etc/ckan/default/development.ini or /etc/ckan/default/production.ini). The config file can be edited in any text editor.
For example, to change the title of your site you would find the ckan.site_title line in your config file and edit it:

ckan.site_title = Masaq Data Hub

Make sure the line is not commented-out (lines in the config file that begin with # are considered comments, so if
there’s a # at the start of a line you’ve edited, delete it), save the file, and then restart your web server for the changes
to take effect. For example, if using a CKAN package install:

sudo supervisorctl restart ckan-uwsgi:*

For full documentation of CKAN’s config file and all the options you can set, see Configuration Options.

Note: If the same option is set in both the config file and in the admin page, the admin page setting takes precedence.
You can use the Reset button on the admin page to clear your settings, and allow settings from the config file to take
effect.

3.3. Getting started 61

mailto:email=seanh@localhost


CKAN documentation, Release 2.10.0a0

3.4 Database Management

Note: See Command Line Interface (CLI) for details on running the ckan commands mentioned below.

3.4.1 Initialization

Before you can run CKAN for the first time, you need to run db init to initialize your database:

ckan -c /etc/ckan/default/ckan.ini db init

If you forget to do this you’ll see this error message in your web browser:

503 Service Unavailable: This site is currently off-line. Database is not initialised.

3.4.2 Cleaning

Warning: This will delete all data from your CKAN database!

You can delete everything in the CKAN database, including the tables, to start from scratch:

ckan -c /etc/ckan/default/ckan.ini db clean

After cleaning the database you must do either initialize it or import a previously created dump.

3.4.3 Import and Export

Dumping and Loading databases to/from a file

PostgreSQL offers the command line tools pg_dump and pg_restore for dumping and restoring a database and its
content to/from a file.

For example, first dump your CKAN database:

sudo -u postgres pg_dump --format=custom -d ckan_default > ckan.dump

Warning: The exported file is a complete backup of the database, and includes API keys and other user data which
may be regarded as private. So keep it secure, like your database server.

Note: If you’ve chosen a non-default database name (i.e. not ckan_default) then you need to adapt the commands
accordingly.

Then restore it again:

ckan -c /etc/ckan/default/ckan.ini db clean
sudo -u postgres pg_restore --clean --if-exists -d ckan_default < ckan.dump

62 Chapter 3. Maintainer’s guide

https://www.postgresql.org/docs/current/static/app-pgdump.html
https://www.postgresql.org/docs/current/static/app-pgrestore.html


CKAN documentation, Release 2.10.0a0

If you’re importing a dump from an older version of CKAN you must upgrade the database schema after the import.

Once the import (and a potential upgrade) is complete you should rebuild the search index.

Exporting Datasets to JSON Lines

You can export all of your CKAN site’s datasets from your database to a JSON Lines file using ckanapi:

ckanapi dump datasets -c /etc/ckan/default/ckan.ini -O my_datasets.jsonl

This is useful to create a simple public listing of the datasets, with no user information. Some simple additions to the
Apache config can serve the dump files to users in a directory listing. To do this, add these lines to your virtual Apache
config file (e.g. /etc/apache2/sites-available/ckan_default.conf):

Alias /dump/ /home/okfn/var/srvc/ckan.net/dumps/

# Disable the mod_python handler for static files
<Location /dump>

SetHandler None
Options +Indexes

</Location>

Warning: Don’t serve an SQL dump of your database (created using the pg_dump command), as those contain
private user information such as email addresses and API keys.

Exporting User Accounts to JSON Lines

You can export all of your CKAN site’s user accounts from your database to a JSON Lines file using ckanapi:

ckanapi dump users -c /etc/ckan/default/ckan.ini -O my_database_users.jsonl

3.4.4 Upgrading

Warning: You should create a backup of your database before upgrading it.

To avoid problems during the database upgrade, comment out any plugins that you have enabled in your ini file.
You can uncomment them again when the upgrade finishes.

If you are upgrading to a new CKAN major release update your CKAN database’s schema using the ckan db upgrade
command:

ckan -c /etc/ckan/default/ckan.ini db upgrade

3.4. Database Management 63

https://github.com/ckan/ckanapi
https://github.com/ckan/ckanapi


CKAN documentation, Release 2.10.0a0

3.5 Command Line Interface (CLI)

Note: From CKAN 2.9 onwards the CKAN configuration file is named ‘ckan.ini’. Previous names: ‘production.ini’
and ‘development.ini’ (plus others) may also still appear in documentation and the software. These legacy names will
eventually be phased out.

Note: From CKAN 2.9 onwards, the paster command used for common CKAN administration tasks has been
replaced with the ckan command.

If you have trouble running ‘ckan’ CLI commands, see Troubleshooting ckan Commands below.

Note: Once you activate your CKAN virtualenv the “ckan” command is available from within any location within the
host environment.

To run a ckan command without activating the virtualenv first, you have to give the full path the ckan script within the
virtualenv, for example:

/usr/lib/ckan/default/bin/ckan -c /etc/ckan/default/ckan.ini user list

In the example commands below, we assume you’re running the commands with your virtualenv activated and from
your ckan directory.

The general form of a CKAN ckan command is:

ckan --config=/etc/ckan/default/ckan.ini command

The `` –config`` option tells CKAN where to find your config file, which it reads for example to know which database
it should use. As you’ll see in the examples below, this option can be given as -c for short.

The config file (ckan.ini) will generally be located in the /etc/ckan/default/ directory however it can be located
in any directory on the host machine

command should be replaced with the name of the CKAN command that you wish to execute. Most commands have
their own subcommands and options.

Note: You may also specify the location of your config file using the CKAN_INI environment variable. You will no
longer need to use –config= or -c to tell ckan where the config file is:

export CKAN_INI=/etc/ckan/default/ckan.ini

Note: You can run the ckan command in the same directory as the CKAN config file when the config file is named
‘ckan.ini’. You will not be required to use –config or -c in this case. For backwards compatibility, the config file can
be also named ‘development.ini’, but this usage is deprecated and will be phased out in a future CKAN release.

cd /usr/lib/ckan/default/src/ckan; ckan command

Commands and Subcommands

ckan -c /etc/ckan/default/ckan.ini user list

(Here user is the name of the CKAN command you’re running, and list is a subcommand of user.)

For a list of all available commands, see CKAN Commands Reference.

64 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Each command has its own help text, which tells you what subcommands and options it has (if any). To print out a
command’s help text, run the command with the --help option, for example:

ckan -c /etc/ckan/default/ckan.ini user --help

3.5.1 Troubleshooting ckan Commands

Permission Error

If you receive ‘Permission Denied’ error, try running ckan with sudo.

sudo /usr/lib/ckan/default/bin/ckan -c /etc/ckan/default/ckan.ini db clean

Virtualenv not activated, or not in ckan dir

Most errors with ckan commands can be solved by remembering to activate your virtual environment and change
to the ckan directory before running the command:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

Error messages such as the following are usually caused by forgetting to do this:

• Command ‘foo’ not known (where foo is the name of the command you tried to run)

• The program ‘ckan’ is currently not installed

• Command not found: ckan

• ImportError: No module named webassets (or other ImportErrors)

Running ckan commands provided by extensions

If you’re trying to run a CKAN command provided by an extension that you’ve installed and you’re getting an
error like Command ‘foo’ not known even though you’ve activated your virtualenv, make sure that you have added
the relevant plugin to the ckan.plugins setting in the ini file.

Wrong config file path

AssertionError: Config filename development.ini does not exist This means you forgot to give the --config or
-c option to tell CKAN where to find your config file. (CKAN looks for a config file named development.ini
in your current working directory by default.)

ConfigParser.MissingSectionHeaderError: File contains no section headers This happens if the config file that
you gave with the -c or --config option is badly formatted, or if you gave the wrong filename.

IOError: [Errno 2] No such file or directory: ‘. . . ’ This means you gave the wrong path to the --config or -c
option (you gave a path to a file that doesn’t exist).

3.5. Command Line Interface (CLI) 65



CKAN documentation, Release 2.10.0a0

3.5.2 ckan Commands Reference

The following ckan commands are supported by CKAN:

asset WebAssets commands.
config Search, validate, describe config options
config-tool Tool for editing options in a CKAN config file
datapusher Perform commands in the datapusher.
dataset Manage datasets.
datastore Perform commands to set up the datastore.
db Perform various tasks on the database.
generate Generate empty extension files to expand CKAN
jobs Manage background jobs
sass Compile all root sass documents into their CSS counterparts
notify Send out modification notifications.
plugin-info Provide info on installed plugins.
profile Code speed profiler.
run Start Development server.
search-index Creates a search index for all datasets
seed Create test data in the database.
sysadmin Gives sysadmin rights to a named user.
tracking Update tracking statistics.
translation Translation helper functions
user Manage users.
views Create views on relevant resources

asset: WebAssets commands

Usage

ckan asset build - Builds bundles, regardless of whether they are changed or␣
→˓not
ckan asset watch - Start a daemon which monitors source files, and rebuilds␣
→˓bundles
ckan asset clean - Will clear out the cache, which after a while can grow␣
→˓quite large

config: Search, validate, describe config options

Usage

ckan config declaration [PLUGIN...] - Print declared config options for the given␣
→˓plugins.
ckan config describe [PLUGIN..] - Print out config declaration for the given␣
→˓plugins.
ckan config search [PATTERN] - Print all declared config options that match␣
→˓pattern.
ckan config undeclared - Print config options that has no declaration.
ckan config validate - Validate global configuration object against␣
→˓declaration.

66 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

config-tool: Tool for editing options in a CKAN config file

Usage

ckan config-tool --section (-s) - Section of the config file
ckan config-tool --edit (-e) - Checks the option already exists in the config file
ckan config-tool --file (-f) - Supply an options file to merge in

Examples

ckan config-tool /etc/ckan/default/ckan.ini sqlalchemy.url=123 'ckan.site_title=ABC'
ckan config-tool /etc/ckan/default/ckan.ini -s server:main -e port=8080
ckan config-tool /etc/ckan/default/ckan.ini -f custom_options.ini

datapusher: Perform commands in the datapusher

Usage

ckan datapusher resubmit - Resubmit udated datastore resources
ckan datapusher submit - Submits resources from package

dataset: Manage datasets

Usage

ckan dataset DATASET_NAME|ID - shows dataset properties
ckan dataset show DATASET_NAME|ID - shows dataset properties
ckan dataset list - lists datasets
ckan dataset delete [DATASET_NAME|ID] - changes dataset state to 'deleted'
ckan dataset purge [DATASET_NAME|ID] - removes dataset from db entirely

datastore: Perform commands in the datastore

Make sure that the datastore URLs are set properly before you run these commands.

Usage

ckan datastore set-permissions - generate SQL for permission configuration
ckan datastore dump - dump a datastore resource
ckan datastore purge - purge orphaned datastore resources

db: Manage databases

ckan db clean - Clean the database
ckan db downgrade - Downgrade the database
ckan db duplicate_emails - Check users email for duplicate
ckan db init - Initialize the database
ckan db pending-migrations - List all sources with unapplied migrations.
ckan db upgrade - Upgrade the database
ckan db version - Returns current version of data schema

See Database Management.

3.5. Command Line Interface (CLI) 67



CKAN documentation, Release 2.10.0a0

generate: Scaffolding for regular development tasks

Usage

ckan generate config - Create a ckan.ini file.
ckan generate extension - Create empty extension.
ckan generate fake-data - Generate random entities of the given category.
ckan generate migration - Create new alembic revision for DB migration.

jobs: Manage background jobs

ckan jobs cancel - cancel a specific job.
ckan jobs clear - cancel all jobs.
ckan jobs list - list jobs.
ckan jobs show - show details about a specific job.
ckan jobs test - enqueue a test job.
ckan jobs worker - start a worker

The jobs command can be used to manage Background jobs.

New in version 2.7.

Run a background job worker

ckan -c /etc/ckan/default/ckan.ini jobs worker [--burst] [QUEUES]

Starts a worker that fetches job from the job queues and executes them. If no queue names are given then it listens to
the default queue. This is equivalent to

ckan -c /etc/ckan/default/ckan.ini jobs worker default

If queue names are given then the worker listens to those queues and only those:

ckan -c /etc/ckan/default/ckan.ini jobs worker my-custom-queue another-special-queue

Hence, if you want the worker to listen to the default queue and some others then you must list the default queue
explicitly

ckan -c /etc/ckan/default/ckan.ini jobs worker default my-custom-queue

If the --burst option is given then the worker will exit as soon as all its queues are empty. Otherwise it will wait
indefinitely until a new job is enqueued (this is the default).

Note: In a production setting you should use a more robust way of running background workers.

68 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

List enqueued jobs

ckan -c /etc/ckan/default/ckan.ini jobs list [QUEUES]

Lists the currently enqueued jobs from the given job queues. If no queue names are given then the jobs from all queues
are listed.

Show details about a job

ckan -c /etc/ckan/default/ckan.ini jobs show ID

Shows details about the enqueued job with the given ID.

Cancel a job

ckan -c /etc/ckan/default/ckan.ini jobs cancel ID

Cancels the enqueued job with the given ID. Jobs can only be canceled while they are enqueued. Once a worker has
started executing a job it cannot be aborted anymore.

Clear job queues

ckan -c /etc/ckan/default/ckan.ini jobs clear [QUEUES]

Cancels all jobs on the given job queues. If no queues are given then all queues are cleared.

Enqueue a test job

ckan -c /etc/ckan/default/ckan.ini jobs test [QUEUES]

Enqueues a test job. If no job queues are given then the job is added to the default queue. If queue names are given
then a separate test job is added to each of the queues.

sass: Compile all root sass documents into their CSS counterparts

Usage

sass

notify: Send out modification notifications

Usage

ckan notify replay - send out modification signals. In "replay" mode,
an update signal is sent for each dataset in the database.

3.5. Command Line Interface (CLI) 69



CKAN documentation, Release 2.10.0a0

plugin-info: Provide info on installed plugins

As the name suggests, this commands shows you the installed plugins (based on the .ini file) , their description, and
which interfaces they implement

profile: Code speed profiler

Provide a ckan url and it will make the request and record how long each function call took in a file that can be read by
runsnakerun.

Usage

ckan profile URL

The result is saved in profile.data.search. To view the profile in runsnakerun:

runsnakerun ckan.data.search.profile

You may need to install the cProfile python module.

run: Start Development server

Usage

ckan run --host (-h) - Set Host
ckan run --port (-p) - Set Port
ckan run --disable-reloader (-r) - Use reloader
ckan run --passthrough_errors - Crash instead of handling fatal errors

Use --passthrough-errors to enable pdb

Exceptions are caught and handled by CKAN. Sometimes, user needs to disable this error handling, to be able to use
pdb or the debug capabilities of the most common IDE. This allows to use breakpoints, inspect the stack frames and
evaluate arbitrary Python code. Running CKAN with --passthrough-errors will automatically disable CKAN
reload capabilities and run everything in a single process, for the sake of simplicity.

Example:

python -m pdb ckan run –passthrough-errors

search-index: Search index commands

Usage

ckan search-index check - Check search index
ckan search-index clear - Clear the search index
ckan search-index rebuild - Rebuild search index
ckan search-index rebuild-fast - Reindex with multiprocessing
ckan search-index show - Show index of a dataset

70 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

search-index: Rebuild search index

Rebuilds the search index. This is useful to prevent search indexes from getting out of sync with the main database.

For example

ckan -c /etc/ckan/default/ckan.ini search-index rebuild

This default behaviour will refresh the index keeping the existing indexed datasets and rebuild it with all datasets. If
you want to rebuild it for only one dataset, you can provide a dataset name

ckan -c /etc/ckan/default/ckan.ini search-index rebuild test-dataset-name

Alternatively, you can use the -o or –only-missing option to only reindex datasets which are not already indexed

ckan -c /etc/ckan/default/ckan.ini search-index rebuild -o

There is also an option available which works like the refresh option but tries to use all processes on the computer to
reindex faster

ckan -c /etc/ckan/default/ckan.ini search-index rebuild_fast

There is also an option to clear the whole index first and then rebuild it with all datasets:

ckan -c /etc/ckan/default/ckan.ini search-index rebuild --clear

There are other search related commands, mostly useful for debugging purposes

ckan search-index check - checks for datasets not indexed
ckan search-index show DATASET_NAME - shows index of a dataset
ckan search-index clear [DATASET_NAME] - clears the search index for the provided␣
→˓dataset or for the whole ckan instance

sysadmin: Give sysadmin rights

Usage

ckan sysadmin add - convert user into a sysadmin
ckan sysadmin list - list sysadmins
ckan sysadmin remove - removes user from sysadmins

For example, to make a user called ‘admin’ into a sysadmin

ckan -c /etc/ckan/default/ckan.ini sysadmin add admin

tracking: Update tracking statistics

Usage

ckan tracking update [start_date] - update tracking stats
ckan tracking export FILE [start_date] - export tracking stats to a csv file

3.5. Command Line Interface (CLI) 71



CKAN documentation, Release 2.10.0a0

translation: Translation helper functions

Usage

ckan translation js - generate the JavaScript translations
ckan translation mangle - mangle the zh_TW translations for testing
ckan translation check-po - check po files for common mistakes

Note: Since version 2.7 the JavaScript translation files are automatically regenerated if necessary when CKAN is
started. Hence you usually do not need to run ckan translation js manually.

user: Create and manage users

Lets you create, remove, list and manage users.

Usage

ckan user add - add new user
ckan user list - list all users
ckan user remove - remove user
ckan user setpass - set password for the user
ckan user show - show user

For example, to create a new user called ‘admin’

ckan -c /etc/ckan/default/ckan.ini user add admin

To delete the ‘admin’ user

ckan -c /etc/ckan/default/ckan.ini user remove admin

views: Create views on relevant resources

Usage

ckan views clean - permanently delete views for all types no...
ckan views clear - permanently delete all views or the ones with...
ckan views create - create views on relevant resources.

ckan views --dataset (-d) - Set Dataset
ckan views --no-default-filters
ckan views --search (-s) - Set Search
ckan views --yes (-y)

72 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

3.6 Organizations and authorization

CKAN’s authorization system controls which users are allowed to carry out which actions on the site. All actions
that users can carry out on a CKAN site are controlled by the authorization system. For example, the authorization
system controls who can register new user accounts, delete user accounts, or create, edit and delete datasets, groups
and organizations.

Authorization in CKAN can be controlled in four ways:

1. Organizations

2. Dataset collaborators

3. Configuration file options

4. Extensions

The following sections explain each of the four methods in turn.

Note: An organization admin in CKAN is an administrator of a particular organization within the site, with control
over that organization and its members and datasets. A sysadmin is an administrator of the site itself. Sysadmins
can always do everything, including adding, editing and deleting datasets, organizations and groups, regardless of the
organization roles and configuration options described below.

3.6.1 Organizations

Organizations are the primary way to control who can see, create and update datasets in CKAN. Each dataset can
belong to a single organization, and each organization controls access to its datasets.

Datasets can be marked as public or private. Public datasets are visible to everyone. Private datasets can only be seen
by logged-in users who are members of the dataset’s organization. Private datasets are not shown in dataset searches
unless the logged in user (or the user identified via an API key) has permission to access them.

When a user joins an organization, an organization admin gives them one of three roles: member, editor or admin.

A member can:

• View the organization’s private datasets.

An editor can do everything a member can plus:

• Add new datasets to the organization

• Edit or delete any of the organization’s datasets

• Make datasets public or private.

An organization admin can do everything as editor plus:

• Add users to the organization, and choose whether to make the new user a member, editor or admin

• Change the role of any user in the organization, including other admin users

• Remove members, editors or other admins from the organization

• Edit the organization itself (for example: change the organization’s title, description or image)

• Delete the organization

When a user creates a new organization, they automatically become the first admin of that organization.

3.6. Organizations and authorization 73



CKAN documentation, Release 2.10.0a0

3.6.2 Dataset collaborators

Changed in version 2.9: Dataset collaborators were introduced in CKAN 2.9

In addition to traditional organization-based permissions, CKAN instances can also enable the dataset collaborators
feature, which allows dataset-level authorization. This provides more granular control over who can access and modify
datasets that belong to an organization, or allows authorization setups not based on organizations. It works by allowing
users with appropriate permissions to give permissions to other users over individual datasets, regardless of what
organization they belong to.

Dataset collaborators are not enabled by default, you need to activate it by setting
ckan.auth.allow_dataset_collaborators to True.

By default, only Administrators of the organization a dataset belongs to can add collaborators to a dataset. When adding
them, they can choose between two roles: member and editor.

A member can:

• View the dataset if it is private.

An editor can do everything a member can plus:

• Make the dataset public or private.

• Edit or delete the dataset (including assigning it to an organization)

In addition, if ckan.auth.allow_admin_collaborators is set to True, collaborators can have another role: admin.

An admin collaborator can do everything an editor can plus:

• Add collaborators to the dataset, and choose whether to make them a member, editor or admin (if enabled)

• Change the role of any collaborator in the dataset, including other admin users

• Remove collaborators of any role from the dataset

If the ckan.auth.allow_admin_collaborators setting is turned off in a site where admin collaborators have al-
ready been created, existing collaborators with role admin will no longer be able to manage collaborators, but they
will still be able to edit and access the datasets that they are assigned to (ie they will have the same permissions as an
editor.

If the global ckan.auth.allow_dataset_collaborators setting is turned off in a site where collaborators have
already been created, collaborators will no longer have permissions on the datasets they are assigned to, and normal
organization-based permissions will be in place.

Warning: When turning off this setting, you must reindex all datasets to update the permission labels, in order to
prevent access to private datasets to the previous collaborators.

By default, collaborators can not change the owner organization of a dataset unless they are admins or editors in both
the source and destination organizations. To allow collaborators to change the owner organization even if they don’t
belong to the source organization, set ckan.auth.allow_collaborators_to_change_owner_org to True.

Dataset collaborators can be used with other authorization settings to create custom authentication
scenarios. For instance, on instances where datasets don’t need to belong to an organization (both
ckan.auth.create_dataset_if_not_in_organization and ckan.auth.create_unowned_dataset are True), the user
that originally created a dataset can also add collaborators to it (allowing admin collaborators or not depending on
the ckan.auth.allow_admin_collaborators setting). Note that in this case though, if the dataset is assigned
to an organization, the original creator might no longer be able to access and edit, as organization permissions take
precedence over collaborators ones.

74 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

3.6.3 Configuration File Options

See Authorization Settings.

3.6.4 Extensions

CKAN extensions can implement custom authorization rules by overriding the authorization functions that CKAN
uses. This is done by implementing the IAuthFunctions plugin interface.

Dataset visibility is determined by permission labels stored in the search index. Implement the IPermissionLabels
plugin interface then rebuild your search index to change your dataset visibility rules. There is no no need to override
the package_show auth function, it will inherit these changes automatically.

To get started with writing CKAN extensions, see Extending guide.

3.7 Data preview and visualization

Contents

• Data preview and visualization

– Overview

– Managing resource views

– Defining views to appear by default

– Available view plugins

∗ DataTables view

∗ Data Explorer

∗ DataStore Grid

∗ DataStore Graph

∗ DataStore Map

∗ Text view

∗ Image view

∗ Video view

∗ Audio view

∗ Web page view

∗ Other view plugins

– Resource Proxy

– Migrating from previous CKAN versions

– Command line interface

3.7. Data preview and visualization 75



CKAN documentation, Release 2.10.0a0

3.7.1 Overview

The CKAN resource page can contain one or more visualizations of the resource data or file contents (a table, a bar
chart, a map, etc). These are commonly referred to as resource views.

The main features of resource views are:

• One resource can have multiple views of the same data (for example a grid and some graphs for tabular data).

• Dataset editors can choose which views to show, reorder them and configure them individually.

• Individual views can be embedded on external sites.

Different view types are implemented via custom plugins, which can be activated on a particular CKAN site. Once
these plugins are added, instance administrators can decide which views should be created by default if the resource is
suitable (for instance a table on resources uploaded to the DataStore, a map for spatial data, etc.).

76 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Whether a particular resource can be rendered by the different view plugins is decided by the view plugins themselves.
This is generally done checking the resource format or whether its data is on the DataStore extension or not.

3.7.2 Managing resource views

Users who are allowed to edit a particular dataset can also manage the views for its resources. To access the management
interface, click on the Manage button on the resource page and then on the Views tab. From here you can create new
views, update or delete existing ones and reorder them.

The New view dropdown will show the available view types for this particular resource. If the list is empty, you may
need to add the relevant view plugins to the ckan.plugins setting on your configuration file, eg:

ckan.plugins = ... image_view recline_view pdf_view

3.7.3 Defining views to appear by default

From the management interface you can create and edit views manually, but in most cases you will want views to be
created automatically on certain resource types, so data can be visualized straight away after uploading or linking to a
file.

To do so, you define a set of view plugins that should be checked whenever a dataset or resource is created or updated.
For each of them, if the resource is a suitable one, a view will be created.

This is configured with the ckan.views.default_views setting. In it you define the view plugins that you want to be
created as default:

ckan.views.default_views = recline_view pdf_view geojson_view

This configuration does not mean that each new resource will get all of these views by default, but that for instance if
the uploaded file is a PDF file, a PDF viewer will be created automatically and so on.

3.7. Data preview and visualization 77



CKAN documentation, Release 2.10.0a0

3.7.4 Available view plugins

Some view plugins for common formats are included in the main CKAN repository. These don’t require further setup
and can be directly added to the ckan.plugins setting.

DataTables view

View plugin: datatables_view

Displays a filterable, sortable, table view of structured data using the DataTables jQuery plugin, with the following
features.

• Search highlighting

• Column Filters

• Multi-column sorting

• Two view modes (table/list). Table shows the data in a typical grid with horizontal scrolling. List displays the
data in a responsive mode, with a Record Details view.

• Filtered Downloads

78 Chapter 3. Maintainer’s guide

https://datatables.net/


CKAN documentation, Release 2.10.0a0

• Column Visibility control

• Copy to clipboard and Printing of filtered results and row selection/s

• Drag-and-drop column reordering

• State Saving - saves search keywords, column order/visibility, row selections and page settings between session,
with the ability to share saved searches.

• Data Dictionary Integration

• Automatic “linkification” of URLs

• Automatic creation of zoomable thumbnails when a cell only contains a URL to an image.

• Available automatic, locale-aware date formatting to convert raw ISO-8601 timestamps to a user-friendly date
format

It is designed not only as a data viewer, but also as a simple ad-hoc report generator - allowing users to quickly find an
actionable subset of the data they need from inside the resource view, without having to first download the dataset.

It’s also optimized for embedding datasets and saved searches on external sites - with a backlink to the portal and
automatic resizing.

This plugin requires data to be in the DataStore.

Data Explorer

View plugin: recline_view

Adds a rich widget, based on the Recline Javascript library. It allows querying, filtering, graphing and mapping data.
The Data Explorer is optimized for displaying structured data hosted on the DataStore extension.

3.7. Data preview and visualization 79

https://github.com/okfn/recline/


CKAN documentation, Release 2.10.0a0

The Data Explorer can also display certain formats of tabular data (CSV and Excel files) without its contents being
uploaded to the DataStore. This is done via the DataProxy, an external service that will parse the contents of the file and
return a response that the view widget understands. However, as the resource must be downloaded by the DataProxy
service and parsed before it is viewed, this option is slower and less reliable than viewing data that is in the DataStore.
It also does not properly support different encodings, proper field type detection, etc so users are strongly encouraged
to host data on the DataStore instead.

Note: Support for the DataProxy will be dropped on future CKAN releases

The three main panes of the Data Explorer are also available as separate views.

DataStore Grid

View plugin: recline_grid_view

Displays a filterable, sortable, table view of structured data.

This plugin requires data to be in the DataStore.

80 Chapter 3. Maintainer’s guide

https://github.com/okfn/dataproxy


CKAN documentation, Release 2.10.0a0

DataStore Graph

View plugin: recline_graph_view

Allows to create graphs from data stored on the DataStore. You can choose the graph type (such as lines, bars, columns,
etc) and restrict the displayed data, by filtering by a certain field value or defining an offset and the number of rows.

This plugin requires data to be in the DataStore.

3.7. Data preview and visualization 81



CKAN documentation, Release 2.10.0a0

DataStore Map

View plugin: recline_map_view

Shows data stored on the DataStore in an interactive map. It supports plotting markers from a pair of latitude / longitude
fields or from a field containing a GeoJSON representation of the geometries. The configuration also allows to cluster
markers if there is a high density of them and to zoom automatically to the rendered features.

This plugin requires data to be in the DataStore.

There is partial support to change the map tiles to a different service, such as Mapbox. Look below for an example to
add to your configuration file:

#Mapbox example:
ckanext.spatial.common_map.type = mapbox
ckanext.spatial.common_map.mapbox.map_id = <id>
ckanext.spatial.common_map.mapbox.access_token = <token>
ckanext.spatial.common_map.attribution=© <a target=_blank href='https://www.mapbox.com/
→˓map-feedback/'>Mapbox</a> © <a target=_blank href='http://www.openstreetmap.org/
→˓copyright'>OpenStreetMap</a>
ckanext.spatial.common_map.subdomains = <subdomains>

#Custom example:
ckanext.spatial.common_map.type = custom
ckanext.spatial.common_map.custom.url = <url>
ckanext.spatial.common_map.custom.tms = <tms>
ckanext.spatial.common_map.attribution = <copyright link>
ckanext.spatial.common_map.subdomains = <subdomains>

82 Chapter 3. Maintainer’s guide

http://geojson.org


CKAN documentation, Release 2.10.0a0

Text view

View plugin: text_view

Displays files in XML, JSON or plain text based formats with the syntax highlighted. The formats detected can be con-
figured using the ckan.preview.xml_formats, ckan.preview.json_formats and ckan.preview.text_formats configuration
options respectively.

If you want to display files that are hosted in a different server from your CKAN instance (eg that haven’t been uploaded
to CKAN) you will need to enable the Resource Proxy plugin.

3.7. Data preview and visualization 83



CKAN documentation, Release 2.10.0a0

Image view

View plugin: image_view

If the resource format is a common image format like PNG, JPEG or GIF, it adds an <img> tag pointing to the resource
URL. You can provide an alternative URL on the edit view form. The available formats can be configured using the
ckan.preview.image_formats configuration option.

84 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Video view

View plugin: video_view

This plugin uses the HTML5 <video> tag to embed video content into a page, such as movie clip or other video streams.

There are three supported video formats: MP4, WebM, and OGG.

You can provide an alternative URL on the edit view form. Otherwise, the resource link will be used.

Also, you can provide a poster image URL. The poster image will be shown while the video is downloading, or until
the user hits the play button. If this is not provided, the first frame of the video will be used instead.

3.7. Data preview and visualization 85



CKAN documentation, Release 2.10.0a0

Audio view

View plugin: audio_view

This plugin uses the HTML5 audio tag to embed an audio player on the page.

Since we rely on HTML5 <audio> tag, there are three supported audio formats: MP3, WAV, and OGG. Notice.
Browsers don’t all support the same file types and audio codecs.

You can provide an alternative URL on the edit view form. Otherwise, the resource link will be used.

86 Chapter 3. Maintainer’s guide

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Containers
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Audio_codecs


CKAN documentation, Release 2.10.0a0

Web page view

View plugin: webpage_view

Adds an <iframe> tag to embed the resource URL. You can provide an alternative URL on the edit view form.

Warning: Do not activate this plugin unless you trust the URL sources. It is not recommended to
enable this view type on instances where all users can create datasets.

Other view plugins

There are many more view plugins developed by the CKAN team and others which are hosted on separate repositories.
Some examples include:

• Dashboard: Allows to combine multiple views into a single dashboard.

• PDF viewer: Allows to render PDF files on the resource page.

• GeoJSON map: Renders GeoJSON files on an interactive map.

• Choropleth map: Displays data on the DataStore on a choropleth map.

• Basic charts: Provides alternative graph types and renderings.

If you want to add another view type to this list, edit this file by sending a pull request on GitHub.

New plugins to render custom view types can be implemented using the IResourceView interface.

3.7. Data preview and visualization 87

https://github.com/ckan/ckanext-dashboard
https://github.com/ckan/ckanext-pdfview
https://github.com/ckan/ckanext-spatial
http://geojson.org
https://github.com/ckan/ckanext-mapviews
https://github.com/ckan/ckanext-basiccharts


CKAN documentation, Release 2.10.0a0

Todo: Link to a proper tutorial for writing custom views

3.7.5 Resource Proxy

As resource views are rendered on the browser, if the file they are accessing is located in a different domain than the
one CKAN is hosted, the browser will block access to it because of the same-origin policy. For instance, files hosted
on www.example.com won’t be able to be accessed from the browser if CKAN is hosted on data.catalog.com.

To allow view plugins access to external files you need to activate the resource_proxy plugin on your configuration
file:

ckan.plugins = resource_proxy ...

This will request the file on the server side and serve it from the same domain as CKAN.

You can modify the maximum allowed size for proxied files using the ckan.resource_proxy.max_file_size configuration
setting.

3.7.6 Migrating from previous CKAN versions

If you are upgrading an existing instance running CKAN version 2.2.x or lower to CKAN 2.3 or higher, you need to
perform a migration process in order for the resource views to appear. If the migration does not take place, resource
views will only appear when creating or updating datasets or resources, but not on existing ones.

The migration process involves creating the necessary view objects in the database, which can be done using the ckan
views create command.

Note: The ckan views create command uses the search API to get all necessary datasets and resources, so make
sure your search index is up to date before starting the migration process.

The way the ckan views create commands works is getting all or a subset of the instance datasets from the search
index, and for each of them checking against a list of view plugins if it is necessary to create a view object. This gets
determined by each of the individual view plugins depending on the dataset’s resources fields.

Before each run, you will be prompted with the number of datasets affected and asked if you want to continue (unless
you pass the -y option):

You are about to check 3336 datasets for the following view plugins: ['image_view',
→˓'recline_view', 'text_view']
Do you want to continue? [Y/n]

Note: On large CKAN instances the migration process can take a significant time if using the default options. It
is worth planning in advance and split the process using the search parameters to only check relevant datasets. The
following documentation provides guidance on how to do this.

If no view types are provided, the default ones are used (check Defining views to appear by default to see how these
are defined):

ckan -c |ckan.ini| views create

88 Chapter 3. Maintainer’s guide

http://en.wikipedia.org/wiki/Same_origin_policy


CKAN documentation, Release 2.10.0a0

Specific view types can be also provided:

ckan -c |ckan.ini| views create image_view recline_view pdf_view

For certain view types (the ones with plugins included in the main CKAN core), default filters are applied to the search
to only get relevant resources. For instance if image_view is defined, filters are added to the search to only get datasets
with resources that have image formats (png, jpg, etc).

You can also provide arbitrary search parameters like the ones supported by package_search(). This can be useful
for instance to only include datasets with resources of a certain format:

ckan -c |ckan.ini| views create geojson_view -s '{"fq": "res_format:GEOJSON"}'

To instead avoid certain formats you can do:

ckan -c |ckan.ini| views create -s '{"fq": "-res_format:HTML"}'

Of course this is not limited to resource formats, you can filter out or in using any field, as in a normal dataset search:

ckan -c |ckan.ini| views create -s '{"q": "groups:visualization-examples"}'

Tip: If you set the ckan_logger level to DEBUG on your configuration file you can see the full search parameters
being sent to Solr.

For convenience, there is also an option to create views on a particular dataset or datasets:

ckan -c |ckan.ini| views create -d dataset_id

ckan -c |ckan.ini| views create -d dataset_name -d dataset_name

3.7.7 Command line interface

The ckan views command allows to create and remove resource views objects from the database in bulk.

Check the command help for the full options:

ckan -c |ckan.ini| views create -h

Todo: Tutorial for writing custom view types.

3.8 FileStore and file uploads

When enabled, CKAN’s FileStore allows users to upload data files to CKAN resources, and to upload logo images for
groups and organizations. Users will see an upload button when creating or updating a resource, group or organization.

New in version 2.2: Uploading logo images for groups and organizations was added in CKAN 2.2.

Changed in version 2.2: Previous versions of CKAN used to allow uploads to remote cloud hosting but we have
simplified this to only allow local file uploads (see Migration from 2.1 to 2.2 for details on how to migrate). This is to
give CKAN more control over the files and make access control possible.

3.8. FileStore and file uploads 89



CKAN documentation, Release 2.10.0a0

See also:

DataStore extension

Resource files linked-to from CKAN or uploaded to CKAN’s FileStore can also be pushed into CKAN’s
DataStore, which then enables data previews and a data API for the resources.

3.8.1 Setup file uploads

To setup CKAN’s FileStore with local file storage:

1. Create the directory where CKAN will store uploaded files:

sudo mkdir -p /var/lib/ckan/default

2. Add the following line to your CKAN config file, after the [app:main] line:

ckan.storage_path = /var/lib/ckan/default

3. Set the permissions of your ckan.storage_path directory. For example if you’re running CKAN with Nginx, then
the Nginx’s user (www-data on Ubuntu) must have read, write and execute permissions for the ckan.storage_path:

sudo chown www-data /var/lib/ckan/default
sudo chmod u+rwx /var/lib/ckan/default

4. Restart your web server, for example to restart uWSGI on a package install:

sudo supervisorctl restart ckan-uwsgi:*

3.8.2 FileStore API

Changed in version 2.2: The FileStore API was redesigned for CKAN 2.2. The previous API has been deprecated.

Files can be uploaded to the FileStore using the resource_create() and resource_update() action API functions.
You can post multipart/form-data to the API and the key, value pairs will be treated as if they are a JSON object. The
extra key upload is used to actually post the binary data.

For example, to create a new CKAN resource and upload a file to it using curl:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_create' --form␣
→˓upload=@filetoupload --form package_id=my_dataset

(Curl automatically sends a multipart-form-data heading with you use the --form option.)

To create a new resource and upload a file to it using the Python library requests:

import requests
requests.post('http://0.0.0.0:5000/api/action/resource_create',

data={"package_id":"my_dataset"},
headers={"X-CKAN-API-Key": "21a47217-6d7b-49c5-88f9-72ebd5a4d4bb"},
files=[('upload', open('/path/to/file/to/upload.csv', 'rb'))])

(Requests automatically sends a multipart-form-data heading when you use the files= parameter.)

To overwrite an uploaded file with a new version of the file, post to the resource_update() action and use the upload
field:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_update' --form␣
→˓upload=@newfiletoupload --form id=resourceid

90 Chapter 3. Maintainer’s guide

http://curl.haxx.se/
http://python-requests.org/


CKAN documentation, Release 2.10.0a0

To replace an uploaded file with a link to a file at a remote URL, use the clear_upload field:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_update' --form␣
→˓url=http://expample.com --form clear_upload=true --form id=resourceid

3.8.3 Migration from 2.1 to 2.2

If you are using pairtree local file storage then you can keep your current settings without issue. The pairtree and new
storage can live side by side but you are still encouraged to migrate. If you change your config options to the ones
specified in this doc you will need to run the migration below.

If you are running remote storage then all previous links will still be accessible but if you want to move the remote
storage documents to the local storage you will run the migration also.

In order to migrate make sure your CKAN instance is running as the script will request the data from the instance using
APIs. You need to run the following on the command line to do the migration:

ckan -c |ckan.ini| db migrate-filestore

This may take a long time especially if you have a lot of files remotely. If the remote hosting goes down or the job is
interrupted it is saved to run it again and it will try all the unsuccessful ones again.

3.8.4 Custom Internet media types (MIME types)

New in version 2.2.

CKAN uses the default Python library mimetypes to detect the media type of an uploaded file. If some particular format
is not included in the ones guessed by the mimetypes library, a default application/octet-stream value will be
returned.

Users can still register a more appropriate media type by using the mimetypes library. A good way to do so is to use
the IConfigurer interface so the custom types get registered on startup:

import mimetypes
import ckan.plugins as p

class MyPlugin(p.SingletonPlugin):

p.implements(p.IConfigurer)

def update_config(self, config):

mimetypes.add_type('application/json', '.geojson')

# ...

3.8. FileStore and file uploads 91

http://docs.python.org/2/library/mimetypes.html


CKAN documentation, Release 2.10.0a0

3.9 DataStore extension

The CKAN DataStore extension provides an ad hoc database for storage of structured data from CKAN resources.
Data can be pulled out of resource files and stored in the DataStore.

When a resource is added to the DataStore, you get:

• Automatic data previews on the resource’s page, using the Data Explorer extension

• The Data API: search, filter and update the data, without having to download and upload the entire data file

The DataStore is integrated into the CKAN API and authorization system.

The DataStore is generally used alongside the DataPusher, which will automatically upload data to the DataStore from
suitable files, whether uploaded to CKAN’s FileStore or externally linked.

• Relationship to FileStore

• Setting up the DataStore

• DataPusher: Automatically Add Data to the DataStore

• Data Dictionary

• Downloading Resources

• The Data API

• Extending DataStore

3.9.1 Relationship to FileStore

The DataStore is distinct but complementary to the FileStore (see FileStore and file uploads). In contrast to the FileStore
which provides ‘blob’ storage of whole files with no way to access or query parts of that file, the DataStore is like a
database in which individual data elements are accessible and queryable. To illustrate this distinction, consider storing
a spreadsheet file like a CSV or Excel document. In the FileStore this file would be stored directly. To access it you
would download the file as a whole. By contrast, if the spreadsheet data is stored in the DataStore, one would be able
to access individual spreadsheet rows via a simple web API, as well as being able to make queries over the spreadsheet
contents.

3.9.2 Setting up the DataStore

Changed in version 2.6: Previous CKAN (and DataStore) versions were compatible with earlier versions of Post-
greSQL.

1. Enable the plugin

Add the datastore plugin to your CKAN config file:

ckan.plugins = datastore

92 Chapter 3. Maintainer’s guide

https://github.com/ckan/datapusher


CKAN documentation, Release 2.10.0a0

2. Set-up the database

Warning: Make sure that you follow the steps in Set Permissions below correctly. Wrong settings could lead to
serious security issues.

The DataStore requires a separate PostgreSQL database to save the DataStore resources to.

List existing databases:

sudo -u postgres psql -l

Check that the encoding of databases is UTF8, if not internationalisation may be a problem. Since changing the encod-
ing of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before continuing with the
datastore setup.

Create users and databases

Tip: If your CKAN database and DataStore databases are on different servers, then you need to create a new database
user on the server where the DataStore database will be created. As in Installing CKAN from source we’ll name the
database user ckan_default:

sudo -u postgres createuser -S -D -R -P -l ckan_default

Create a database_user called datastore_default. This user will be given read-only access to your DataStore database
in the Set Permissions step below:

sudo -u postgres createuser -S -D -R -P -l datastore_default

Create the database (owned by ckan_default), which we’ll call datastore_default:

sudo -u postgres createdb -O ckan_default datastore_default -E utf-8

Set URLs

Now, uncomment the ckan.datastore.write_url and ckan.datastore.read_url lines in your CKAN config file and edit
them if necessary, for example:

ckan.datastore.write_url = postgresql://ckan_default:pass@localhost/datastore_default
ckan.datastore.read_url = postgresql://datastore_default:pass@localhost/datastore_default

Replace pass with the passwords you created for your ckan_default and datastore_default database users.

3.9. DataStore extension 93

mailto:pass@localhost/
mailto:pass@localhost/


CKAN documentation, Release 2.10.0a0

Set permissions

Once the DataStore database and the users are created, the permissions on the DataStore and CKAN database have to
be set. CKAN provides a ckan command to help you correctly set these permissions.

If you are able to use the psql command to connect to your database as a superuser, you can use the datastore
set-permissions command to emit the appropriate SQL to set the permissions.

For example, if you can connect to your database server as the postgres superuser using:

sudo -u postgres psql

Then you can use this connection to set the permissions:

ckan -c /etc/ckan/default/ckan.ini datastore set-permissions | sudo -u postgres␣
→˓psql --set ON_ERROR_STOP=1

Note: If you performed a package install, you will need to replace all references to ‘ckan -c /etc/ckan/default/ckan.ini
. . . ’ with ‘sudo ckan . . . ’ and provide the path to the config file, e.g.:

sudo ckan datastore set-permissions | sudo -u postgres psql --set ON_ERROR_STOP=1

If your database server is not local, but you can access it over SSH, you can pipe the permissions script over SSH:

ckan -c /etc/ckan/default/ckan.ini datastore set-permissions | ssh dbserver sudo -u␣
→˓postgres psql --set ON_ERROR_STOP=1

If you can’t use the psql command in this way, you can simply copy and paste the output of:

ckan -c /etc/ckan/default/ckan.ini datastore set-permissions

into a PostgreSQL superuser console.

3. Test the set-up

The DataStore is now set-up. To test the set-up, (re)start CKAN and run the following command to list all DataStore
resources:

curl -X GET "http://127.0.0.1:5000/api/3/action/datastore_search?resource_id=_table_
→˓metadata"

This should return a JSON page without errors.

To test the whether the set-up allows writing, you can create a new DataStore resource. To do so, run the following
command:

curl -X POST http://127.0.0.1:5000/api/3/action/datastore_create -H "Authorization:
→˓{YOUR-API-KEY}" -d '{"resource": {"package_id": "{PACKAGE-ID}"}, "fields": [ {"id": "a
→˓"}, {"id": "b"} ], "records": [ { "a": 1, "b": "xyz"}, {"a": 2, "b": "zzz"} ]}'

Replace {YOUR-API-KEY} with a valid API key and {PACKAGE-ID} with the id of an existing CKAN dataset.

A table named after the resource id should have been created on your DataStore database. Visiting this URL should
return a response from the DataStore with the records inserted above:

http://127.0.0.1:5000/api/3/action/datastore_search?resource_id={RESOURCE_ID}

94 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Replace {RESOURCE-ID} with the resource id that was returned as part of the response of the previous API call.

You can now delete the DataStore table with:

curl -X POST http://127.0.0.1:5000/api/3/action/datastore_delete -H "Authorization:
→˓{YOUR-API-KEY}" -d '{"resource_id": "{RESOURCE-ID}"}'

To find out more about the Data API, see The Data API .

3.9.3 DataPusher: Automatically Add Data to the DataStore

Often, one wants data that is added to CKAN (whether it is linked to or uploaded to the FileStore) to be automatically
added to the DataStore. This requires some processing, to extract the data from your files and to add it to the DataStore
in the format the DataStore can handle.

This task of automatically parsing and then adding data to the DataStore is performed by the DataPusher, a service that
runs asynchronously and can be installed alongside CKAN.

To install this please look at the docs here: https://github.com/ckan/datapusher

Note: The DataPusher only imports the first worksheet of a spreadsheet. It also does not support duplicate column
headers. That includes blank column headings.

3.9.4 Data Dictionary

DataStore columns may be described with a Data Dictionary. A Data Dictionary tab will appear when editing any
resource with a DataStore table. The Data Dictionary form allows entering the following values for each column:

• Type Override: the type to be used the next time DataPusher is run to load data into this column

• Label: a human-friendly label for this column

• Description: a full description for this column in markdown format

Extension developers may add new fields to this form by overriding the default Data Dictionary form template
datastore/snippets/dictionary_form.html.

The Data Dictionary is set through the API as part of the Fields passed to datastore_create() and returned from
datastore_search().

3.9.5 Downloading Resources

A DataStore resource can be downloaded in the CSV file format from {CKAN-URL}/datastore/dump/
{RESOURCE-ID}.

For an Excel-compatible CSV file use {CKAN-URL}/datastore/dump/{RESOURCE-ID}?bom=true.

Other formats supported include tab-separated values (?format=tsv), JSON (?format=json) and XML (?
format=xml). E.g. to download an Excel-compatible tab-separated file use {CKAN-URL}/datastore/dump/
{RESOURCE-ID}?format=tsv&bom=true.

A number of parameters from datastore_search() can be used: offset, limit, filters, q, full_text,
distinct, plain, language, fields, sort

3.9. DataStore extension 95

https://github.com/ckan/datapusher
https://github.com/ckan/datapusher
https://en.wikipedia.org/wiki/Comma-separated_values


CKAN documentation, Release 2.10.0a0

3.9.6 The Data API

The CKAN DataStore offers an API for reading, searching and filtering data without the need to download the entire file
first. The DataStore is an ad hoc database which means that it is a collection of tables with unknown relationships. This
allows you to search in one DataStore resource (a table in the database) as well as queries across DataStore resources.

Data can be written incrementally to the DataStore through the API. New data can be inserted, existing data can be
updated or deleted. You can also add a new column to an existing table even if the DataStore resource already contains
some data.

Triggers may be added to enforce validation, clean data as it is loaded or even record histories. Triggers are PL/pgSQL
functions that must be created by a sysadmin.

You will notice that we tried to keep the layer between the underlying PostgreSQL database and the API as thin as
possible to allow you to use the features you would expect from a powerful database management system.

A DataStore resource can not be created on its own. It is always required to have an associated CKAN resource. If data
is stored in the DataStore, it will automatically be previewed by the recline preview extension.

Making a Data API request

Making a Data API request is the same as making an Action API request: you post a JSON dictionary in an HTTP
POST request to an API URL, and the API also returns its response in a JSON dictionary. See the API guide for details.

API reference

Note: Lists can always be expressed in different ways. It is possible to use lists, comma separated strings or single
items. These are valid lists: ['foo', 'bar'], 'foo, bar', "foo", "bar" and 'foo'. Additionally, there are
several ways to define a boolean value. True, on and 1 are all vaid boolean values.

Note: The table structure of the DataStore is explained in Internal structure of the database.

ckanext.datastore.logic.action.datastore_create(context: Context, data_dict: dict[str, Any])
Adds a new table to the DataStore.

The datastore_create action allows you to post JSON data to be stored against a resource. This endpoint also
supports altering tables, aliases and indexes and bulk insertion. This endpoint can be called multiple times to
initially insert more data, add fields, change the aliases or indexes as well as the primary keys.

To create an empty datastore resource and a CKAN resource at the same time, provide resource with a valid
package_id and omit the resource_id.

If you want to create a datastore resource from the content of a file, provide resource with a valid url.

See Fields and Records for details on how to lay out records.

Parameters

• resource_id (string) – resource id that the data is going to be stored against.

• force (bool (optional, default: False)) – set to True to edit a read-only resource

• resource (dictionary) – resource dictionary that is passed to resource_create(). Use
instead of resource_id (optional)

96 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

• aliases (list or comma separated string) – names for read only aliases of the re-
source. (optional)

• fields (list of dictionaries) – fields/columns and their extra metadata. (optional)

• records (list of dictionaries) – the data, eg: [{“dob”: “2005”, “some_stuff”: [“a”,
“b”]}] (optional)

• primary_key (list or comma separated string) – fields that represent a unique key
(optional)

• indexes (list or comma separated string) – indexes on table (optional)

• triggers (list of dictionaries) – trigger functions to apply to this table on up-
date/insert. functions may be created with datastore_function_create(). eg: [ {“func-
tion”: “trigger_clean_reference”}, {“function”: “trigger_check_codes”}]

• calculate_record_count (bool (optional, default: False)) – updates the
stored count of records, used to optimize datastore_search in combination with the to-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

Please note that setting the aliases, indexes or primary_key replaces the existing aliases or constraints.
Setting records appends the provided records to the resource.

Results:

Returns The newly created data object, excluding records passed.

Return type dictionary

See Fields and Records for details on how to lay out records.

ckanext.datastore.logic.action.datastore_run_triggers(context: Context, data_dict: dict[str, Any])→
int

update each record with trigger

The datastore_run_triggers API action allows you to re-apply existing triggers to an existing DataStore resource.

Parameters resource_id (string) – resource id that the data is going to be stored under.

Results:

Returns The rowcount in the table.

Return type int

ckanext.datastore.logic.action.datastore_upsert(context: Context, data_dict: dict[str, Any])
Updates or inserts into a table in the DataStore

The datastore_upsert API action allows you to add or edit records to an existing DataStore resource. In order
for the upsert and update methods to work, a unique key has to be defined via the datastore_create action. The
available methods are:

upsert Update if record with same key already exists, otherwise insert. Requires unique key.

insert Insert only. This method is faster that upsert, but will fail if any inserted record matches an existing one.
Does not require a unique key.

update Update only. An exception will occur if the key that should be updated does not exist. Requires unique
key.

Parameters

• resource_id (string) – resource id that the data is going to be stored under.

3.9. DataStore extension 97



CKAN documentation, Release 2.10.0a0

• force (bool (optional, default: False)) – set to True to edit a read-only resource

• records (list of dictionaries) – the data, eg: [{“dob”: “2005”, “some_stuff”:
[“a”,”b”]}] (optional)

• method (string) – the method to use to put the data into the datastore. Possible options
are: upsert, insert, update (optional, default: upsert)

• calculate_record_count (bool (optional, default: False)) – updates the
stored count of records, used to optimize datastore_search in combination with the to-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

• dry_run (bool (optional, default: False)) – set to True to abort transaction in-
stead of committing, e.g. to check for validation or type errors.

Results:

Returns The modified data object.

Return type dictionary

ckanext.datastore.logic.action.datastore_info(context: Context, data_dict: dict[str, Any])
Returns detailed metadata about a resource.

Parameters resource_id (string) – id or alias of the resource we want info about.

Results:

Return type dictionary

Returns

meta: resource metadata dictionary with the following keys:

• aliases - aliases (views) for the resource

• count - row count

• db_size - size of the datastore database (bytes)

• id - resource id (useful for dereferencing aliases)

• idx_size - size of all indices for the resource (bytes)

• size - size of resource (bytes)

• table_type - BASE TABLE, VIEW, FOREIGN TABLE or MATERIALIZED VIEW

fields: A list of dictionaries based on Fields, with an additional nested dictionary per field called
schema, with the following keys:

• native_type - native database data type

• index_name

• is_index

• notnull

• uniquekey

ckanext.datastore.logic.action.datastore_delete(context: Context, data_dict: dict[str, Any])
Deletes a table or a set of records from the DataStore.

Parameters

98 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

• resource_id (string) – resource id that the data will be deleted from. (optional)

• force (bool (optional, default: False)) – set to True to edit a read-only resource

• filters (dictionary) – filters to apply before deleting (eg {“name”: “fred”}). If missing
delete whole table and all dependent views. (optional)

• calculate_record_count (bool (optional, default: False)) – updates the
stored count of records, used to optimize datastore_search in combination with the to-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

Results:

Returns Original filters sent.

Return type dictionary

ckanext.datastore.logic.action.datastore_search(context: Context, data_dict: dict[str, Any])
Search a DataStore resource.

The datastore_search action allows you to search data in a resource. By default 100 rows are returned - see the
limit parameter for more info.

A DataStore resource that belongs to a private CKAN resource can only be read by you if you have access to the
CKAN resource and send the appropriate authorization.

Parameters

• resource_id (string) – id or alias of the resource to be searched against

• filters (dictionary) – matching conditions to select, e.g {“key1”: “a”, “key2”: “b”}
(optional)

• q (string or dictionary) – full text query. If it’s a string, it’ll search on all fields on
each row. If it’s a dictionary as {“key1”: “a”, “key2”: “b”}, it’ll search on each specific field
(optional)

• full_text (string) – full text query. It search on all fields on each row. This should be
used in replace of q when performing string search accross all fields

• distinct (bool) – return only distinct rows (optional, default: false)

• plain (bool) – treat as plain text query (optional, default: true)

• language (string) – language of the full text query (optional, default: english)

• limit (int) – maximum number of rows to return (optional, default: 100, unless set in the
site’s configuration ckan.datastore.search.rows_default, upper limit: 32000 unless
set in site’s configuration ckan.datastore.search.rows_max)

• offset (int) – offset this number of rows (optional)

• fields (list or comma separated string) – fields to return (optional, default: all
fields in original order)

• sort (string) – comma separated field names with ordering e.g.: “fieldname1, fieldname2
desc”

• include_total (bool) – True to return total matching record count (optional, default: true)

• total_estimation_threshold (int or None) – If “include_total” is True and “to-
tal_estimation_threshold” is not None and the estimated total (matching record count) is
above the “total_estimation_threshold” then this datastore_search will return an estimate of
the total, rather than a precise one. This is often good enough, and saves computationally

3.9. DataStore extension 99



CKAN documentation, Release 2.10.0a0

expensive row counting for larger results (e.g. >100000 rows). The estimated total comes
from the PostgreSQL table statistics, generated when Express Loader or DataPusher finishes
a load, or by autovacuum. NB Currently estimation can’t be done if the user specifies ‘filters’
or ‘distinct’ options. (optional, default: None)

• records_format (controlled list) – the format for the records return value: ‘objects’
(default) list of {fieldname1: value1, . . . } dicts, ‘lists’ list of [value1, value2, . . . ] lists,
‘csv’ string containing comma-separated values with no header, ‘tsv’ string containing tab-
separated values with no header

Setting the plain flag to false enables the entire PostgreSQL full text search query language.

A listing of all available resources can be found at the alias _table_metadata.

If you need to download the full resource, read Downloading Resources.

Results:

The result of this action is a dictionary with the following keys:

Return type A dictionary with the following keys

Parameters

• fields (list of dictionaries) – fields/columns and their extra metadata

• offset (int) – query offset value

• limit (int) – queried limit value (if the requested limitwas above the ckan.datastore.
search.rows_max value then this response limit will be set to the value of ckan.
datastore.search.rows_max)

• filters (list of dictionaries) – query filters

• total (int) – number of total matching records

• total_was_estimated (bool) – whether or not the total was estimated

• records (depends on records_format value passed) – list of matching results

ckanext.datastore.logic.action.datastore_search_sql(context: Context, data_dict: dict[str, Any])
Execute SQL queries on the DataStore.

The datastore_search_sql action allows a user to search data in a resource or connect multiple resources with
join expressions. The underlying SQL engine is the PostgreSQL engine. There is an enforced timeout on SQL
queries to avoid an unintended DOS. The number of results returned is limited to 32000, unless set in the site’s
configuration ckan.datastore.search.rows_max Queries are only allowed if you have access to the all the
CKAN resources in the query and send the appropriate authorization.

Note: This action is not available by default and needs to be enabled with the ckan.datastore.sqlsearch.enabled
setting.

Note: When source data columns (i.e. CSV) heading names are provided in all UPPERCASE you need to
double quote them in the SQL select statement to avoid returning null results.

Parameters sql (string) – a single SQL select statement

Results:

The result of this action is a dictionary with the following keys:

100 Chapter 3. Maintainer’s guide

http://www.postgresql.org/docs/9.1/static/datatype-textsearch.html#DATATYPE-TSQUERY
http://www.postgresql.org/docs/9.1/interactive/


CKAN documentation, Release 2.10.0a0

Return type A dictionary with the following keys

Parameters

• fields (list of dictionaries) – fields/columns and their extra metadata

• records (list of dictionaries) – list of matching results

• records_truncated (bool) – indicates whether the number of records returned was lim-
ited by the internal limit, which is 32000 records (or other value set in the site’s configuration
ckan.datastore.search.rows_max). If records are truncated by this, this key has value
True, otherwise the key is not returned at all.

ckanext.datastore.logic.action.set_datastore_active_flag(context: Context, data_dict: dict[str, Any],
flag: bool)

Set appropriate datastore_active flag on CKAN resource.

Called after creation or deletion of DataStore table.

ckanext.datastore.logic.action.datastore_function_create(context: Context, data_dict: dict[str,
Any])

Create a trigger function for use with datastore_create

Parameters

• name (string) – function name

• or_replace (bool) – True to replace if function already exists (default: False)

• rettype (string) – set to ‘trigger’ (only trigger functions may be created at this time)

• definition (string) – PL/pgSQL function body for trigger function

ckanext.datastore.logic.action.datastore_function_delete(context: Context, data_dict: dict[str,
Any])

Delete a trigger function

Parameters name (string) – function name

Fields

Fields define the column names and the type of the data in a column. A field is defined as follows:

{
"id": # the column name (required)
"type": # the data type for the column
"info": {

"label": # human-readable label for column
"notes": # markdown description of column
"type_override": # type for datapusher to use when importing data
...: # other user-defined fields

}
}

Field types not provided will be guessed based on the first row of provided data. Set the types to ensure that future
inserts will not fail because of an incorrectly guessed type. See Field types for details on which types are valid.

Extra "info" field values will be stored along with the column. "label", "notes" and "type_override" can be
managed from the default Data Dictionary form. Additional fields can be stored by customizing the Data Dictionary
form or by passing their values to the API directly.

3.9. DataStore extension 101



CKAN documentation, Release 2.10.0a0

Example:

[
{

"id": "code_number",
"type": "numeric"

},
{

"id": "description"
"type": "text",
"info": {

"label": "Description",
"notes": "A brief usage description for this code",
"example": "Used for temporary service interruptions"

}
}

]

Records

A record is the data to be inserted in a DataStore resource and is defined as follows:

{
column_1_id: value_1,
columd_2_id: value_2,
...

}

Example:

[
{

"code_number": 10,
"description": "Submitted successfully"

},
{

"code_number": 42,
"description": "In progress"

}
]

Field types

The DataStore supports all types supported by PostgreSQL as well as a few additions. A list of the PostgreSQL types
can be found in the type section of the documentation. Below you can find a list of the most common data types. The
json type has been added as a storage for nested data.

In addition to the listed types below, you can also use array types. They are defines by prepending a _ or appending []
or [n] where n denotes the length of the array. An arbitrarily long array of integers would be defined as int[].

text Arbitrary text data, e.g. Here's some text.

102 Chapter 3. Maintainer’s guide

http://www.postgresql.org/docs/9.1/static/datatype.html


CKAN documentation, Release 2.10.0a0

json Arbitrary nested json data, e.g {"foo": 42, "bar": [1, 2, 3]}. Please note that this type is a custom
type that is wrapped by the DataStore.

date Date without time, e.g 2012-5-25.

time Time without date, e.g 12:42.

timestamp Date and time, e.g 2012-10-01T02:43Z.

int Integer numbers, e.g 42, 7.

float Floats, e.g. 1.61803.

bool Boolean values, e.g. true, 0

You can find more information about the formatting of dates in the date/time types section of the PostgreSQL docu-
mentation.

Resource aliases

A resource in the DataStore can have multiple aliases that are easier to remember than the resource id. Aliases can
be created and edited with the datastore_create() API endpoint. All aliases can be found in a special view called
_table_metadata. See Internal structure of the database for full reference.

Comparison of different querying methods

The DataStore supports querying with two API endpoints. They are similar but support different features. The following
list gives an overview of the different methods.

datastore_search() datastore_search_sql()
Ease of use Easy Complex
Flexibility Low High
Query language Custom (JSON) SQL
Join resources No Yes

Internal structure of the database

The DataStore is a thin layer on top of a PostgreSQL database. Each DataStore resource belongs to a CKAN resource.
The name of a table in the DataStore is always the resource id of the CKAN resource for the data.

As explained in Resource aliases, a resource can have mnemonic aliases which are stored as views in the database.

All aliases (views) and resources (tables respectively relations) of the DataStore can be found in a special view
called _table_metadata. To access the list, open http://{YOUR-CKAN-INSTALLATION}/api/3/action/
datastore_search?resource_id=_table_metadata.

_table_metadata has the following fields:

_id Unique key of the relation in _table_metadata.

alias_of Name of a relation that this alias point to. This field is null iff the name is not an alias.

name Contains the name of the alias if alias_of is not null. Otherwise, this is the resource id of the CKAN resource
for the DataStore resource.

oid The PostgreSQL object ID of the table that belongs to name.

3.9. DataStore extension 103

http://www.postgresql.org/docs/9.1/static/datatype-datetime.html
http://www.postgresql.org/docs/9.1/static/datatype-datetime.html


CKAN documentation, Release 2.10.0a0

3.9.7 Extending DataStore

Starting from CKAN version 2.7, backend used in DataStore can be replaced with custom one. For this purpose,
custom extension must implement ckanext.datastore.interfaces.IDatastoreBackend, which provides one method - reg-
ister_backends. It should return dictonary with names of custom backends as keys and classes, that represent those
backends as values. Each class supposed to be inherited from ckanext.datastore.backend.DatastoreBackend.

Note: Example of custom implementation can be found at ckanext.example_idatastorebackend

ckanext.datastore.backend.get_all_resources_ids_in_datastore()→ list[str]
Helper for getting id of all resources in datastore.

Uses get_all_ids of active datastore backend.

exception ckanext.datastore.backend.DatastoreException

exception ckanext.datastore.backend.InvalidDataError

Exception that’s raised if you try to add invalid data to the datastore.

For example if you have a column with type “numeric” and then you try to add a non-numeric value like “foo”
to it, this exception should be raised.

class ckanext.datastore.backend.DatastoreBackend

Base class for all datastore backends.

Very simple example of implementation based on SQLite can be found in ckanext.example_idatastorebackend.
In order to use it, set datastore.write_url to ‘example-sqlite:////tmp/database-name-on-your-choice’

Prop _backend mapping(schema, class) of all registered backends

Prop _active_backend current active backend

classmethod register_backends()

Register all backend implementations inside extensions.

classmethod set_active_backend(config: ckan.common.CKANConfig)
Choose most suitable backend depending on configuration

Parameters config – configuration object

Return type ckan.common.CKANConfig

classmethod get_active_backend()

Return currently used backend

configure(config: ckan.common.CKANConfig)
Configure backend, set inner variables, make some initial setup.

Parameters config – configuration object

Returns config

Return type CKANConfig

create(context: Context, data_dict: dict[str, Any])→ Any
Create new resourct inside datastore.

Called by datastore_create.

Parameters data_dict – See ckanext.datastore.logic.action.datastore_create

104 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Returns The newly created data object

Return type dictonary

upsert(context: Context, data_dict: dict[str, Any])→ Any
Update or create resource depending on data_dict param.

Called by datastore_upsert.

Parameters data_dict – See ckanext.datastore.logic.action.datastore_upsert

Returns The modified data object

Return type dictonary

delete(context: Context, data_dict: dict[str, Any])→ Any
Remove resource from datastore.

Called by datastore_delete.

Parameters data_dict – See ckanext.datastore.logic.action.datastore_delete

Returns Original filters sent.

Return type dictonary

search(context: Context, data_dict: dict[str, Any])→ Any
Base search.

Called by datastore_search.

Parameters

• data_dict – See ckanext.datastore.logic.action.datastore_search

• fields (list of dictionaries) – fields/columns and their extra metadata

• offset (int) – query offset value

• limit (int) – query limit value

• filters (list of dictionaries) – query filters

• total (int) – number of total matching records

• records (list of dictionaries) – list of matching results

Return type dictonary with following keys

search_sql(context: Context, data_dict: dict[str, Any])→ Any
Advanced search.

Called by datastore_search_sql. :param sql: a single seach statement :type sql: string

Return type dictonary

Parameters

• fields (list of dictionaries) – fields/columns and their extra metadata

• records (list of dictionaries) – list of matching results

resource_exists(id: str)→ bool
Define whether resource exists in datastore.

3.9. DataStore extension 105



CKAN documentation, Release 2.10.0a0

resource_fields(id: str)→ Any
Return dictonary with resource description.

Called by datastore_info. :returns: A dictionary describing the columns and their types.

resource_info(id: str)→ Any
Return DataDictonary with resource’s info - #3414

resource_id_from_alias(alias: str)→ Any
Convert resource’s alias to real id.

Parameters alias (string) – resource’s alias or id

Returns real id of resource

Return type string

get_all_ids()→ list[str]
Return id of all resource registered in datastore.

Returns all resources ids

Return type list of strings

create_function(*args: Any, **kwargs: Any)→ Any
Called by datastore_function_create action.

drop_function(*args: Any, **kwargs: Any)→ Any
Called by datastore_function_delete action.

3.10 Apps & Ideas

The old “Apps & Ideas” functionality to allow users to provide information on apps, ideas, visualizations, articles etc
that are related to a specific dataset has been moved to a separate extension: ckanext-showcase.

3.11 Tag Vocabularies

New in version 1.7.

CKAN sites can have tag vocabularies, which are a way of grouping related tags together into custom fields.

For example, if you were making a site for music datasets. you might use a tag vocabulary to add two fields Genre and
Composer to your site’s datasets, where each dataset can have one of the values Avant-Garde, Country or Jazz in its
genre field, and one of the values Beethoven, Wagner, or Tchaikovsky in its composer field. In this example, genre and
composer would be vocabularies and the values would be tags:

• Vocabulary: Genre

– Tag: Avant-Garde

– Tag: Country

– Tag: Jazz

• Vocabulary: Composer

– Tag: Beethoven

– Tag: Wagner

106 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-showcase


CKAN documentation, Release 2.10.0a0

– Tag: Tchaikovsky

Ofcourse, you could just add Avant-Garde, Beethoven, etc. to datasets as normal CKAN tags, but using tag vocabularies
lets you define Avant-Garde, Country and Jazz as genres and Beethoven, Wagner and Tchaikovsky as composers, and
lets you enforce restrictions such as that each dataset must have a genre and a composer, and that no dataset can have
two genres or two composers, etc.

Another example use-case for tag vocabularies would be to add a Country Code field to datasets defining the geo-
graphical coverage of the dataset, where each dataset is assigned a country code such as en, fr, de, etc. See ckanext/
example_idatasetform for a working example implementation of country codes as a tag vocabulary.

3.11.1 Properties of Tag Vocabularies

• A CKAN website can have any number of vocabularies.

• Each vocabulary has an ID and name.

• Each tag either belongs to a vocabulary, or can be a free tag that doesn’t belong to any vocabulary (i.e. a normal
CKAN tag).

• A dataset can have more than one tag from the same vocabulary, and can have tags from more than one vocabulary.

3.11.2 Using Vocabularies

To add a tag vocabulary to a site, a CKAN sysadmin must:

1. Call the vocabulary_create() action of the CKAN API to create the vocabulary and tags. See API guide.

2. Implement an IDatasetForm plugin to add a new field for the tag vocabulary to the dataset schema. See Ex-
tending guide.

3. Provide custom dataset templates to display the new field to users when adding, updating or viewing datasets in
the CKAN web interface. See Theming guide.

See ckanext/example_idatasetform for a working example of these steps.

3.12 Form Integration

CKAN allows you to integrate its Edit Dataset and New Dataset forms into an external front-end. To that end, CKAN
also provides a simple way to redirect these forms back to the external front-end upon submission.

3.12.1 Redirecting CKAN Forms

It is obviously simple enough for an external front-end to link to CKAN’s Edit Dataset and New Dataset forms, but once
the forms are submitted, it would be desirable to redirect the user back to the external front-end, rather than CKAN’s
dataset read page.

This is achieved with a parameter to the CKAN URL. The ‘return URL’ can be specified in two places:

1. Passed as a URL-encoded value with the parameter return_to in the link to CKAN’s form page.

2. Specified in the CKAN config keys package_new_return_url and package_edit_return_url.

(If the ‘return URL’ is supplied in both places, then the first takes precedence.)

Since the ‘return URL’ may need to include the dataset name, which could be changed by the user, CKAN replaces a
known placeholder <NAME> with this value on redirect.

3.12. Form Integration 107



CKAN documentation, Release 2.10.0a0

Note: Note that the downside of specifying the ‘return URL’ in the CKAN config is that the CKAN web interface
becomes less usable on its own, since the user is hampered by the redirects to the external interface.

Example

An external front-end displays a dataset ‘ontariolandcoverv100’ here:

http://datadotgc.ca/dataset/ontariolandcoverv100

It displays a link to edit this dataset using CKAN’s form, which without the redirect would be:

http://ca.ckan.net/dataset/edit/ontariolandoverv100

At first, it may seem that the return link should be http://datadotgc.ca/dataset/ontariolandcoverv100. But
when the user edits this dataset, the name may change. So the return link needs to be:

http://datadotgc.ca/dataset/<NAME>

And this is URL-encoded to become:

http%3A%2F%2Fdatadotgc.ca%2Fdataset%2F%3CNAME%3E

So, in summary, the edit link becomes:

http://ca.ckan.net/dataset/edit/ontariolandoverv100?return_to=http%3A%2F%2Fdatadotgc.ca
→˓%2Fdataset%2F%3CNAME%3E

During editing the dataset, the user changes the dataset name to canadalandcover, presses ‘preview’ and finally ‘com-
mit’. The user is now redirected back to the external front-end at:

http://datadotgc.ca/dataset/canadalandcover

The same functionality could be achieved by this line in the config file (ca.ckan.net.ini):

...

[app:main]
package_edit_return_url = http://datadotgc.ca/dataset/<NAME>

...

3.13 Linked Data and RDF

Linked data and RDF features for CKAN are provided by the ckanext-dcat extension:

https://github.com/ckan/ckanext-dcat

These features include the RDF serializations of CKAN datasets based on DCAT, that used to be generated using
templates hosted on the main CKAN repo, eg:

• https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.xml

• https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.ttl

108 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-dcat
http://www.w3.org/TR/vocab-dcat/
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.xml
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.ttl


CKAN documentation, Release 2.10.0a0

• https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.n3

• https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.jsonld

ckanext-dcat offers many more features, including catalog-wide endpoints and harvesters to import RDF data into
CKAN. Please check its documentation to know more about

As of CKAN 2.5, the RDF templates have been moved out of CKAN core in favour of the ckanext-dcat customizable
endpoints. Note that previous CKAN versions can still use the ckanext-dcat RDF representations, which will override
the old ones served by CKAN core.

3.14 Background jobs

CKAN allows you to create jobs that run in the ‘background’, i.e. asynchronously and without blocking the main
application. Such jobs can be created in Extensions or in core CKAN.

Background jobs can be essential to providing certain kinds of functionality, for example:

• Creating web-hooks that notify other services when certain changes occur (for example a dataset is updated)

• Performing processing or validation or on data (as done by the Archiver and DataStorer Extensions)

Basically, any piece of work that takes too long to perform while the main application is waiting is a good candidate
for a background job.

Note: The current background job system is based on RQ and was introduced in CKAN 2.7. See Migrating from
CKAN’s previous background job system for details on how to migrate your jobs from the previous system introduced
in CKAN 1.5.

3.14.1 Writing and enqueuing background jobs

Note: This section is only relevant for developers working on CKAN or an extension.

The core of a background job is a regular Python function. For example, here’s a very simply job function that logs a
message:

import logging

def log_job(msg, level=logging.INFO, logger=u'ckan'):
u'''
Background job to log a message.
'''
logger = logging.getLogger(logger)
logger.log(level, msg)

And that’s it. Your job function can use all the usual Python features. Just keep in mind that your function will be run in
a separate process by a worker, so your function should not depend on the current state of global variables, etc. Ideally
your job function should receive all the information it needs via its arguments.

In addition, the module that contains your job function must be importable by the worker, which must also be able to
get the function from its module. This means that nested functions, lambdas and instance methods cannot be used as
job functions. While class methods of top-level classes can be used it’s best to stick to ordinary module-level functions.

3.14. Background jobs 109

https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.n3
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.jsonld
https://github.com/ckan/ckanext-dcat#overview
https://github.com/ckan/ckanext-dcat#rdf-dcat-endpoints
http://python-rq.org


CKAN documentation, Release 2.10.0a0

Note: Background jobs do not support return values (since they run asynchronously there is no place to return those
values to). If your job function produces a result then it needs to store that result, for example in a file or in CKAN’s
database.

Once you have a job function, all you need to do is to use ckan.lib.jobs.enqueue to create an actual job out of it:

import ckan.lib.jobs as jobs

jobs.enqueue(log_job, [u'My log message'])

This will place a job on the job queue where it can be picked up and executed by a worker.

Note: Extensions should use ckan.plugins.toolkit.enqueue_job() instead. It’s the same function but access-
ing it via ckan.plugins.toolkit decouples your code from CKAN’s internal structure.

The first argument to enqueue is the job function to use. The second is a list of the arguments which should be passed
to the function. You can omit it in which case no arguments will be passed. You can also pass keyword arguments in a
dict as the third argument:

jobs.enqueue(log_job, [u'My log message'], {u'logger': u'ckanext.foo'})

You can also give the job a title which can be useful for identifying it when managing the job queue:

jobs.enqueue(log_job, [u'My log message'], title=u'My log job')

A timeout can also be set on a job iwth the timeout keyword argument:

jobs.enqueue(log_job, [u'My log message'], rq_kwargs={"timeout": 3600})

The default background job timeout is 180 seconds. This is set in the ckan config .ini file under the ckan.jobs.
timeout item.

Accessing the database from background jobs

Code running in a background job can access the CKAN database like any other CKAN code.

In particular, using the action functions to modify the database from within a background job is perfectly fine. Just
keep in mind that while your job is running in the background, the CKAN main process or other background jobs may
also modify the database. Hence a single call to an action function is atomic from your job’s view point, but between
multiple calls there may be foreign changes to the database.

Special care has to be taken if your background job needs low-level access to the database, for example to modify
SQLAlchemy model instances directly without going through an action function. Each background job runs in a
separate process and therefore has its own SQLAlchemy session. Your code has to make sure that the changes it makes
are properly contained in transactions and that you refresh your view of the database to receive updates where necessary.
For these (and other) reasons it is recommended to use the action functions to interact with the database.

110 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

3.14.2 Running background jobs

Jobs are placed on the job queue, from which they can be retrieved and executed. Since jobs are designed to run
asynchronously that happens in a separate process called a worker.

After it has been started, a worker listens on the queue until a job is enqueued. The worker then removes the job from
the queue and executes it. Afterwards the worker waits again for the next job to be enqueued.

Note: Executed jobs are discarded. In particular, no information about past jobs is kept.

Workers can be started using the Run a background job worker command:

ckan -c /etc/ckan/default/ckan.ini jobs worker

The worker process will run indefinitely (you can stop it using CTRL+C).

Note: You can run multiple workers if your setup uses many or particularly long background jobs.

Using Supervisor

In a production setting, the worker should be run in a more robust way. One possibility is to use Supervisor.

First install Supervisor:

sudo apt-get install supervisor

Next copy the configuration file template:

sudo cp /usr/lib/ckan/default/src/ckan/ckan/config/supervisor-ckan-worker.conf /etc/
→˓supervisor/conf.d

Next make sure the /var/log/ckan/ directory exists, if not then it needs to be created:

sudo mkdir /var/log/ckan

Open /etc/supervisor/conf.d/supervisor-ckan-worker.conf in your favourite text editor and make sure all
the settings suit your needs. If you installed CKAN in a non-default location (somewhere other than /usr/lib/ckan/
default) then you will need to update the paths in the config file (see the comments in the file for details).

Restart Supervisor:

sudo service supervisor restart

The worker should now be running. To check its status, use

sudo supervisorctl status

You can restart the worker via

sudo supervisorctl restart ckan-worker:*

To test that background jobs are processed correctly you can enqueue a test job via

3.14. Background jobs 111

http://supervisord.org/


CKAN documentation, Release 2.10.0a0

ckan -c |ckan.ini| jobs test

The worker’s log files (/var/log/ckan/ckan-worker.stdout.log and/or /var/log/ckan/ckan-worker.
stderr.log) should then show how the job was processed by the worker.

In case you run into problems, make sure to check the logs of Supervisor and the worker:

cat /var/log/supervisor/supervisord.log
cat /var/log/ckan/ckan-worker.stdout.log
cat /var/log/ckan/ckan-worker.sterr.log

3.14.3 Managing background jobs

Once they are enqueued, background jobs can be managed via the ckan command and the web API .

List enqueues jobs

• ckan jobs list

• ckan.logic.action.get.job_list()

Show details about a job

• ckan jobs show

• ckan.logic.action.get.job_show()

Cancel a job

A job that hasn’t been processed yet can be canceled via

• ckan jobs cancel

• ckan.logic.action.delete.job_cancel()

Clear all enqueued jobs

• ckan jobs clear

• ckan.logic.action.delete.job_clear()

Logging

Information about enqueued and processed background jobs is automatically logged to the CKAN logs. You may need
to update your logging configuration to record messages at the INFO level for the messages to be stored.

112 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

3.14.4 Background job queues

By default, all functionality related to background jobs uses a single job queue that is specific to the current CKAN
instance. However, in some situations it is useful to have more than one queue. For example, you might want to
distinguish between short, urgent jobs and longer, less urgent ones. The urgent jobs should be processed even if a long
and less urgent job is already running.

For such scenarios, the job system supports multiple queues. To use a different queue, all you have to do is pass the
(arbitrary) queue name. For example, to enqueue a job at a non-default queue:

jobs.enqueue(log_job, [u"I'm from a different queue!"],
queue=u'my-own-queue')

Similarly, to start a worker that only listens to the queue you just posted a job to:

ckan -c |ckan.ini| jobs worker my-own-queue

See the documentation of the various functions and commands for details on how to use non-standard queues.

Note: If you create a custom queue in your extension then you should prefix the queue name using your extension’s
name. See Avoid name clashes.

Queue names are internally automatically prefixed with the CKAN site ID, so multiple parallel CKAN instances are
not a problem.

3.14.5 Testing code that uses background jobs

Due to the asynchronous nature of background jobs, code that uses them needs to be handled specially when writing
tests.

A common approach is to use the mock package to replace the ckan.plugins.toolkit.enqueue_job function with
a mock that executes jobs synchronously instead of asynchronously:

import unittest.mock as mock

from ckan.tests import helpers

def synchronous_enqueue_job(job_func, args=None, kwargs=None, title=None):
'''
Synchronous mock for ``ckan.plugins.toolkit.enqueue_job``.
'''
args = args or []
kwargs = kwargs or {}
job_func(*args, **kwargs)

class TestSomethingWithBackgroundJobs(helpers.FunctionalTestBase):

@mock.patch('ckan.plugins.toolkit.enqueue_job',
side_effect=synchronous_enqueue_job)

def test_something(self, enqueue_job_mock):
(continues on next page)

3.14. Background jobs 113

https://pypi.python.org/pypi/mock


CKAN documentation, Release 2.10.0a0

(continued from previous page)

some_function_that_enqueues_a_background_job()
assert something

Depending on how the function under test calls enqueue_job you might need to adapt where the mock is installed.
See mock’s documentation for details.

3.14.6 Migrating from CKAN’s previous background job system

Before version 2.7 (starting from 1.5), CKAN offered a different background job system built around Celery. As of
CKAN 2.8, that system is no longer available. You should therefore update your code to use the new system described
above.

Migrating existing job functions is easy. In the old system, a job function would look like this:

@celery.task(name=u'my_extension.echofunction')
def echo(message):

print message

As described above, under the new system the same function would be simply written as

def echo(message):
print message

There is no need for a special decorator. In the new system there is also no need for registering your tasks via setup.py.

Migrating the code that enqueues a task is also easy. Previously it would look like this:

celery.send_task(u'my_extension.echofunction', args=[u'Hello World'],
task_id=str(uuid.uuid4()))

With the new system, it looks as follows:

import ckan.lib.jobs as jobs

jobs.enqueue(ckanext.my_extension.plugin.echo, [u'Hello World'])

As you can see, the new system does not use strings to identify job functions but uses the functions directly instead.
There is also no need for creating a job ID, that will be done automatically for you.

Supporting both systems at once

Not all CKAN installations will immediately update to CKAN 2.7. It might therefore make sense for you to support
both the new and the old job system. That way you are ready when the old system is removed but can continue to
support older CKAN installations.

The easiest way to do that is to use ckanext-rq, which provides a back-port of the new system to older CKAN versions.

If you are unable to use ckanext-rq then you will need to write your code in such a way that it works on both systems.
This could looks as follows. First split your Celery-based job functions into the job itself and its Celery handler. That
is, change

@celery.task(name=u'my_extension.echofunction')
def echo(message):

print message

114 Chapter 3. Maintainer’s guide

https://docs.python.org/dev/library/unittest.mock.html
http://celeryproject.org/
https://github.com/davidread/ckanext-rq


CKAN documentation, Release 2.10.0a0

to

def echo(message):
print message

@celery.task(name=u'my_extension.echofunction')
def echo_celery(*args, **kwargs):
echo(*args, **kwargs)

That way, you can call echo using the new system and use the name for Celery.

Then use the new system if it is available and fall back to Celery otherwise:

def compat_enqueue(name, fn, args=None):
u'''
Enqueue a background job using Celery or RQ.
'''
try:

# Try to use RQ
from ckan.plugins.toolkit import enqueue_job
enqueue_job(fn, args=args)

except ImportError:
# Fallback to Celery
import uuid
from ckan.lib.celery_app import celery
celery.send_task(name, args=args, task_id=str(uuid.uuid4()))

Use that function as follows for enqueuing a job:

compat_enqueue(u'my_extension.echofunction',
ckanext.my_extension.plugin.echo,
[u'Hello World'])

3.15 Email notifications

CKAN can send email notifications to users, for example when a user has new activities on her dashboard. Once email
notifications have been enabled by a site admin, each user of a CKAN site can turn email notifications on or off for
herself by logging in and editing her user preferences. To enable email notifications for a CKAN site, a sysadmin must:

1. Setup a cron job or other scheduled job on a server to call CKAN’s send_email_notifications API action
at regular intervals (e.g. hourly) and send any pending email notifications to users.

On most UNIX systems you can setup a cron job by running crontab -e in a shell to edit your crontab file, and
adding a line to the file to specify the new job. For more information run man crontab in a shell.

CKAN’s send_email_notifications API action can be called via the cli’s ckan notify send_emails
command. For example, here is a crontab line to send out CKAN email notifications hourly:

@hourly echo '{}' | ckan -c path-to-your-ckan.ini notify send_emails > /dev/null

The @hourly can be replaced with @daily, @weekly or @monthly.

3.15. Email notifications 115



CKAN documentation, Release 2.10.0a0

Warning: CKAN will not send email notifications for events older than the time period specified by the
ckan.email_notifications_since config setting (default: 2 days), so your cron job should run more
frequently than this. @hourly and @daily are good choices.

Note: Since send_email_notifications is an API action, it can be called from a machine other than the
server on which CKAN is running, simply by POSTing an HTTP request to the CKAN API (you must be a
sysadmin to call this particular API action). See API guide.

2. CKAN will not send out any email notifications, nor show the email notifications preference to users, unless the
ckan.activity_streams_email_notifications option is set to True, so put this line in the [app:main] section of
your CKAN config file:

ckan.activity_streams_email_notifications = True

3. Make sure that ckan.site_url is set correctly in the [app:main] section of your CKAN configuration file. This
is used to generate links in the bodies of the notification emails. For example:

ckan.site_url = http://publicdata.eu

4. Make sure that smtp.mail_from is set correctly in the [app:main] section of your CKAN configuration file. This
is the email address that CKAN’s email notifications will appear to come from. For example:

smtp.mail_from = mailman@publicdata.eu

This is combined with your ckan.site_title to form the From: header of the email that are sent, for example:

From: PublicData.eu <mailmain@publicdata.eu>

If you would like to use an alternate reply address, such as a “no-reply” address, set smtp.reply_to in the
[app:main] section of your CKAN configuration file. For example:

smtp.reply_to = noreply@example.com

5. If you do not have an SMTP server running locally on the machine that hosts your CKAN instance, you can change
the Email settings to send email via an external SMTP server. For example, these settings in the [app:main]
section of your configuration file will send emails using a gmail account (not recommended for production web-
sites!):

smtp.server = smtp.gmail.com:587
smtp.starttls = True
smtp.user = your_username@gmail.com
smtp.password = your_gmail_password
smtp.mail_from = your_username@gmail.com

6. You need to restart the web server for the new configuration to take effect. For example, if you are using a CKAN
package install, run this command in a shell:

sudo supervisorctl restart ckan-uwsgi:*

116 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

3.16 Page View Tracking

CKAN can track visits to pages of your site and use this tracking data to:

• Sort datasets by popularity

• Highlight popular datasets and resources

• Show view counts next to datasets and resources

• Show a list of the most popular datasets

• Export page-view data to a CSV file

See also:

ckanext-googleanalytics A CKAN extension that integrates Google Analytics into CKAN.

3.16.1 Enabling Page View Tracking

To enable page view tracking:

1. Set ckan.tracking_enabled to true in the [app:main] section of your CKAN configuration file (e.g.
/etc/ckan/default/ckan.ini):

[app:main]
ckan.tracking_enabled = true

Save the file and restart your web server. CKAN will now record raw page view tracking data in your CKAN
database as pages are viewed.

2. Setup a cron job to update the tracking summary data.

For operations based on the tracking data CKAN uses a summarised version of the data, not the raw tracking
data that is recorded “live” as page views happen. The ckan tracking update and ckan search-index
rebuild commands need to be run periodicially to update this tracking summary data.

You can setup a cron job to run these commands. On most UNIX systems you can setup a cron job by running
crontab -e in a shell to edit your crontab file, and adding a line to the file to specify the new job. For more
information run man crontab in a shell. For example, here is a crontab line to update the tracking data and
rebuild the search index hourly:

@hourly ckan -c /etc/ckan/default/ckan.ini tracking update && ckan -c /etc/ckan/
→˓default/ckan.ini search-index rebuild -r

Replace /usr/lib/ckan/bin/ with the path to the bin directory of the virtualenv that you’ve installed CKAN
into, and replace ‘/etc/ckan/default/ckan.ini’ with the path to your CKAN configuration file.

The @hourly can be replaced with @daily, @weekly or @monthly.

3.16. Page View Tracking 117

https://github.com/ckan/ckanext-googleanalytics


CKAN documentation, Release 2.10.0a0

3.16.2 Retrieving Tracking Data

Tracking summary data for datasets and resources is available in the dataset and resource dictionaries returned by, for
example, the package_show() API:

"tracking_summary": {
"recent": 5,
"total": 15

},

This can be used, for example, by custom templates to show the number of views next to datasets and resources. A
dataset or resource’s recent count is its number of views in the last 14 days, the total count is all of its tracked views
(including recent ones).

You can also export tracking data for all datasets to a CSV file using the ckan tracking export command. For
details, run ckan tracking -h.

Note: Repeatedly visiting the same page will not increase the page’s view count! Page view counting is limited to one
view per user per page per day.

3.16.3 Sorting Datasets by Popularity

Once you’ve enabled page view tracking on your CKAN site, you can view datasets most-popular-first by selecting
Popular from the Order by: dropdown on the dataset search page:

The datasets are sorted by their number of recent views.

You can retrieve datasets most-popular-first from the CKAN API by passing 'sort': 'views_recent desc' to the
package_search() action. This could be used, for example, by a custom template to show a list of the most popular
datasets on the site’s front page.

Tip: You can also sort datasets by total views rather than recent views. Pass 'sort': 'views_total desc' to

118 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

the package_search() API, or use the URL /dataset?q=&sort=views_total+desc in the web interface.

3.16.4 Highlighting Popular Datasets and Resources

Once you’ve enabled page view tracking on your CKAN site, popular datasets and resources (those with more than 10
views) will be highlighted with a “popular” badge and a tooltip showing the number of views:

3.17 Multilingual Extension

For translating CKAN’s web interface see Translating CKAN . In addition to user interface internationalization, a CKAN
administrator can also enter translations into CKAN’s database for terms that may appear in the contents of datasets,
groups or tags created by users. When a user is viewing the CKAN site, if the translation terms database contains a
translation in the user’s language for the name or description of a dataset or resource, the name of a tag or group, etc.
then the translated term will be shown to the user in place of the original.

3.17.1 Setup and Configuration

By default term translations are disabled. To enable them, you have to specify the multilingual plugins using the
ckan.plugins setting in your CKAN configuration file, for example:

# List the names of CKAN extensions to activate.
ckan.plugins = multilingual_dataset multilingual_group multilingual_tag

Of course, you won’t see any terms getting translated until you load some term translations into the database. You can
do this using the term_translation_update and term_translation_update_many actions of the CKAN API,
See API guide for more details.

3.17. Multilingual Extension 119



CKAN documentation, Release 2.10.0a0

3.17.2 Loading Test Translations

If you want to quickly test the term translation feature without having to provide your own translations, you can load
CKAN’s test translations into the database by running this command from your shell:

ckan -c |ckan.ini| create-test-data translations

See Command Line Interface (CLI) for more details.

3.17.3 Testing The Multilingual Extension

If you have a source installation of CKAN you can test the multilingual extension by running the tests located in
ckanext/multilingual/tests. You must first install the packages needed for running CKAN tests into your virtual
environment, and then run this command from your shell:

pytest --ckan-ini=test-core.ini ckanext/multilingual/tests

See Testing CKAN for more information.

3.18 Stats Extension

CKAN’s stats extension analyzes your CKAN database and displays several tables and graphs with statistics about your
site, including:

• Total number of datasets

• Dataset revisions per week

• Top-rated datasets

• Most-edited Datasets

• Largest groups

• Top tags

• Users owning most datasets

See also:

CKAN’s built-in page view tracking feature, which tracks visits to pages.

See also:

ckanext-googleanalytics A CKAN extension that integrates Google Analytics into CKAN.

3.18.1 Enabling the Stats Extension

To enable the stats extensions add stats to the ckan.plugins option in your CKAN config file, for example:

ckan.plugins = stats

120 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-googleanalytics


CKAN documentation, Release 2.10.0a0

3.18.2 Viewing the Statistics

To view the statistics reported by the stats extension, visit the /stats page, for example: https://demo.ckan.org/stats

3.19 Configuration Options

The functionality and features of CKAN can be modified using many different configuration options. These are gen-
erally set in the CKAN configuration file, but some of them can also be set via Environment variables or at runtime.
Config options can be declared on strict mode to ensure they are validated and have default values.

Note: Looking for the available configuration options? Jump to CKAN configuration file.

3.19.1 Environment variables

Some of the CKAN configuration options can be defined as Environment variables on the server operating system.

These are generally low-level critical settings needed when setting up the application, like the database connection, the
Solr server URL, etc. Sometimes it can be useful to define them as environment variables to automate and orchestrate
deployments without having to first modify the CKAN configuration file.

These options are only read at startup time to update the config object used by CKAN, but they won’t be accessed
any more during the lifetime of the application.

CKAN environment variable names match the options in the configuration file, but they are always uppercase and
prefixed with CKAN_ (this prefix is added even if the corresponding option in the ini file does not have it), and replacing
dots with underscores.

This is the list of currently supported environment variables, please refer to the entries in the CKAN configuration file
section below for more details about each one:

CONFIG_FROM_ENV_VARS: dict[str, str] = {
'sqlalchemy.url': 'CKAN_SQLALCHEMY_URL',
'ckan.datastore.write_url': 'CKAN_DATASTORE_WRITE_URL',
'ckan.datastore.read_url': 'CKAN_DATASTORE_READ_URL',
'ckan.redis.url': 'CKAN_REDIS_URL',
'solr_url': 'CKAN_SOLR_URL',
'solr_user': 'CKAN_SOLR_USER',
'solr_password': 'CKAN_SOLR_PASSWORD',
'ckan.site_id': 'CKAN_SITE_ID',
'ckan.site_url': 'CKAN_SITE_URL',
'ckan.storage_path': 'CKAN_STORAGE_PATH',
'ckan.datapusher.url': 'CKAN_DATAPUSHER_URL',
'smtp.server': 'CKAN_SMTP_SERVER',
'smtp.starttls': 'CKAN_SMTP_STARTTLS',
'smtp.user': 'CKAN_SMTP_USER',
'smtp.password': 'CKAN_SMTP_PASSWORD',
'smtp.mail_from': 'CKAN_SMTP_MAIL_FROM',
'ckan.max_resource_size': 'CKAN_MAX_UPLOAD_SIZE_MB'

}

3.19. Configuration Options 121

https://demo.ckan.org/stats
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable


CKAN documentation, Release 2.10.0a0

3.19.2 Updating configuration options during runtime

CKAN configuration options are generally defined before starting the web application (either in the CKAN configuration
file or via Environment variables).

A limited number of configuration options can also be edited during runtime. This can be done on the administration
interface or using the config_option_update() API action. Only sysadmins can edit these runtime-editable con-
figuration options. Changes made to these configuration options will be stored in the database and persisted when the
server is restarted.

Extensions can add (or remove) configuration options to the ones that can be edited at runtime. For more details on
how to do this check Making configuration options runtime-editable.

3.19.3 Config declaration

Tracking down all the possible config options in your CKAN site can be a challenging task. CKAN itself and its
extensions change over time, deprecating features and providing new ones, which means that some new config options
may be introduced, while other options no longer have any effect. In order to keep track of all valid config options,
CKAN uses config declarations.

CKAN itself declares all the config options that are used throught the code base (You can see the core config declarations
in the ckan/config/config_declaration.yaml file). This allows to validate the current configuration against the
declaration, or check which config options in the CKAN config file are not declared (and might have no effect).

Note: To make use of the config declaration feature you need to set config.mode to strict

Declaring config options

The IConfigDeclaration interface is available to allow extensions to declare their own config options.

New config options can only be declared inside the declare_config_options() method. This method accepts two
arguments: a Declaration object that contains all the declarations, and a Key helper, which allows to declare more
unusual config options.

A very basic config option may be declared in this way:

declaration.declare("ckanext.my_ext.option")

which just means that extension my_ext makes use of a config option named ckanext.my_ext.option. If we want
to define the default value for this option we can write:

declaration.declare("ckanext.my_ext.option", True)

The second parameter to declare() specifies the default value of the declared option if it is not provided in the
configuration file. If a default value is not specified, it’s implicitly set to None.

You can assign validators to a declared config option:

option = declaration.declare("ckanext.my_ext.option", True)
option.set_validators("not_missing boolean_validator")

set_validators accepts a string with the names of validators that must be applied to the config option. These
validators need to registered in CKAN core or in your own extension using the IValidators interface.

122 Chapter 3. Maintainer’s guide

http://en.wikipedia.org/wiki/Environment_variable


CKAN documentation, Release 2.10.0a0

Note: Declared default values are also passed to validators. In addition, different validators can be applied to the same
option. This means that validators must be idempotent and that the efault value itself must be valid for the given set of
validators.

If this is a mandatory option (ie users need to explicitly provide a value and can’t rely on a default value):

option.required()

If you need to declare a lot of options, you can declare all of them at once loading a dict:

declaration.load_dict(DICT_WITH_DECLARATIONS)

This allows to keep the configuration declaration in a separate file to make it easier to maintain if your plugin supports
several config options.

Note: declaration.load_dict() takes only python dictionary as argument. If you store the declaration in an
external file like a JSON, YAML file, you have to parse it into a Python dictionary yourself.

Accessing config options

Using validators ensures that config values are normalized. Up until now you have probably seen code like this one:

is_enabled = toolkit.asbool(toolkit.config.get("ckanext.my_ext.enable", False))

Declaring this configuration option and assigning validators (convert_int, boolean_validators) and a default value
means that we can use the config.get_value() method:

is_enabled = toolkit.config.get_value("ckanext.my_ext.enable")

This will ensure that:

1. If the value is not explicitly defined in the configuration file, the default one will be picked

2. This value is passed to the validators, and a valid value is returned

Note: An attempt to use config.get_value() with an undeclared config option will print a warning to the logs and
return the option value or None as default.

Command line interface

The current configuration can be validated using the config declaration CLI (again, assuming that you have set con-
fig.mode to strict):

ckan config validate

To get an example of the configuration for a given plugin, run ckan config declaration <PLUGIN>, eg:

3.19. Configuration Options 123



CKAN documentation, Release 2.10.0a0

ckan config declaration datastore

## Datastore settings ##########################################################
ckan.datastore.write_url = postgresql://ckan_default:pass@localhost/datastore_default
ckan.datastore.read_url = postgresql://datastore_default:pass@localhost/datastore_default
ckan.datastore.sqlsearch.enabled = false
ckan.datastore.search.rows_default = 100
ckan.datastore.search.rows_max = 32000
# ckan.datastore.sqlalchemy.<OPTION> =

## PostgreSQL' full-text search parameters #####################################
ckan.datastore.default_fts_lang = english
ckan.datastore.default_fts_index_method = gist

To get an example of the declaration code itself in order to use it as a starting point in your own plugin, you can run
ckan config describe <PLUGIN>, eg:

ckan config describe datapusher

# Output:
declaration.annotate('Datapusher settings')
declaration.declare(key.ckan.datapusher.formats, ...)
declaration.declare(key.ckan.datapusher.url)
declaration.declare(key.ckan.datapusher.callback_url_base)
declaration.declare(key.ckan.datapusher.assume_task_stale_after, 3600).set_validators(
→˓'convert_int')

You can output the config declaration in different formats, which is useful if you want to keep them separately:

ckan config describe datapusher --format=dict # python dict
ckan config describe datapusher --format=json # JSON file
ckan config describe datapusher --format=yaml # YAML file
ckan config describe datapusher --format=toml # TOML file

3.19.4 CKAN configuration file

From CKAN 2.9, by default, the configuration file is located at /etc/ckan/default/ckan.ini. Previous releases the
configuration file(s) were: /etc/ckan/default/development.ini or /etc/ckan/default/production.ini.
This section documents all of the config file settings, for reference.

Note: After editing your config file, you need to restart your webserver for the changes to take effect.

Note: Unless otherwise noted, all configuration options should be set inside the [app:main] section of the config
file (i.e. after the [app:main] line):

[DEFAULT]

...

[server:main]
(continues on next page)

124 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

use = egg:Paste#http
host = 0.0.0.0
port = 5000

# This setting will not work, because it's outside of [app:main].
ckan.site_logo = /images/masaq.png

[app:main]
# This setting will work.
ckan.plugins = stats text_view recline_view

If the same option is set more than once in your config file, exeption will be raised and CKAN application will not start

General settings

debug

Example:

debug = true

Default value: False

This enables the Flask-DebugToolbar in the web interface, makes Webassets serve unminified JS and CSS files, and
enables CKAN templates’ debugging features.

You will need to ensure the Flask-DebugToolbar python package is installed, by activating your ckan virtual envi-
ronment and then running:

pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt

If you are running CKAN on Apache, you must change the WSGI configuration to run a single process of CKAN.
Otherwise the execution will fail with: AssertionError: The EvalException middleware is not usable
in a multi-process environment. Eg. change:

WSGIDaemonProcess ckan_default display-name=ckan_default processes=2 threads=15
to
WSGIDaemonProcess ckan_default display-name=ckan_default threads=15

Warning: This option should be set to False for a public site. With debug mode enabled, a visitor to your site
could execute malicious commands.

3.19. Configuration Options 125

https://flask-debugtoolbar.readthedocs.io/


CKAN documentation, Release 2.10.0a0

ckan.legacy_route_mappings

Example:

ckan.legacy_route_mappings = {"home": "home.index", "about": "home.about", "search":
→˓"dataset.search"}

Default value: {}

This can be used when using an extension that is still using old (Pylons-based) route names to maintain compatibility.

Warning: This configuration will be removed when the migration to Flask is completed. Please update the
extension code to use the new Flask-based route names.

config.mode

Example:

config.mode = strict

Default value: default

Controls the parsing and validation of config object. In default mode there is no validation applied to the provided
configuration values and they are not guaranteed to be present. This is the current default behaviour and was the only
one available in CKAN<=2.9.

Enabling strict mode does the following:

• For all the declared config options, if they are not provided the config file, the ddefault value from the declaration
will be used in the config object.

• All the declared config options will be normalized using validators specified in the declaration.

• None of CKAN CLI commands will be executed and the CKAN application itself will not start unless all config
options are valid according to the validators defined in the declaration. For every invalid config option, an error
will be printed to the output stream.

Development settings

ckan.devserver.host

Example:

ckan.devserver.host = 0.0.0.0

Default value: localhost

Host name to use when running the development server.

126 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.devserver.port

Example:

ckan.devserver.port = 5005

Default value: 5000

Port to use when running the development server.

ckan.devserver.threaded

Example:

ckan.devserver.threaded = true

Default value: False

Controls whether the development server should handle each request in a separate thread.

ckan.devserver.multiprocess

Example:

ckan.devserver.multiprocess = 8

Default value: 1

If greater than 1 then the development server will handle each request in a new process, up to this maximum number
of concurrent processes.

ckan.devserver.watch_patterns

Example:

ckan.devserver.watch_patterns = mytheme/**/*.yaml mytheme/**/*.json

Default value: none

A list of files the reloader should watch to restart the development server, in addition to the Python modules (for example
configuration files)

ckan.devserver.ssl_cert

Example:

ckan.devserver.ssl_cert = path/to/host.cert

Default value: none

Path to a certificate file that will be used to enable SSL (ie to serve the local development server on https://localhost:
5000). You can generate a self-signed certificate and key (see ckan.devserver.ssl_key) running the following commands:

3.19. Configuration Options 127

https://localhost:5000
https://localhost:5000


CKAN documentation, Release 2.10.0a0

openssl genrsa 2048 > host.key
chmod 400 host.key
openssl req -new -x509 -nodes -sha256 -days 3650 -key host.key > host.cert

After that you can run CKAN locally with SSL using this command:

ckan -c /path/to/ckan.ini run --ssl-cert=/path/to/host.cert --ssl-key=/path/to/host.key

Alternatively, setting this option to adhoc will automatically generate a new certificate file (on each server reload,
which means that you’ll get a browser warning about the certificate on each reload).

ckan.devserver.ssl_key

Example:

ckan.devserver.ssl_key = path/to/host.key

Default value: none

Path to a certificate file that will be used to enable SSL (ie to serve the local development server on https://localhost:
5000). See ckan.devserver.ssl_cert for more details. This option also supports the adhoc value, with the same caveat.

Session settings

beaker.session.secret

Default value: none

This is the secret token that the beaker library uses to hash the cookie sent to the client. ckan generate config generates
a unique value for this each time it generates a config file.

repoze.who settings

who.config_file

Example:

who.config_file = 3600

Default value: none

This defines how long (in seconds) until a user is logged out after a period of inactivity. If the setting isn’t defined, the
session doesn’t expire. Not active by default.

128 Chapter 3. Maintainer’s guide

https://localhost:5000
https://localhost:5000


CKAN documentation, Release 2.10.0a0

who.timeout

Default value: none

Session timeout (user logged out after period of inactivity, in seconds). Inactive by default, so the session doesn’t
expire.

who.httponly

Default value: True

This determines whether the HttpOnly flag will be set on the repoze.who authorization cookie. The default in the
absence of the setting is True. For enhanced security it is recommended to use the HttpOnly flag and not set this to
False, unless you have a good reason for doing so.

who.secure

Example:

who.secure = true

Default value: False

This determines whether the secure flag will be set for the repoze.who authorization cookie. If True, the cookie will
be sent over HTTPS. The default in the absence of the setting is False.

who.samesite

Example:

who.samesite = Strict

Default value: Lax

This determines whether the SameSite flag will be set for the repoze.who authorization cookie. Allowed values are
Lax (the default one), Strict or None. If set to None, who.secure must be set to True.

Database settings

sqlalchemy.url

Example:

sqlalchemy.url = postgres://tester:pass@localhost/ckantest3

Default value: none

This defines the database that CKAN is to use. The format is:

sqlalchemy.url = postgres://USERNAME:PASSWORD@HOST/DBNAME

3.19. Configuration Options 129



CKAN documentation, Release 2.10.0a0

sqlalchemy.<OPTION>

Default value: none

Example:

sqlalchemy.pool_pre_ping=True
sqlalchemy.pool_size=10
sqlalchemy.max_overflow=20

Custom sqlalchemy config parameters used to establish the main database connection.

To get the list of all the available properties check the SQLAlchemy documentation

Site Settings

ckan.site_url

Example:

ckan.site_url = http://scotdata.ckan.net

Default value: none

Set this to the URL of your CKAN site. Many CKAN features that need an absolute URL to your site use this setting.

This setting should only contain the protocol (e.g. http://), host (e.g. www.example.com) and (optionally) the port
(e.g. :8080). In particular, if you have mounted CKAN at a path other than / then the mount point must not be included
in ckan.site_url. Instead, you need to set ckan.root_path.

Important: It is mandatory to complete this setting

Warning: This setting should not have a trailing / on the end.

apikey_header_name

Example:

apikey_header_name = API-KEY

Default value: X-CKAN-API-Key

This allows another http header to be used to provide the CKAN API key. This is useful if network infrastructure blocks
the Authorization header and X-CKAN-API-Key is not suitable.

130 Chapter 3. Maintainer’s guide

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#engine-creation-api


CKAN documentation, Release 2.10.0a0

ckan.cache_expires

Example:

ckan.cache_expires = 2592000

Default value: 0

This sets Cache-Control header’s max-age value.

ckan.cache_enabled

Example:

ckan.cache_enabled = true

Default value: False

This enables cache control headers on all requests. If the user is not logged in and there is no session data a
Cache-Control: public header will be added. For all other requests the Cache-control: private header
will be added.

ckan.mimetype_guess

Example:

ckan.mimetype_guess = file_contents

Default value: file_ext

There are three options for guessing the mimetype of uploaded or linked resources: file_ext, file_contents, None.

file_ext will guess the mimetype by the url first, then the file extension.

file_contents will guess the mimetype by the file itself, this tends to be inaccurate.

None will not store the mimetype for the resource.

ckan.static_max_age

Example:

ckan.static_max_age = 2592000

Default value: 3600

Controls CKAN static files’ cache max age, if we’re serving and caching them.

3.19. Configuration Options 131



CKAN documentation, Release 2.10.0a0

ckan.tracking_enabled

Example:

ckan.tracking_enabled = true

Default value: False

This controls if CKAN will track the site usage. For more info, read Page View Tracking.

ckan.valid_url_schemes

Example:

ckan.valid_url_schemes = http https ftp sftp

Default value: http https ftp

Controls what uri schemes are rendered as links.

ckan.requests.timeout

Example:

ckan.requests.timeout = 10

Default value: 5

Defines how long (in seconds) requests calls should last before they will timeout.

ckan.hide_version

Example:

ckan.hide_version = True

Default value: False

If set to True, CKAN will not publicly expose its version number.

Authorization Settings

ckan.auth.anon_create_dataset

Example:

ckan.auth.anon_create_dataset = false

Default value: False

Allow users to create datasets without registering and logging in.

132 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.auth.create_unowned_dataset

Example:

ckan.auth.create_unowned_dataset = false

Default value: True

Allow the creation of datasets not owned by any organization.

ckan.auth.create_dataset_if_not_in_organization

Example:

ckan.auth.create_dataset_if_not_in_organization = false

Default value: True

Allow users who are not members of any organization to create datasets, default: true. create_unowned_dataset
must also be True, otherwise setting create_dataset_if_not_in_organization to True is meaningless.

ckan.auth.user_create_groups

Example:

ckan.auth.user_create_groups = true

Default value: False

Allow users to create groups.

ckan.auth.user_create_organizations

Example:

ckan.auth.user_create_organizations = false

Default value: True

Allow users to create organizations.

ckan.auth.user_delete_groups

Example:

ckan.auth.user_delete_groups = false

Default value: True

Allow users to delete groups.

3.19. Configuration Options 133



CKAN documentation, Release 2.10.0a0

ckan.auth.user_delete_organizations

Example:

ckan.auth.user_delete_organizations = false

Default value: True

Allow users to delete organizations.

ckan.auth.create_user_via_api

Example:

ckan.auth.create_user_via_api = false

Default value: False

Allow new user accounts to be created via the API by anyone. When False only sysadmins are authorised.

ckan.auth.create_user_via_web

Example:

ckan.auth.create_user_via_web = true

Default value: True

Allow new user accounts to be created via the Web.

ckan.auth.roles_that_cascade_to_sub_groups

Example:

ckan.auth.roles_that_cascade_to_sub_groups = admin editor

Default value: admin

Makes role permissions apply to all the groups or organizations down the hierarchy from the groups or organizations
that the role is applied to. e.g. a particular user has the ‘admin’ role for group ‘Department of Health’. If you set the
value of this option to ‘admin’ then the user will automatically have the same admin permissions for the child groups
of ‘Department of Health’ such as ‘Cancer Research’ (and its children too and so on).

ckan.auth.public_user_details

Example:

ckan.auth.public_user_details = false

Default value: True

Restricts anonymous access to user information. If is set to False accessing users details when not logged in will raise
a Not Authorized exception.

134 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Note: This setting should be used when user registration is disabled (ckan.auth.create_user_via_web =
False), otherwise users can just create an account to see other users details.

ckan.auth.public_activity_stream_detail

Example:

ckan.auth.public_activity_stream_detail = true

Default value: False

Restricts access to ‘view this version’ and ‘changes’ in the Activity Stream pages. These links provide users with the
full edit history of datasets etc - what they showed in the past and the diffs between versions. If this option is set to
False then only admins (e.g. whoever can edit the dataset) can see this detail. If set to True, anyone can see this detail
(assuming they have permission to view the dataset etc).

ckan.auth.allow_dataset_collaborators

Example:

ckan.auth.allow_dataset_collaborators = true

Default value: False

Enables or disable collaborators in individual datasets. If True, in addition to the standard organization based permis-
sions, users can be added as collaborators to individual datasets with different roles, regardless of the organization they
belong to. For more information, check the documentation on Dataset collaborators.

Warning: If this setting is turned off in a site where there already were collaborators created, you must reindex all
datasets to update the permission labels, in order to prevent access to private datasets to the previous collaborators.

ckan.auth.allow_admin_collaborators

Example:

ckan.auth.allow_admin_collaborators = true

Default value: False

Allows dataset collaborators to have the “Admin” role, allowing them to add more collaborators or remove existing
ones. By default, collaborators can only be managed by administrators of the organization the dataset belongs to. For
more information, check the documentation on Dataset collaborators.

Warning: If this setting is turned off in a site where admin collaborators have been already created, existing
collaborators with role “admin” will no longer be able to add or remove collaborators, but they will still be able to
edit and access the datasets that they are assigned to.

3.19. Configuration Options 135



CKAN documentation, Release 2.10.0a0

ckan.auth.allow_collaborators_to_change_owner_org

Example:

ckan.auth.allow_collaborators_to_change_owner_org = true

Default value: False

Allows dataset collaborators to change the owner organization of the datasets they are collaborators on. Defaults to
False, meaning that collaborators with role admin or editor can edit the dataset metadata but not the organization field.

ckan.auth.create_default_api_keys

Example:

ckan.auth.create_default_api_keys = true

Default value: False

Determines if a an API key should be automatically created for every user when creating a user account. If set to False
(the default value), users can manually create an API token from their profile instead. See Authentication and API
tokens: for more details.

API Token Settings

api_token.nbytes

Example:

api_token.nbytes = 20

Default value: 32

Number of bytes used to generate unique id for API Token.

api_token.jwt.encode.secret

Example:

api_token.jwt.encode.secret = file:/path/to/private/key

Default value: none

A key suitable for the chosen algorithm(api_token.jwt.algorithm):

• for asymmetric algorithms: path to private key with file: prefix. I.e file:/path/private/key

• for symmetric algorithms: plain string, sufficiently long for security with string: prefix. I.e string:123abc

Value must have prefix, which defines its type. Supported prefixes are:

• string: - Plain string, will be used as is.

• file: - Path to file. Content of the file will be used as key.

136 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

api_token.jwt.decode.secret

Example:

api_token.jwt.decode.secret = file:/path/to/public/key.pub

Default value: none

A key suitable for the chosen algorithm(api_token.jwt.algorithm):

• for asymmetric algorithms: path to public key with file: prefix. I.e file:/path/public/key.pub

• for symmetric algorithms: plain string, sufficiently long for security with string: prefix. I.e string:123abc

Value must have prefix, which defines it’s type. Supported prefixes are:

• string: - Plain string, will be used as is.

• file: - Path to file. Content of the file will be used as key.

api_token.jwt.algorithm

Example:

api_token.jwt.algorithm = RS256

Default value: HS256

Algorithm to sign the token with, e.g. “ES256”, “RS256”

Search Settings

ckan.site_id

Example:

ckan.site_id = my_ckan_instance

Default value: default

CKAN uses Solr to index and search packages. The search index is linked to the value of the ckan.site_id, so if
you have more than one CKAN instance using the same solr_url, they will each have a separate search index as long
as their ckan.site_id values are different. If you are only running a single CKAN instance then this can be ignored.

Note: If you change this value, you need to rebuild the search index.

3.19. Configuration Options 137



CKAN documentation, Release 2.10.0a0

solr_url

Example:

solr_url = http://solr.okfn.org:8983/solr/ckan-schema-2.0

Default value: none

This configures the Solr server used for search. The Solr schema found at that URL must be one of the ones in ckan/
config/solr (generally the most recent one). A check of the schema version number occurs when CKAN starts.

Optionally, solr_user and solr_password can also be configured to specify HTTP Basic authentication details for
all Solr requests.

Note: If you change this value, you need to rebuild the search index.

ckan.search.remove_deleted_packages

Default value: True

By default, deleted datasets are removed from the search index so are no longer available in searches. To keep them
in the search index, set this setting to False. This will enable the include_deleted parameter in the ckan.logic.
action.get.package_search() API action.

ckan.search.solr_commit

Default value: True

Make ckan commit changes solr after every dataset update change. Turn this to false if on solr 4.0 and you have
automatic (soft)commits enabled to improve dataset update/create speed (however there may be a slight delay before
dataset gets seen in results).

ckan.search.show_all_types

Example:

ckan.search.show_all_types = dataset

Default value: dataset

Controls whether a search page (e.g. /dataset) should also show custom dataset types. The default is false meaning
that no search page for any type will show other types. true will show other types on the /dataset search page. Any
other value (e.g. dataset or document will be treated as a dataset type and that type’s search page will show datasets
of all types.

138 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.search.default_include_private

Default value: True

Controls whether the default search page (/dataset) should include private datasets visible to the current user or only
public datasets visible to everyone.

ckan.search.default_package_sort

Example:

ckan.search.default_package_sort = name asc

Default value: score desc, metadata_modified desc

Controls whether the default search page (/dataset) should different sorting parameter by default when the request
does not specify sort.

search.facets.limit

Example:

search.facets.limit = 100

Default value: 50

Sets the default number of searched facets returned in a query.

search.facets.default

Example:

search.facets.default = 10

Default value: 10

Default number of facets shown in search results.

ckan.extra_resource_fields

Example:

ckan.extra_resource_fields = alt_url

Default value: none

List of the extra resource fields that would be used when searching.

3.19. Configuration Options 139



CKAN documentation, Release 2.10.0a0

ckan.search.rows_max

Example:

ckan.search.rows_max = 1000

Default value: 1000

Maximum allowed value for rows returned. Specifically this limits:

• package_search’s rows parameter

• group_show and organization_show’s number of datasets returned when specifying
include_datasets=true

ckan.group_and_organization_list_max

Example:

ckan.group_and_organization_list_max = 1000

Default value: 1000

Maximum number of groups/organizations returned when listing them. Specifically this limits:

• group_list’s limit when all_fields=false

• organization_list’s limit when all_fields=false

ckan.group_and_organization_list_all_fields_max

Example:

ckan.group_and_organization_list_all_fields_max = 100

Default value: 25

Maximum number of groups/organizations returned when listing them in detail. Specifically this limits:

• group_list’s limit when all_fields=true

• organization_list’s limit when all_fields=true

solr_timeout

Example:

solr_timeout = 120

Default value: 60

The option defines the timeout in seconds until giving up on a request. Raising this value might help you if you
encounter a timeout exception.

140 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Redis Settings

ckan.redis.url

Example:

ckan.redis.url = redis://localhost:7000/1

Default value: redis://localhost:6379/0

URL to your Redis instance, including the database to be used.

CORS Settings

ckan.cors.origin_allow_all

Example:

ckan.cors.origin_allow_all = true

Default value: False

This setting must be present to enable CORS. If True, all origins will be allowed (the response header Access-Control-
Allow-Origin is set to ‘*’). If False, only origins from the ckan.cors.origin_whitelist setting will be allowed.

ckan.cors.origin_whitelist

Example:

ckan.cors.origin_whitelist = http://www.myremotedomain1.com http://myremotedomain1.com

Default value: none

A space separated list of allowable origins. This setting is used when ckan.cors.origin_allow_all = False.

Plugins Settings

ckan.plugins

Example:

ckan.plugins = disqus datapreview googleanalytics follower

Default value: none

Specify which CKAN plugins are to be enabled.

Warning: If you specify a plugin but have not installed the code, CKAN will not start.

Format as a space-separated list of the plugin names. The plugin name is the key in the [ckan.plugins] section of
the extension’s setup.py. For more information on plugins and extensions, see Extending guide.

3.19. Configuration Options 141



CKAN documentation, Release 2.10.0a0

Note: The order of the plugin names in the configuration file influences the order that CKAN will load the plugins in.
As long as each plugin class is implemented in a separate Python module (i.e. in a separate Python source code file),
the plugins will be loaded in the order given in the configuration file.

When multiple plugins are implemented in the same Python module, CKAN will process the plugins in the order that
they’re given in the config file, but as soon as it reaches one plugin from a given Python module, CKAN will load all
plugins from that Python module, in the order that the plugin classes are defined in the module.

For simplicity, we recommend implementing each plugin class in its own Python module.

Plugin loading order can be important, for example for plugins that add custom template files: templates found in
template directories added earlier will override templates in template directories added later.

Todo: Fix CKAN’s plugin loading order to simply load all plugins in the order they’re given in the config file,
regardless of which Python modules they’re implemented in.

Front-End Settings

ckan.site_title

Example:

ckan.site_title = Open Data Scotland

Default value: CKAN

This sets the name of the site, as displayed in the CKAN web interface.

ckan.site_description

Example:

ckan.site_description = The easy way to get, use and share data

Default value: none

This is for a description, or tag line for the site, as displayed in the header of the CKAN web interface.

ckan.site_intro_text

Example:

ckan.site_intro_text = Nice introductory paragraph about CKAN or the site in general.

Default value: none

This is for an introductory text used in the default template’s index page.

142 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.site_logo

Example:

ckan.site_logo = /images/ckan_logo_fullname_long.png

Default value: /base/images/ckan-logo.png

This sets the logo used in the title bar.

ckan.site_about

Example:

ckan.site_about = A _community-driven_ catalogue of _open data_ for the Greenfield area.

Default value: none

Format tips:

• multiline strings can be used by indenting following lines

• the format is Markdown

Note: Whilst the default text is translated into many languages (switchable in the page footer), the text in this con-
figuration option will not be translatable. For this reason, it’s better to overload the snippet in home/snippets/
about_text.html. For more information, see Theming guide.

ckan.main_css

Example:

ckan.main_css = /base/css/my-custom.css

Default value: /base/css/main.css

With this option, instead of using the default main.css, you can use your own.

ckan.favicon

Example:

ckan.favicon = http://okfn.org/wp-content/themes/okfn-master-wordpress-theme/images/
→˓favicon.ico

Default value: /base/images/ckan.ico

This sets the site’s favicon. This icon is usually displayed by the browser in the tab heading and bookmark.

3.19. Configuration Options 143



CKAN documentation, Release 2.10.0a0

ckan.datasets_per_page

Example:

ckan.datasets_per_page = 10

Default value: 20

This controls the pagination of the dataset search results page. This is the maximum number of datasets viewed per
page of results.

package_hide_extras

Example:

package_hide_extras = my_private_field other_field

Default value: none

This sets a space-separated list of extra field key values which will not be shown on the dataset read page.

Warning: While this is useful to e.g. create internal notes, it is not a security measure. The keys will still be
available via the API and in revision diffs.

ckan.dumps_url

Default value: none

If there is a page which allows you to download a dump of the entire catalogue then specify the URL here, so that it
can be advertised in the web interface. For example:

ckan.dumps_url = http://ckan.net/dump/

For more information on using dumpfiles, see Exporting Datasets to JSON Lines.

ckan.dumps_format

Example:

ckan.dumps_format = CSV/JSON

Default value: none

If there is a page which allows you to download a dump of the entire catalogue then specify the format here, so that it
can be advertised in the web interface. dumps_format is just a string for display.

144 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.recaptcha.publickey

Default value: none

The public key for your reCAPTCHA account, for example:

ckan.recaptcha.publickey = 6Lc...-KLc

To get a reCAPTCHA account, sign up at: http://www.google.com/recaptcha

ckan.recaptcha.privatekey

Default value: none

The private key for your reCAPTCHA account, for example:

ckan.recaptcha.privatekey = 6Lc...-jP

Setting both ckan.recaptcha.publickey and ckan.recaptcha.privatekey adds captcha to the user registration form. This
has been effective at preventing bots registering users and creating spam packages.

ckan.featured_groups

Example:

ckan.featured_groups = group_one

Default value: none

Defines a list of group names or group ids. This setting is used to display a group and datasets on the home page in the
default templates (1 group and 2 datasets are displayed).

ckan.featured_orgs

Example:

ckan.featured_orgs = org_one

Default value: none

Defines a list of organization names or ids. This setting is used to display an organization and datasets on the home
page in the default templates (1 group and 2 datasets are displayed).

ckan.default_group_sort

Example:

ckan.default_group_sort = name

Default value: title

Defines if some other sorting is used in group_list and organization_list by default when the request does not specify
sort.

3.19. Configuration Options 145

http://www.google.com/recaptcha


CKAN documentation, Release 2.10.0a0

ckan.gravatar_default

Example:

ckan.gravatar_default = disabled

Default value: identicon

This controls the default gravatar style. Gravatar is used by default when a user has not set a custom profile picture,
but it can be turn completely off by setting this option to “disabled”. In that case, a placeholder image will be shown
instead, which can be customized overriding the templates/user/snippets/placeholder.html template.

ckan.debug_supress_header

Example:

ckan.debug_supress_header = false

Default value: False

This configs if the debug information showing the controller and action receiving the request being is shown in the
header.

Note: This info only shows if debug is set to True.

Resource Views Settings

ckan.views.default_views

Example:

ckan.views.default_views = image_view webpage_view recline_grid_view

Default value: image_view recline_view

Defines the resource views that should be created by default when creating or updating a dataset. From this list only
the views that are relevant to a particular resource format will be created. This is determined by each individual view.

If not present (or commented), the default value is used. If left empty, no default views are created.

Note: You must have the relevant view plugins loaded on the ckan.plugins setting to be able to cre-
ate the default views, eg:: ckan.plugins = image_view webpage_view recline_grid_view datatables_view . . .
ckan.views.default_views = image_view webpage_view recline_grid_view

146 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Theming Settings

ckan.template_head_end

Example:

ckan.template_head_end = <link rel="stylesheet" href="http://mysite.org/css/custom.css"␣
→˓type="text/css">

Default value: none

HTML content to be inserted just before </head> tag (e.g. extra stylesheet)

You can also have multiline strings. Just indent following lines. e.g.:

ckan.template_head_end =
<link rel="stylesheet" href="/css/extra1.css" type="text/css">
<link rel="stylesheet" href="/css/extra2.css" type="text/css">

Note: This is only for legacy code, and shouldn’t be used anymore.

ckan.template_footer_end

Default value: none

HTML content to be inserted just before </body> tag (e.g. Google Analytics code).

Note: you can have multiline strings (just indent following lines)

Example (showing insertion of Google Analytics code):

ckan.template_footer_end = <!-- Google Analytics -->
<script src='http://www.google-analytics.com/ga.js' type='text/javascript'></script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("XXXXXXXXX");
pageTracker._setDomainName(".ckan.net");
pageTracker._trackPageview();
} catch(err) {}
</script>
<!-- /Google Analytics -->

Note: This is only for legacy code, and shouldn’t be used anymore.

3.19. Configuration Options 147



CKAN documentation, Release 2.10.0a0

ckan.template_title_delimiter

Example:

ckan.template_title_delimiter = |

Default value: -

This sets the delimiter between the site’s subtitle (if there’s one) and its title, in HTML’s <title>.

extra_template_paths

Example:

extra_template_paths = /home/okfn/brazil_ckan_config/templates

Default value: none

Use this option to specify where CKAN should look for additional templates, before reverting to the ckan/templates
folder. You can supply more than one folder, separating the paths with a comma (,).

For more information on theming, see Theming guide.

extra_public_paths

Example:

extra_public_paths = /home/okfn/brazil_ckan_config/public

Default value: none

To customise the display of CKAN you can supply replacements for static files such as HTML, CSS, script and PNG
files. Use this option to specify where CKAN should look for additional files, before reverting to the ckan/public
folder. You can supply more than one folder, separating the paths with a comma (,).

For more information on theming, see Theming guide.

ckan.base_public_folder

Example:

ckan.base_public_folder = public

Default value: public

This config option is used to configure the base folder for static files used by CKAN core. It is currently unused and it
only accepts one value: public (Bootstrap 3, the default value from CKAN 2.8 onwards).

148 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.base_templates_folder

Example:

ckan.base_templates_folder = templates

Default value: templates

This config option is used to configure the base folder for templates used by CKAN core. It is currently unused and it
only accepts one value: templates (Bootstrap 3, the default value from CKAN 2.8 onwards).

Storage Settings

ckan.storage_path

Example:

ckan.storage_path = /var/lib/ckan

Default value: none

This defines the location of where CKAN will store all uploaded data.

ckan.max_resource_size

Example:

ckan.max_resource_size = 100

Default value: 10

The maximum in megabytes a resources upload can be.

ckan.max_image_size

Example:

ckan.max_image_size = 10

Default value: 2

The maximum in megabytes an image upload can be.

Uploader Settings

ckan.upload.user.types

Example:

ckan.upload.user.types = image text

Default value: none

File types allowed to upload as user’s avatar. No restrictions applied when empty

3.19. Configuration Options 149



CKAN documentation, Release 2.10.0a0

ckan.upload.user.mimetypes

Example:

ckan.upload.user.mimetypes = image/png text/svg

Default value: none

File MIMETypes allowed to upload as user’s avatar. No restrictions applied when empty

ckan.upload.group.types

Example:

ckan.upload.group.types = image text

Default value: none

File types allowed to upload as group image. No restrictions applied when empty

ckan.upload.group.mimetypes

Example:

ckan.upload.group.mimetypes = image/png text/svg

Default value: none

File MIMETypes allowed to upload as group image. No restrictions applied when empty

Webassets Settings

ckan.webassets.path

Example:

ckan.webassets.path = /var/lib/ckan/webassets

Default value: none

In order to increase performance, static assets (CSS and JS files) included via an asset tag inside templates are com-
piled only once, when the asset is used for the first time. All subsequent requests to the asset will use the existing file.
CKAN stores the compiled webassets in the file system, in the path specified by this config option.

150 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.webassets.use_x_sendfile

Example:

ckan.webassets.use_x_sendfile = True

Default value: False

When serving static files, if this setting is True, the applicatin will set the X-Sendfile header instead of serving the
files directly with Flask. This will increase performance when serving the assets, but it requires that the web server (eg
Nginx) supports the X-Sendfile header. See X-Sendfile for more information.

User Settings

ckan.user_list_limit

Example:

ckan.user_list_limit = 50

Default value: 20

This controls the number of users to show in the Users list. By default, it shows 20 users.

ckan.user_reset_landing_page

Example:

ckan.user_reset_landing_page = dataset

Default value: home.index

This controls the page where users will be sent after requesting a password reset. This is ordinarily the home page, but
specific sites may prefer somewhere else.

Activity Streams Settings

ckan.activity_streams_enabled

Example:

ckan.activity_streams_enabled = false

Default value: True

Turns on and off the activity streams used to track changes on datasets, groups, users, etc

3.19. Configuration Options 151



CKAN documentation, Release 2.10.0a0

ckan.activity_streams_email_notifications

Example:

ckan.activity_streams_email_notifications = false

Default value: False

Turns on and off the activity streams’ email notifications. You’d also need to setup a cron job to send the emails. For
more information, visit Email notifications.

ckan.activity_list_limit

Example:

ckan.activity_list_limit = 31

Default value: 31

This controls the number of activities to show in the Activity Stream.

ckan.activity_list_limit_max

Example:

ckan.activity_list_limit_max = 100

Default value: 100

Maximum allowed value for Activity Stream limit parameter.

ckan.email_notifications_since

Example:

ckan.email_notifications_since = 2 days

Default value: 2 days

Email notifications for events older than this time delta will not be sent. Accepted formats: ‘2 days’, ‘14 days’, ‘4:35:00’
(hours, minutes, seconds), ‘7 days, 3:23:34’, etc.

ckan.hide_activity_from_users

Example:

ckan.hide_activity_from_users = sysadmin

Default value: none

Hides activity from the specified users from activity stream. If unspecified, it’ll use ckan.site_id to hide activity by the
site user. The site user is a sysadmin user on every ckan user with a username that’s equal to ckan.site_id. This user is
used by ckan for performing actions from the command-line.

152 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Feeds Settings

ckan.feeds.author_name

Example:

ckan.feeds.author_name = Michael Jackson

Default value: none

This controls the feed author’s name. If unspecified, it’ll use ckan.site_id.

ckan.feeds.author_link

Example:

ckan.feeds.author_link = http://okfn.org

Default value: none

This controls the feed author’s link. If unspecified, it’ll use ckan.site_url.

ckan.feeds.authority_name

Example:

ckan.feeds.authority_name = http://okfn.org

Default value: none

The domain name or email address of the default publisher of the feeds and elements. If unspecified, it’ll use
ckan.site_url.

ckan.feeds.date

Example:

ckan.feeds.date = 2012-03-22

Default value: none

A string representing the default date on which the authority_name is owned by the publisher of the feed.

Internationalisation Settings

ckan.locale_default

Example:

ckan.locale_default = de

3.19. Configuration Options 153



CKAN documentation, Release 2.10.0a0

Default value: en

Use this to specify the locale (language of the text) displayed in the CKAN Web UI. This requires a suitable mo file
installed for the locale in the ckan/i18n. For more information on internationalization, see Translating CKAN . If you
don’t specify a default locale, then it will default to the first locale offered, which is by default English (alter that with
ckan.locales_offered and ckan.locales_filtered_out.

ckan.locales_offered

Example:

ckan.locales_offered = en de fr

Default value: none

By default, all locales found in the ckan/i18n directory will be offered to the user. To only offer a subset of these, list
them under this option. The ordering of the locales is preserved when offered to the user.

ckan.locales_filtered_out

Example:

ckan.locales_filtered_out = pl ru

Default value: none

If you want to not offer particular locales to the user, then list them here to have them removed from the options.

ckan.locale_order

Example:

ckan.locale_order = fr de

Default value: none

If you want to specify the ordering of all or some of the locales as they are offered to the user, then specify them here
in the required order. Any locales that are available but not specified in this option, will still be offered at the end of
the list.

ckan.i18n_directory

Example:

ckan.i18n_directory = /opt/locales/i18n/

Default value: none

By default, the locales are searched for in the ckan/i18n directory. Use this option if you want to use another folder.

154 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.i18n.extra_directory

Example:

ckan.i18n.extra_directory = /opt/ckan/extra_translations/

Default value: none

If you wish to add extra translation strings and have them merged with the default ckan translations at runtime you can
specify the location of the extra translations using this option.

ckan.i18n.extra_gettext_domain

Example:

ckan.i18n.extra_gettext_domain = mydomain

Default value: none

You can specify the name of the gettext domain of the extra translations. For example if your translations are stored as
i18n/<locale>/LC_MESSAGES/somedomain.mo you would want to set this option to somedomain

ckan.i18n.extra_locales

Example:

ckan.i18n.extra_locales = fr es de

Default value: none

If you have set an extra i18n directory using ckan.i18n.extra_directory, you should specify the locales that have
been translated in that directory in this option.

ckan.i18n.rtl_languages

Example:

ckan.i18n.rtl_languages = he ar fa_IR

Default value: he ar fa_IR

Allows to modify the right-to-left languages

ckan.i18n.rtl_css

Example:

ckan.i18n.rtl_css = /base/css/my-custom-rtl.css

Default value: /base/css/main-rtl.css

Allows to override the default rtl css file used for the languages defined in ckan.i18n.rtl_languages.

3.19. Configuration Options 155



CKAN documentation, Release 2.10.0a0

ckan.display_timezone

Example:

ckan.display_timezone = Europe/Zurich

Default value: UTC

By default, all datetimes are considered to be in the UTC timezone. Use this option to change the displayed dates on
the frontend. Internally, the dates are always saved as UTC. This option only changes the way the dates are displayed.

The valid values for this options [can be found at pytz](http://pytz.sourceforge.net/#helpers) (pytz.all_timezones).
You can specify the special value server to use the timezone settings of the server, that is running CKAN.

ckan.root_path

Example:

ckan.root_path = /my/custom/path/{{LANG}}/foo

Default value: none

This setting is used to construct URLs inside CKAN. It specifies two things:

• At which path CKAN is mounted: By default it is assumed that CKAN is mounted at /, i.e. at the root of your
web server. If you have configured your web server to serve CKAN from a different mount point then you need
to duplicate that setting here.

• Where the locale is added to an URL: By default, URLs are formatted as /some/url when using the default
locale, or /de/some/url when using the de locale, for example. When ckan.root_path is set it must include
the string {{LANG}}, which will be replaced by the locale.

Important: The setting must contain {{LANG}} exactly as written here. Do not add spaces between the brackets.

See also:

The host of your CKAN installation can be set via ckan.site_url.

The CKAN repoze config file who.ini file will also need to be edited by adding the path prefix to the options in the
[plugin:friendlyform] section: login_form_url, post_login_url and post_logout_url. Do not change
the login/logout_handler_path options.

ckan.resource_formats

Example:

ckan.resource_formats = /path/to/resource_formats

Default value: /<CKAN_ROOT>/ckan/config/resource_formats.json

The purpose of this file is to supply a thorough list of resource formats and to make sure the formats are normalized
when saved to the database and presented.

The format of the file is a JSON object with following format:

156 Chapter 3. Maintainer’s guide

http://pytz.sourceforge.net/#helpers


CKAN documentation, Release 2.10.0a0

["Format", "Description", "Mimetype", ["List of alternative representations"]]

Please look in ckan/config/resource_formats.json for full details and and as an example.

Form Settings

ckan.dataset.create_on_ui_requires_resources

Example:

ckan.dataset.create_on_ui_requires_resources = false

Default value: True

If False, there is no need to add any resources when creating a new dataset.

package_new_return_url

Default value: none

The URL to redirect the user to after they’ve submitted a new package form, example:

package_new_return_url = http://datadotgc.ca/new_dataset_complete?name=<NAME>

This is useful for integrating CKAN’s new dataset form into a third-party interface, see Form Integration.

The <NAME> string is replaced with the name of the dataset created.

package_edit_return_url

Default value: none

The URL to redirect the user to after they’ve submitted an edit package form, example:

package_edit_return_url = http://datadotgc.ca/dataset/<NAME>

This is useful for integrating CKAN’s edit dataset form into a third-party interface, see Form Integration.

The <NAME> string is replaced with the name of the dataset that was edited.

licenses_group_url

Example:

licenses_group_url = file:///path/to/my/local/json-list-of-licenses.json

Default value: none

A url pointing to a JSON file containing a list of license objects. This list determines the licenses offered by the system
to users, for example when creating or editing a dataset.

This is entirely optional - by default, the system will use an internal cached version of the CKAN list of licenses available
from the http://licenses.opendefinition.org/licenses/groups/ckan.json.

3.19. Configuration Options 157

http://licenses.opendefinition.org/licenses/groups/ckan.json


CKAN documentation, Release 2.10.0a0

More details about the license objects - including the license format and some example license lists - can be found at
the Open Licenses Service.

Email settings

smtp.server

Example:

smtp.server = smtp.example.com:587

Default value: localhost

The SMTP server to connect to when sending emails with optional port.

smtp.starttls

Example:

smtp.starttls = true

Default value: False

Whether or not to use STARTTLS when connecting to the SMTP server.

smtp.user

Example:

smtp.user = username@example.com

Default value: none

The username used to authenticate with the SMTP server.

smtp.password

Example:

smtp.password = yourpass

Default value: none

The password used to authenticate with the SMTP server.

158 Chapter 3. Maintainer’s guide

http://licenses.opendefinition.org/


CKAN documentation, Release 2.10.0a0

smtp.mail_from

Example:

smtp.mail_from = ckan@example.com

Default value: none

The email address that emails sent by CKAN will come from. Note that, if left blank, the SMTP server may insert its
own.

smtp.reply_to

Example:

smtp.reply_to = noreply.example.com

Default value: none

The email address that will be used if someone attempts to reply to a system email. If left blank, no Reply-to will be
added to the email and the value of smtp.mail_from will be used.

email_to

Example:

email_to = errors@example.com

Default value: none

This controls where the error messages will be sent to.

error_email_from

Example:

error_email_from = ckan-errors@example.com

Default value: none

This controls from which email the error messages will come from.

Background Job Settings

ckan.jobs.timeout

Default value: 180

The option defines the timeout in seconds until giving up on a job

3.19. Configuration Options 159



CKAN documentation, Release 2.10.0a0

Resource Proxy settings

ckan.resource_proxy.max_file_size

Example:

ckan.resource_proxy.max_file_size = 1048576

Default value: 1048576

This sets the upper file size limit for in-line previews. Increasing the value allows CKAN to preview larger files (e.g.
PDFs) in-line; however, a higher value might cause time-outs, or unresponsive browsers for CKAN users with lower
bandwidth.

ckan.resource_proxy.chunk_size

Example:

ckan.resource_proxy.chunk_size = 8192

Default value: 4096

This sets size of the chunk to read and write when proxying. Raising this value might save some CPU cycles. It makes
no sense to lower it below the page size, which is default.

text_view settings

ckan.preview.text_formats

Example:

ckan.preview.text_formats = txt plain

Default value: text/plain txt plain

Space-delimited list of plain text based resource formats that will be rendered by the Text view plugin

ckan.preview.xml_formats

Example:

ckan.preview.xml_formats = xml rdf rss

Default value: xml rdf rdf+xml owl+xml atom rss

Space-delimited list of XML based resource formats that will be rendered by the Text view plugin

160 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.preview.json_formats

Example:

ckan.preview.json_formats = json

Default value: json

Space-delimited list of JSON based resource formats that will be rendered by the Text view plugin

image_view settings

ckan.preview.image_formats

Example:

ckan.preview.image_formats = png jpeg jpg gif

Default value: png jpeg jpg gif

Space-delimited list of image-based resource formats that will be rendered by the Image view plugin

recline_view settings

ckan.recline.dataproxy_url

Example:

ckan.recline.dataproxy_url = https://mydataproxy.example.com

Default value: //jsonpdataproxy.appspot.com

Custom URL to a self-hosted DataProxy instance. The DataProxy is an external service currently used to stream data
in JSON format to the Recline-based views when data is not on the DataStore. The main instance is deprecated and
will be eventually shut down, so users that require it can host an instance themselves and use this configuration option
to point Recline to it.

datatables_view settings

ckan.datatables.page_length_choices

Example:

ckan.datatables.page_length_choices = 20 50 100 500 1000 5000

Default value: 20 50 100 500 1000

Space-delimited list of the choices for the number of rows per page, with the lowest value being the default initial value.

Note: On larger screens, DataTables view will attempt to fill the table with as many rows that can fit using the lowest
closest choice.

3.19. Configuration Options 161



CKAN documentation, Release 2.10.0a0

ckan.datatables.state_saving

Example:

ckan.datatables.state_saving = false

Default value: True

Enable or disable state saving. When enabled, DataTables view will store state information such as pagination position,
page length, row selection/s, column visibility/ordering, filtering and sorting using the browser’s localStorage. When
the end user reloads the page, the table’s state will be altered to match what they had previously set up.

This also enables/disables the “Reset” and “Share current view” buttons. “Reset” discards the saved state. “Share
current view” base-64 encodes the state and passes it as a url parameter, acting like a “saved search” that can be used
for embedding and sharing table searches.

ckan.datatables.state_duration

Example:

ckan.datatables.state_duration = 86400

Default value: 7200

Duration (in seconds) for which the saved state information is considered valid. After this period has elapsed, the table’s
state will be returned to the default, and the state cleared from the browser’s localStorage.

Note: The value 0 is a special value as it indicates that the state can be stored and retrieved indefinitely with no time
limit.

ckan.datatables.data_dictionary_labels

Example:

ckan.datatables.data_dictionary_labels = false

Default value: True

Enable or disable data dictionary integration. When enabled, a column’s data dictionary label will be used in the table
header. A tooltip for each column with data dictionary information will also be integrated into the header.

ckan.datatables.ellipsis_length

Example:

ckan.datatables.ellipsis_length = 100

Default value: 100

The maximum number of characters to show in a cell before it is truncated. An ellipsis (. . . ) will be added at the
truncation point and the full text of the cell will be available as a tooltip. This value can be overridden at the resource
level when configuring a DataTables resource view.

162 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

Note: The value 0 is a special value as it indicates that the column’s width will be determined by the column name,
and cell content will word-wrap.

ckan.datatables.date_format

Example:

ckan.datatables.date_format = YYYY-MM-DD dd ww

Default value: llll

The moment.js date format to use to convert raw timestamps to a user-friendly date format using CKAN’s current locale
language code. This value can be overridden at the resource level when configuring a DataTables resource view.

Note: The value NONE is a special value as it indicates that no date formatting will be applied and the raw ISO-8601
timestamp will be displayed.

ckan.datatables.default_view

Example:

ckan.datatables.default_view = list

Default value: table

Indicates the default view mode of the DataTable (valid values: table or list). Table view is the typical grid layout,
with horizontal scrolling. List view is a responsive table, automatically hiding columns as required to fit the browser
viewport. In addition, list view allows the user to view, copy and print the details of a specific row. This value can be
overridden at the resource level when configuring a DataTables resource view.

Datastore settings

ckan.datastore.write_url

Example:

ckan.datastore.write_url = postgresql://ckanuser:pass@localhost/datastore

Default value: postgresql://ckan_default:pass@localhost/datastore_default

The database connection to use for writing to the datastore (this can be ignored if you’re not using the DataStore
extension). Note that the database used should not be the same as the normal CKAN database. The format is the same
as in sqlalchemy.url.

3.19. Configuration Options 163

https://momentjscom.readthedocs.io/en/latest/moment/04-displaying/01-format/


CKAN documentation, Release 2.10.0a0

ckan.datastore.read_url

Example:

ckan.datastore.read_url = postgresql://readonlyuser:pass@localhost/datastore

Default value: postgresql://datastore_default:pass@localhost/datastore_default

The database connection to use for reading from the datastore (this can be ignored if you’re not using the DataStore
extension). The database used must be the same used in ckan.datastore.write_url, but the user should be one with read
permissions only. The format is the same as in sqlalchemy.url.

ckan.datastore.sqlsearch.allowed_functions_file

Example:

ckan.datastore.sqlsearch.allowed_functions_file = /path/to/my_allowed_functions.txt

Default value: /<CKAN_ROOT>/ckanext/datastore/allowed_functions.txt

Allows to define the path to a text file listing the SQL functions that should be allowed to run on queries sent to the
datastore_search_sql() function (if enabled, see ckan.datastore.sqlsearch.enabled). Function names should be
listed one on each line, eg:

abbrev
abs
abstime
...

ckan.datastore.sqlsearch.enabled

Example:

ckan.datastore.sqlsearch.enabled = true

Default value: False

This option allows you to enable the datastore_search_sql() action function, and corresponding API endpoint.

This action function has protections from abuse including:

• parsing of the query to prevent unsafe functions from being called, see
ckan.datastore.sqlsearch.allowed_functions_file

• parsing of the query to prevent multiple statements

• prevention of data modification by using a read-only database role

• use of explain to resolve tables accessed in the query to check against user permissions

• use of a statement timeout to prevent queries from running indefinitely

These protections offer some safety but are not designed to prevent all types of abuse. Depending on the sensitivity of
private data in your datastore and the likelihood of abuse of your site you may choose to disable this action function or
restrict its use with a IAuthFunctions plugin.

164 Chapter 3. Maintainer’s guide



CKAN documentation, Release 2.10.0a0

ckan.datastore.search.rows_default

Example:

ckan.datastore.search.rows_default = 1000

Default value: 100

Default number of rows returned by datastore_search, unless the client specifies a different limit (up to ckan.
datastore.search.rows_max).

NB this setting does not affect datastore_search_sql.

ckan.datastore.search.rows_max

Example:

ckan.datastore.search.rows_max = 1000000

Default value: 32000

Maximum allowed value for the number of rows returned by the datastore.

Specifically this limits:

• datastore_search’s limit parameter.

• datastore_search_sql queries have this limit inserted.

ckan.datastore.sqlalchemy.<OPTION>

Default value: none

Custom sqlalchemy config parameters used to establish the DataStore database connection.

To get the list of all the available properties check the SQLAlchemy documentation

ckan.datastore.default_fts_lang

Example:

ckan.datastore.default_fts_lang = english

Default value: english

The default language used when creating full-text search indexes and querying them. It can be overwritten by the user
by passing the “lang” parameter to “datastore_search” and “datastore_create”.

3.19. Configuration Options 165

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#engine-creation-api


CKAN documentation, Release 2.10.0a0

ckan.datastore.default_fts_index_method

Example:

ckan.datastore.default_fts_index_method = gist

Default value: gist

The default method used when creating full-text search indexes. Currently it can be “gin” or “gist”. Refer to Post-
greSQL’s documentation to understand the characteristics of each one and pick the best for your instance.

Datapusher settings

ckan.datapusher.formats

Example:

ckan.datapusher.formats = csv xls

Default value: csv xls xlsx tsv application/csv application/vnd.ms-excel application/vnd.
openxmlformats-officedocument.spreadsheetml.sheet ods application/vnd.oasis.opendocument.
spreadsheet

File formats that will be pushed to the DataStore by the DataPusher. When adding or editing a resource which links to
a file in one of these formats, the DataPusher will automatically try to import its contents to the DataStore.

ckan.datapusher.url

Example:

ckan.datapusher.url = http://127.0.0.1:8800/

Default value: none

DataPusher endpoint to use when enabling the datapusher extension. If you installed CKAN via Installing CKAN
from package, the DataPusher was installed for you running on port 8800. If you want to manually install the Data-
Pusher, follow the installation instructions.

ckan.datapusher.callback_url_base

Example:

ckan.datapusher.callback_url_base = http://ckan:5000/

Default value: none

Alternative callback URL for DataPusher when performing a request to CKAN. This is useful on scenarios where the
host where DataPusher is running can not access the public CKAN site URL.

166 Chapter 3. Maintainer’s guide

http://docs.ckan.org/projects/datapusher


CKAN documentation, Release 2.10.0a0

ckan.datapusher.assume_task_stale_after

Example:

ckan.datapusher.assume_task_stale_after = 86400

Default value: 3600

In case a DataPusher task gets stuck and fails to recover, this is the minimum amount of time (in seconds) after a
resource is submitted to DataPusher that the resource can be submitted again.

3.19. Configuration Options 167



CKAN documentation, Release 2.10.0a0

168 Chapter 3. Maintainer’s guide



CHAPTER

FOUR

API GUIDE

This section documents CKAN APIs, for developers who want to write code that interacts with CKAN sites and their
data.

CKAN’s Action API is a powerful, RPC-style API that exposes all of CKAN’s core features to API clients. All of a
CKAN website’s core functionality (everything you can do with the web interface and more) can be used by external
code that calls the CKAN API. For example, using the CKAN API your app can:

• Get JSON-formatted lists of a site’s datasets, groups or other CKAN objects:

http://demo.ckan.org/api/3/action/package_list

http://demo.ckan.org/api/3/action/group_list

http://demo.ckan.org/api/3/action/tag_list

• Get a full JSON representation of a dataset, resource or other object:

http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending

http://demo.ckan.org/api/3/action/tag_show?id=gold

http://demo.ckan.org/api/3/action/group_show?id=data-explorer

• Search for packages or resources matching a query:

http://demo.ckan.org/api/3/action/package_search?q=spending

http://demo.ckan.org/api/3/action/resource_search?query=name:District%20Names

• Create, update and delete datasets, resources and other objects

• Get an activity stream of recently changed datasets on a site:

http://demo.ckan.org/api/3/action/recently_changed_packages_activity_list

Note: CKAN’s FileStore and DataStore have their own APIs, see:

• FileStore and file uploads

• DataStore extension

Note: For documentation of CKAN’s legacy API’s, see Legacy APIs.

169

http://demo.ckan.org/api/3/action/package_list
http://demo.ckan.org/api/3/action/group_list
http://demo.ckan.org/api/3/action/tag_list
http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending
http://demo.ckan.org/api/3/action/tag_show?id=gold
http://demo.ckan.org/api/3/action/group_show?id=data-explorer
http://demo.ckan.org/api/3/action/package_search?q=spending
http://demo.ckan.org/api/3/action/resource_search?query=name:District%20Names
http://demo.ckan.org/api/3/action/recently_changed_packages_activity_list


CKAN documentation, Release 2.10.0a0

4.1 Legacy APIs

Warning: The legacy APIs documented in this section are provided for backwards-compatibility, but support for
new CKAN features will not be added to these APIs. These endpoints will be removed in the future.

Note: The REST API was deprecated in CKAN v2.0 and removed starting from CKAN v2.8.

4.1.1 Search API

Search resources are available at published locations. They are represented with a variety of data formats. Each resource
location supports a number of methods.

The data formats of the requests and the responses are defined below.

Search Resources

Here are the published resources of the Search API.

Search Resource Location
Dataset Search /search/dataset
Resource Search /search/resource
Revision Search /search/revision
Tag Counts /tag_counts

See below for more information about dataset and revision search parameters.

Search Methods

Here are the methods of the Search API.

Resource Method Request Response
Dataset Search POST Dataset-Search-Params Dataset-Search-Response
Resource Search POST Resource-Search-Params Resource-Search-Response
Revision Search POST Revision-Search-Params Revision-List
Tag Counts GET Tag-Count-List

It is also possible to supply the search parameters in the URL of a GET request, for example /api/search/dataset?
q=geodata&amp;allfields=1.

170 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Search Formats

Here are the data formats for the Search API.

Name Format
Dataset-Search-Params Resource-
Search-Params Revision-Search-
Params

{ Param-Key: Param-Value, Param-Key: Param-Value, . . . } See below
for full details of search parameters across the various domain objects.

Dataset-Search-Response { count: Count-int, results: [Dataset, Dataset, . . . ] }
Resource-Search-Response { count: Count-int, results: [Resource, Resource, . . . ] }
Revision-List [ Revision-Id, Revision-Id, Revision-Id, . . . ] NB: Ordered with youngest

revision first. NB: Limited to 50 results at a time.
Tag-Count-List [ [Name-String, Integer], [Name-String, Integer], . . . ]

Dataset Parameters

Param-Key Param-Value Examples Notes
q Search-String

q=geodata
q=government+sweden

q=%22drug%20abuse%22
q=tags:”river pollution”

Criteria to search the
dataset fields for. URL-
encoded search text. (You
can also concatenate
words with a ‘+’ symbol
in a URL.) Search re-
sults must contain all the
specified words. You can
also search within specific
fields.

qjson JSON encoded options [‘q’:’geodata’] All search parameters can
be json-encoded and sup-
plied to this parameter as
a more flexible alternative
in GET requests.

title, tags, notes, groups,
author, maintainer, up-
date_frequency, or any
‘extra’ field name e.g.
department

Search-String

title=uk&amp;tags=health
department=environment

tags=health&tags=pollution
tags=river%20pollution

Search in a particular a
field.

order_by field-name (default=rank) order_by=name Specify either rank or the
field to sort the results by

offset, limit result-int (defaults: off-
set=0, limit=20)

offset=40&amp;limit=20 Pagination options. Offset
is the number of the first
result and limit is the num-
ber of results to return.

all_fields 0 (default) or 1 all_fields=1 Each matching search re-
sult is given as either a
dataset name (0) or the full
dataset record (1).

4.1. Legacy APIs 171



CKAN documentation, Release 2.10.0a0

Note: filter_by_openness and filter_by_downloadable were dropped from CKAN version 1.5 onwards.

Note: Only public datasets can be accessed via the legacy search API, regardless of the provided authorization. If you
need to access private datasets via the API you will need to use the package_search method of the API guide.

Resource Parameters

Param-Key Param-Value Example Notes
url, format, description Search-String

url=statistics.org
format=xls

description=Research+Institute

Criteria to search the
dataset fields for. URL-
encoded search text. This
search string must be
found somewhere within
the field to match. Case
insensitive.

qjson JSON encoded options [‘url’:’www.statistics.org’] All search parameters can
be json-encoded and sup-
plied to this parameter as
a more flexible alternative
in GET requests.

hash Search-String hash=b0d7c260-35d4-
42ab-9e3d-c1f4db9bc2f0

Searches for an match of
the hash field. An exact
match or match up to the
length of the hash given.

all_fields 0 (default) or 1 all_fields=1 Each matching search re-
sult is given as either an
ID (0) or the full resource
record

offset, limit result-int (defaults: off-
set=0, limit=20)

offset=40&amp;limit=20 Pagination options. Offset
is the number of the first
result and limit is the num-
ber of results to return.

Note: Powerful searching from the command-line can be achieved with curl and the qjson parameter. In this case you
need to remember to escapt the curly braces and use url encoding (e.g. spaces become %20). For example:

curl 'http://thedatahub.org/api/search/dataset?qjson=\{"author":"The%20Stationery
→˓%20Office%20Limited"\}'

Revision Parameters

Param-
Key

Param-
Value

Example Notes

since_time Date-Time since_time=2010-05-
05T19:42:45.854533

The time can be less precisely stated (e.g
2010-05-05).

since_id Uuid since_id=6c9f32ef-1f93-4b2f-891b-
fd01924ebe08

The stated id will not be included in the re-
sults.

172 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

4.1.2 Util API

The Util API provides various utility APIs – e.g. auto-completion APIs used by front-end javascript.

All Util APIs are read-only. The response format is JSON. Javascript calls may want to use the JSONP formatting.

dataset autocomplete

There an autocomplete API for package names which matches on name or title.

This URL:

/api/2/util/dataset/autocomplete?incomplete=a%20novel

Returns:

{"ResultSet": {"Result": [{"match_field": "title", "match_displayed": "A Novel By␣
→˓Tolstoy (annakarenina)", "name": "annakarenina", "title": "A Novel By Tolstoy"}]}}

tag autocomplete

There is also an autocomplete API for tags which looks like this:

This URL:

/api/2/util/tag/autocomplete?incomplete=ru

Returns:

{"ResultSet": {"Result": [{"Name": "russian"}]}}

resource format autocomplete

Similarly, there is an autocomplete API for the resource format field which is available at:

/api/2/util/resource/format_autocomplete?incomplete=cs

This returns:

{"ResultSet": {"Result": [{"Format": "csv"}]}}

munge package name

For taking an readable identifier and munging it to ensure it is a valid dataset id. Symbols and whitespeace are converted
into dashes. Example:

/api/util/dataset/munge_name?name=police%20spending%20figures%202009

Returns:

"police-spending-figures-2009"

4.1. Legacy APIs 173



CKAN documentation, Release 2.10.0a0

munge title to package name

For taking a title of a package and munging it to a readable and valid dataset id. Symbols and whitespeace are converted
into dashes, with multiple dashes collapsed. Ensures that long titles with a year at the end preserves the year should it
need to be shortened. Example:

/api/util/dataset/munge_title_to_name?title=police:%20spending%20figures%202009

Returns:

"police-spending-figures-2009"

munge tag

For taking a readable word/phrase and munging it to a valid tag (name). Symbols and whitespeace are converted into
dashes. Example:

/api/util/tag/munge?tag=water%20quality

Returns:

"water-quality"

4.1.3 Status Codes

Standard HTTP status codes are used to signal method outcomes.

Code Name
200 OK
201 OK and new object created (referred to in the Location header)
301 Moved Permanently
400 Bad Request
403 Not Authorized
404 Not Found
409 Conflict (e.g. name already exists)
500 Service Error

Note: On early CKAN versions, datasets were called “packages” and this name has stuck in some places, specially
internally and on API calls. Package has exactly the same meaning as “dataset”.

174 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

4.2 Making an API request

To call the CKAN API, post a JSON dictionary in an HTTP POST request to one of CKAN APIs URLs. The parameters
for the API function should be given in the JSON dictionary. CKAN will also return its response in a JSON dictionary.

One way to post a JSON dictionary to a URL is using the command-line client Curl. For example, to get a list of the
names of all the datasets in the data-explorer group on demo.ckan.org, install curl and then call the group_list
API function by running this command in a terminal:

curl https://demo.ckan.org/api/3/action/group_list

The response from CKAN will look like this:

{
"help": "...",
"result": [

"data-explorer",
"department-of-ricky",
"geo-examples",
"geothermal-data",
"reykjavik",
"skeenawild-conservation-trust"

],
"success": true

}

The response is a JSON dictionary with three keys:

1. "success": true or false.

The API aims to always return 200 OK as the status code of its HTTP response, whether there were errors with
the request or not, so it’s important to always check the value of the "success" key in the response dictionary
and (if success is false) check the value of the "error" key.

Note: If there are major formatting problems with a request to the API, CKAN may still return an HTTP response
with a 409, 400 or 500 status code (in increasing order of severity). In future CKAN versions we intend to remove
these responses, and instead send a 200 OK response and use the "success" and "error" items.

2. "result": the returned result from the function you called. The type and value of the result depend on which
function you called. In the case of the group_list function it’s a list of strings, the names of all the datasets
that belong to the group.

If there was an error responding to your request, the dictionary will contain an "error" key with details of the
error instead of the "result" key. A response dictionary containing an error will look like this:

{
"help": "Creates a package",
"success": false,
"error": {

"message": "Access denied",
"__type": "Authorization Error"
}

}

3. "help": the documentation string for the function you called.

4.2. Making an API request 175

https://curl.haxx.se/


CKAN documentation, Release 2.10.0a0

The same HTTP request can be made using Python’s standard urllib2 module, with this Python code:

#!/usr/bin/env python
import urllib2
import urllib
import json
import pprint

# Make the HTTP request.
response = urllib2.urlopen('http://demo.ckan.org/api/3/action/group_list',

data_string)
assert response.code == 200

# Use the json module to load CKAN's response into a dictionary.
response_dict = json.loads(response.read())

# Check the contents of the response.
assert response_dict['success'] is True
result = response_dict['result']
pprint.pprint(result)

4.3 Example: Importing datasets with the CKAN API

You can add datasets using CKAN’s web interface, but when importing many datasets it’s usually more efficient to
automate the process in some way. In this example, we’ll show you how to use the CKAN API to write a Python script
to import datasets into CKAN.

Todo: Make this script more interesting (eg. read data from a CSV file), and all put the script in a .py file somewhere
with tests and import it here.

#!/usr/bin/env python
import urllib2
import urllib
import json
import pprint

# Put the details of the dataset we're going to create into a dict.
dataset_dict = {

'name': 'my_dataset_name',
'notes': 'A long description of my dataset',
'owner_org': 'org_id_or_name'

}

# Use the json module to dump the dictionary to a string for posting.
data_string = urllib.quote(json.dumps(dataset_dict))

# We'll use the package_create function to create a new dataset.
request = urllib2.Request(

'http://www.my_ckan_site.com/api/action/package_create')

(continues on next page)

176 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# Creating a dataset requires an authorization header.
# Replace *** with your API key, from your user account on the CKAN site
# that you're creating the dataset on.
request.add_header('Authorization', '***')

# Make the HTTP request.
response = urllib2.urlopen(request, data_string)
assert response.code == 200

# Use the json module to load CKAN's response into a dictionary.
response_dict = json.loads(response.read())
assert response_dict['success'] is True

# package_create returns the created package as its result.
created_package = response_dict['result']
pprint.pprint(created_package)

For more examples, see API Examples.

4.4 API versions

The CKAN APIs are versioned. If you make a request to an API URL without a version number, CKAN will choose
the latest version of the API:

http://demo.ckan.org/api/action/package_list

Alternatively, you can specify the desired API version number in the URL that you request:

http://demo.ckan.org/api/3/action/package_list

Version 3 is currently the only version of the Action API.

We recommend that you specify the API version number in your requests, because this ensures that your API client will
work across different sites running different version of CKAN (and will keep working on the same sites, when those
sites upgrade to new versions of CKAN). Because the latest version of the API may change when a site is upgraded
to a new version of CKAN, or may differ on different sites running different versions of CKAN, the result of an API
request that doesn’t specify the API version number cannot be relied on.

4.5 Authentication and API tokens

Warning: Starting from CKAN 2.9, API tokens are the preferred way of authenticating API calls. The old legacy
API keys will still work but they will be removed in future versions so it is recommended to switch to use API
tokens. Read below for more details.

Some API functions require authorization. The API uses the same authorization functions and configuration as the
web interface, so if a user is authorized to do something in the web interface they’ll be authorized to do it via the API
as well.

4.4. API versions 177



CKAN documentation, Release 2.10.0a0

When calling an API function that requires authorization, you must authenticate yourself by providing an authentication
key with your HTTP request. Starting from CKAN 2.9 the recommended mechanism to use are API tokens. These
are encrypted keys that can be generated manually from the UI (User Profile > Manage > API tokens) or via the
api_token_create() function. A user can create as many tokens as needed for different uses, and revoke one or
multiple tokens at any time. In addition, enabling the expire_api_token core plugin allows to define the expiration
timestamp for a token.

Site maintainers can use API Token Settings to configure the token generation.

Legacy API keys (UUIDs that look like ec5c0860-9e48-41f3-8850-4a7128b18df8) are still supported, but its use is
discouraged as they are not as secure as tokens and are limited to one per user. Support for legacy API keys will be
removed in future CKAN versions.

To provide your API token in an HTTP request, include it in either an Authorization or X-CKAN-API-Key header.
(The name of the HTTP header can be configured with the apikey_header_name option in your CKAN configuration
file.)

For example, to ask whether or not you’re currently following the user markw on demo.ckan.org using curl, run this
command:

curl -H "Authorization: XXX" https://demo.ckan.org/api/3/action/am_following_user?
→˓id=markw

(Replacing XXX with your API token.)

Or, to get the list of activities from your user dashboard on demo.ckan.org, run this Python code:

request = urllib2.Request('https://demo.ckan.org/api/3/action/dashboard_activity_list')
request.add_header('Authorization', 'XXX')
response_dict = json.loads(urllib2.urlopen(request, '{}').read())

4.6 GET-able API functions

Functions defined in ckan.logic.action.get can also be called with an HTTP GET request. For example, to get the list
of datasets (packages) from demo.ckan.org, open this URL in your browser:

http://demo.ckan.org/api/3/action/package_list

Or, to search for datasets (packages) matching the search query spending, on demo.ckan.org, open this URL in your
browser:

http://demo.ckan.org/api/3/action/package_search?q=spending

Tip: Browser plugins like JSONView for Firefox or Chrome will format and color CKAN’s JSON response nicely in
your browser.

The search query is given as a URL parameter ?q=spending. Multiple URL parameters can be appended, separated
by & characters, for example to get only the first 10 matching datasets open this URL:

http://demo.ckan.org/api/3/action/package_search?q=spending&rows=10

When an action requires a list of strings as the value of a parameter, the value can be sent by giving the parameter
multiple times in the URL:

http://demo.ckan.org/api/3/action/term_translation_show?terms=russian&terms=romantic%20novel

178 Chapter 4. API guide

http://demo.ckan.org/api/3/action/package_list
http://demo.ckan.org/api/3/action/package_search?q=spending
https://addons.mozilla.org/en-us/firefox/addon/jsonview/
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
http://demo.ckan.org/api/3/action/package_search?q=spending&rows=10
http://demo.ckan.org/api/3/action/term_translation_show?terms=russian&terms=romantic%20novel


CKAN documentation, Release 2.10.0a0

4.7 JSONP support

To cater for scripts from other sites that wish to access the API, the data can be returned in JSONP format, where the
JSON data is ‘padded’ with a function call. The function is named in the ‘callback’ parameter. For example:

http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending&callback=myfunction

Note: This only works for GET requests

4.8 API Examples

4.8.1 Tags (not in a vocabulary)

A list of all tags:

• browser: http://demo.ckan.org/api/3/action/tag_list

• curl: curl http://demo.ckan.org/api/3/action/tag_list

• ckanapi: ckanapi -r http://demo.ckan.org action tag_list

Top 10 tags used by datasets:

• browser: http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&
rows=0

• curl: curl 'http://demo.ckan.org/api/action/package_search?facet.field=\["tags"\
]&facet.limit=10&rows=0'

• ckanapi: ckanapi -r http://demo.ckan.org action package_search facet.field='["tags"]'
facet.limit=10 rows=0

All datasets that have tag ‘economy’:

• browser: http://demo.ckan.org/api/3/action/package_search?fq=tags:economy

• curl: curl 'http://demo.ckan.org/api/3/action/package_search?fq=tags:economy'

• ckanapi: ckanapi -r http://demo.ckan.org action package_search fq='tags:economy'

4.8.2 Tag Vocabularies

Top 10 tags and vocabulary tags used by datasets:

• browser: http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&
rows=0

• curl: curl 'http://demo.ckan.org/api/action/package_search?facet.field=\["tags"\
]&facet.limit=10&rows=0'

• ckanapi: ckanapi -r http://demo.ckan.org action package_search facet.field='["tags"]'
facet.limit=10 rows=0

e.g. Facet: vocab_Topics means there is a vocabulary called Topics, and its top tags are listed under it.

A list of datasets using tag ‘education’ from vocabulary ‘Topics’:

• browser: https://data.hdx.rwlabs.org/api/3/action/package_search?fq=vocab_Topics:education

4.7. JSONP support 179

http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending&callback=myfunction
http://demo.ckan.org/api/3/action/tag_list
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/3/action/package_search?fq=tags:economy
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
https://data.hdx.rwlabs.org/api/3/action/package_search?fq=vocab_Topics:education


CKAN documentation, Release 2.10.0a0

• curl: curl 'https://data.hdx.rwlabs.org/api/3/action/package_search?
fq=vocab_Topics:education'

• ckanapi: ckanapi -r https://data.hdx.rwlabs.org action package_search
fq='vocab_Topics:education'

4.8.3 Uploading a new version of a resource file

You can use the upload parameter of the resource_patch() function to upload a new version of a resource file. This
requires a multipart/form-data request, with curl you can do this using the @file.csv:

curl -X POST -H "Content-Type: multipart/form-data" -H "Authorization: XXXX" -F "id=
→˓<resource_id>" -F "upload=@updated_file.csv" https://demo.ckan.org/api/3/action/
→˓resource_patch

4.9 Action API reference

Note: If you call one of the action functions listed below and the function raises an exception, the API will return a
JSON dictionary with keys "success": false and an "error" key indicating the exception that was raised.

For example member_list() (which returns a list of the members of a group) raises NotFound if the group doesn’t
exist. If you called it over the API, you’d get back a JSON dict like this:

{
"success": false
"error": {

"__type": "Not Found Error",
"message": "Not found"

},
"help": "...",

}

4.9.1 ckan.logic.action.get

API functions for searching for and getting data from CKAN.

ckan.logic.action.get.site_read(context: ckan.types.Context, data_dict: Optional[dict[str, Any]] = None)
→ bool

Return True.

Return type bool

ckan.logic.action.get.package_list(context: ckan.types.Context, data_dict: dict[str, Any])→ List[str]
Return a list of the names of the site’s datasets (packages).

Parameters

• limit (int) – if given, the list of datasets will be broken into pages of at most limit datasets
per page and only one page will be returned at a time (optional)

• offset (int) – when limit is given, the offset to start returning packages from

180 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Return type list of strings

ckan.logic.action.get.current_package_list_with_resources(context: ckan.types.Context, data_dict:
dict[str, Any])→ List[dict[str, Any]]

Return a list of the site’s datasets (packages) and their resources.

The list is sorted most-recently-modified first.

Parameters

• limit (int) – if given, the list of datasets will be broken into pages of at most limit datasets
per page and only one page will be returned at a time (optional)

• offset (int) – when limit is given, the offset to start returning packages from

• page (int) – when limit is given, which page to return, Deprecated: use offset

Return type list of dictionaries

ckan.logic.action.get.member_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[Tuple[Any, ...]]

Return the members of a group.

The user must have permission to ‘get’ the group.

Parameters

• id (string) – the id or name of the group

• object_type (string) – restrict the members returned to those of a given type, e.g.
'user' or 'package' (optional, default: None)

• capacity (string) – restrict the members returned to those with a given capacity, e.g.
'member', 'editor', 'admin', 'public', 'private' (optional, default: None)

Return type list of (id, type, capacity) tuples

Raises ckan.logic.NotFound: if the group doesn’t exist

ckan.logic.action.get.package_collaborator_list(context: ckan.types.Context, data_dict: dict[str, Any])
→ List[dict[str, Any]]

Return the list of all collaborators for a given package.

Currently you must be an Admin on the package owner organization to manage collaborators.

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters

• id (string) – the id or name of the package

• capacity (string) – (optional) If provided, only users with this capacity are returned

Returns a list of collaborators, each a dict including the package and user id, the capacity and the
last modified date

Return type list of dictionaries

ckan.logic.action.get.package_collaborator_list_for_user(context: ckan.types.Context, data_dict:
dict[str, Any])→ List[dict[str, Any]]

Return a list of all package the user is a collaborator in

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

4.9. Action API reference 181



CKAN documentation, Release 2.10.0a0

Parameters

• id (string) – the id or name of the user

• capacity (string) – (optional) If provided, only packages where the user has this capacity
are returned

Returns a list of packages, each a dict including the package id, the capacity and the last modified
date

Return type list of dictionaries

ckan.logic.action.get.group_list(context: ckan.types.Context, data_dict: dict[str, Any])→ List[dict[str,
Any]]

Return a list of the names of the site’s groups.

Parameters

• type (string) – the type of group to list (optional, default: 'group'), See docs for
IGroupForm

• order_by (string) – the field to sort the list by, must be 'name' or 'packages' (optional,
default: 'name') Deprecated use sort.

• sort (string) – sorting of the search results. Optional. Default: “title asc” string of field
name and sort-order. The allowed fields are ‘name’, ‘package_count’ and ‘title’

• limit (int) – the maximum number of groups returned (optional) De-
fault: 1000 when all_fields=false unless set in site’s configuration ckan.
group_and_organization_list_max Default: 25 when all_fields=true unless set
in site’s configuration ckan.group_and_organization_list_all_fields_max

• offset (int) – when limit is given, the offset to start returning groups from

• groups (list of strings) – a list of names of the groups to return, if given only groups
whose names are in this list will be returned (optional)

• all_fields (bool) – return group dictionaries instead of just names. Only core fields are
returned - get some more using the include_* options. Returning a list of packages is too
expensive, so the packages property for each group is deprecated, but there is a count of the
packages in the package_count property. (optional, default: False)

• include_dataset_count (bool) – if all_fields, include the full package_count (optional,
default: True)

• include_extras (bool) – if all_fields, include the group extra fields (optional, default:
False)

• include_tags (bool) – if all_fields, include the group tags (optional, default: False)

• include_groups (bool) – if all_fields, include the groups the groups are in (optional, de-
fault: False).

• include_users (bool) – if all_fields, include the group users (optional, default: False).

Return type list of strings

ckan.logic.action.get.organization_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return a list of the names of the site’s organizations.

Parameters

182 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

• type (string) – the type of organization to list (optional, default: 'organization'), See
docs for IGroupForm

• order_by (string) – the field to sort the list by, must be 'name' or 'packages' (optional,
default: 'name') Deprecated use sort.

• sort (string) – sorting of the search results. Optional. Default: “title asc” string of field
name and sort-order. The allowed fields are ‘name’, ‘package_count’ and ‘title’

• limit (int) – the maximum number of organizations returned (optional) De-
fault: 1000 when all_fields=false unless set in site’s configuration ckan.
group_and_organization_list_max Default: 25 when all_fields=true unless set
in site’s configuration ckan.group_and_organization_list_all_fields_max

• offset (int) – when limit is given, the offset to start returning organizations from

• organizations (list of strings) – a list of names of the groups to return, if given only
groups whose names are in this list will be returned (optional)

• all_fields (bool) – return group dictionaries instead of just names. Only core fields are
returned - get some more using the include_* options. Returning a list of packages is too
expensive, so the packages property for each group is deprecated, but there is a count of the
packages in the package_count property. (optional, default: False)

• include_dataset_count (bool) – if all_fields, include the full package_count (optional,
default: True)

• include_extras (bool) – if all_fields, include the organization extra fields (optional, de-
fault: False)

• include_tags (bool) – if all_fields, include the organization tags (optional, default:
False)

• include_groups (bool) – if all_fields, include the organizations the organizations are in
(optional, default: False)

• include_users (bool) – if all_fields, include the organization users (optional, default:
False).

Return type list of strings

ckan.logic.action.get.group_list_authz(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of groups that the user is authorized to edit.

Parameters

• available_only (bool) – remove the existing groups in the package (optional, default:
False)

• am_member (bool) – if True return only the groups the logged-in user is a member of,
otherwise return all groups that the user is authorized to edit (for example, sysadmin users
are authorized to edit all groups) (optional, default: False)

Returns list of dictized groups that the user is authorized to edit

Return type list of dicts

ckan.logic.action.get.organization_list_for_user(context: ckan.types.Context, data_dict: dict[str,
Any])→ List[dict[str, Any]]

Return the organizations that the user has a given permission for.

4.9. Action API reference 183



CKAN documentation, Release 2.10.0a0

Specifically it returns the list of organizations that the currently authorized user has a given permission (for
example: “manage_group”) against.

By default this returns the list of organizations that the currently authorized user is member of, in any capacity.

When a user becomes a member of an organization in CKAN they’re given a “capacity” (sometimes called a
“role”), for example “member”, “editor” or “admin”.

Each of these roles has certain permissions associated with it. For example the admin role has the “admin”
permission (which means they have permission to do anything). The editor role has permissions like “cre-
ate_dataset”, “update_dataset” and “delete_dataset”. The member role has the “read” permission.

This function returns the list of organizations that the authorized user has a given permission for. For example
the list of organizations that the user is an admin of, or the list of organizations that the user can create datasets
in. This takes account of when permissions cascade down an organization hierarchy.

Parameters

• id (string) – the name or id of the user to get the organization list for (optional, defaults to
the currently authorized user (logged in or via API key))

• permission (string) – the permission the user has against the returned organizations, for
example "read" or "create_dataset" (optional, default: "manage_group")

• include_dataset_count (bool) – include the package_count in each org (optional, de-
fault: False)

Returns list of organizations that the user has the given permission for

Return type list of dicts

ckan.logic.action.get.license_list(context: ckan.types.Context, data_dict: dict[str, Any])→ List[dict[str,
Any]]

Return the list of licenses available for datasets on the site.

Return type list of dictionaries

ckan.logic.action.get.tag_list(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[List[dict[str, Any]], List[str]]

Return a list of the site’s tags.

By default only free tags (tags that don’t belong to a vocabulary) are returned. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be returned instead.

Parameters

• query (string) – a tag name query to search for, if given only tags whose names contain
this string will be returned (optional)

• vocabulary_id (string) – the id or name of a vocabulary, if give only tags that belong to
this vocabulary will be returned (optional)

• all_fields (bool) – return full tag dictionaries instead of just names (optional, default:
False)

Return type list of dictionaries

ckan.logic.action.get.user_list(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[List[dict[str, Any]], List[str], Query[Model.User]]

Return a list of the site’s user accounts.

Parameters

• q (string) – filter the users returned to those whose names contain a string (optional)

184 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

• email (string) – filter the users returned to those whose email match a string (optional)
(you must be a sysadmin to use this filter)

• order_by (string) – which field to sort the list by (optional, default: 'display_name').
Users can be sorted by 'id', 'name', 'fullname', 'display_name', 'created',
'about', 'sysadmin' or 'number_created_packages'.

• all_fields (bool) – return full user dictionaries instead of just names. (optional, default:
True)

Return type list of user dictionaries. User properties include: number_created_packages which
excludes datasets which are private or draft state.

ckan.logic.action.get.package_relationships_list(context: ckan.types.Context, data_dict: dict[str,
Any])→ List[dict[str, Any]]

Return a dataset (package)’s relationships.

Parameters

• id (string) – the id or name of the first package

• id2 (string) – the id or name of the second package

• rel – relationship as string see package_relationship_create() for the relationship
types (optional)

Return type list of dictionaries

ckan.logic.action.get.package_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return the metadata of a dataset (package) and its resources.

Parameters

• id (string) – the id or name of the dataset

• use_default_schema (bool) – use default package schema instead of a custom schema
defined with an IDatasetForm plugin (default: False)

• include_tracking (bool) – add tracking information to dataset and resources (default:
False)

Return type dictionary

ckan.logic.action.get.resource_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Return the metadata of a resource.

Parameters

• id (string) – the id of the resource

• include_tracking (bool) – add tracking information to dataset and resources (default:
False)

Return type dictionary

ckan.logic.action.get.resource_view_show(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Return the metadata of a resource_view.

Parameters id (string) – the id of the resource_view

Return type dictionary

4.9. Action API reference 185



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.resource_view_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of resource views for a particular resource.

Parameters id (string) – the id of the resource

Return type list of dictionaries.

ckan.logic.action.get.group_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return the details of a group.

Parameters

• id (string) – the id or name of the group

• include_datasets (bool) – include a truncated list of the group’s datasets (optional, de-
fault: False)

• include_dataset_count (bool) – include the full package_count (optional, default:
True)

• include_extras (bool) – include the group’s extra fields (optional, default: True)

• include_users (bool) – include the group’s users (optional, default: True if ckan.auth.
public_user_details is True otherwise False)

• include_groups (bool) – include the group’s sub groups (optional, default: True)

• include_tags (bool) – include the group’s tags (optional, default: True)

• include_followers (bool) – include the group’s number of followers (optional, default:
True)

Return type dictionary

Note: Only its first 1000 datasets are returned

ckan.logic.action.get.organization_show(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Return the details of a organization.

Parameters

• id (string) – the id or name of the organization

• include_datasets (bool) – include a truncated list of the org’s datasets (optional, default:
False)

• include_dataset_count (bool) – include the full package_count (optional, default:
True)

• include_extras (bool) – include the organization’s extra fields (optional, default: True)

• include_users (bool) – include the organization’s users (optional, default: True if ckan.
auth.public_user_details is True otherwise False)

• include_groups (bool) – include the organization’s sub groups (optional, default: True)

• include_tags (bool) – include the organization’s tags (optional, default: True)

• include_followers (bool) – include the organization’s number of followers (optional,
default: True)

Return type dictionary

186 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Note: Only its first 10 datasets are returned

ckan.logic.action.get.group_package_show(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the datasets (packages) of a group.

Parameters

• id (string) – the id or name of the group

• limit (int) – the maximum number of datasets to return (optional)

Return type list of dictionaries

ckan.logic.action.get.tag_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return the details of a tag and all its datasets.

Parameters

• id (string) – the name or id of the tag

• vocabulary_id (string) – the id or name of the tag vocabulary that the tag is in - if it is
not specified it will assume it is a free tag. (optional)

• include_datasets (bool) – include a list of the tag’s datasets. (Up to a limit of 1000 - for
more flexibility, use package_search - see package_search() for an example.) (optional,
default: False)

Returns the details of the tag, including a list of all of the tag’s datasets and their details

Return type dictionary

ckan.logic.action.get.user_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return a user account.

Either the id should be passed or the user should be logged in.

Parameters

• id (string) – the id or name of the user (optional)

• include_datasets (bool) – Include a list of datasets the user has created. If it is the
same user or a sysadmin requesting, it includes datasets that are draft or private. (optional,
default:False, limit:50)

• include_num_followers (bool) – Include the number of followers the user has (optional,
default:False)

• include_password_hash (bool) – Include the stored password hash (sysadmin only, op-
tional, default:False)

• include_plugin_extras (bool) – Include the internal plugin extras object (sysadmin
only, optional, default:False)

Returns the details of the user. Includes email_hash and number_created_packages (which excludes
draft or private datasets unless it is the same user or sysadmin making the request). Excludes
the password (hash) and reset_key. If it is the same user or a sysadmin requesting, the email and
apikey are included.

Return type dictionary

4.9. Action API reference 187



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.package_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return a list of datasets (packages) that match a string.

Datasets with names or titles that contain the query string will be returned.

Parameters

• q (string) – the string to search for

• limit (int) – the maximum number of resource formats to return (optional, default: 10)

Return type list of dictionaries

ckan.logic.action.get.format_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])→
List[str]

Return a list of resource formats whose names contain a string.

Parameters

• q (string) – the string to search for

• limit (int) – the maximum number of resource formats to return (optional, default: 5)

Return type list of strings

ckan.logic.action.get.user_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return a list of user names that contain a string.

Parameters

• q (string) – the string to search for

• limit (int) – the maximum number of user names to return (optional, default: 20)

Return type a list of user dictionaries each with keys 'name', 'fullname', and 'id'

ckan.logic.action.get.group_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return a list of group names that contain a string.

Parameters

• q (string) – the string to search for

• limit (int) – the maximum number of groups to return (optional, default: 20)

Return type a list of group dictionaries each with keys 'name', 'title', and 'id'

ckan.logic.action.get.organization_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])
→ List[dict[str, Any]]

Return a list of organization names that contain a string.

Parameters

• q (string) – the string to search for

• limit (int) – the maximum number of organizations to return (optional, default: 20)

Return type a list of organization dictionaries each with keys 'name', 'title', and 'id'

188 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.package_search(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Searches for packages satisfying a given search criteria.

This action accepts solr search query parameters (details below), and returns a dictionary of results, including
dictized datasets that match the search criteria, a search count and also facet information.

Solr Parameters:

For more in depth treatment of each paramter, please read the Solr Documentation.

This action accepts a subset of solr’s search query parameters:

Parameters

• q (string) – the solr query. Optional. Default: "*:*"

• fq (string) – any filter queries to apply. Note: +site_id:{ckan_site_id} is added to
this string prior to the query being executed.

• fq_list (list of strings) – additional filter queries to apply.

• sort (string) – sorting of the search results. Optional. Default: 'score desc,
metadata_modified desc'. As per the solr documentation, this is a comma-separated
string of field names and sort-orderings.

• rows (int) – the maximum number of matching rows (datasets) to return. (optional, default:
10, upper limit: 1000 unless set in site’s configuration ckan.search.rows_max)

• start (int) – the offset in the complete result for where the set of returned datasets should
begin.

• facet (string) – whether to enable faceted results. Default: True.

• facet.mincount (int) – the minimum counts for facet fields should be included in the
results.

• facet.limit (int) – the maximum number of values the facet fields return. A negative
value means unlimited. This can be set instance-wide with the search.facets.limit config
option. Default is 50.

• facet.field (list of strings) – the fields to facet upon. Default empty. If empty, then
the returned facet information is empty.

• include_drafts (bool) – if True, draft datasets will be included in the results. A user will
only be returned their own draft datasets, and a sysadmin will be returned all draft datasets.
Optional, the default is False.

• include_deleted (bool) – if True, deleted datasets will be included in the results (site
configuration “ckan.search.remove_deleted_packages” must be set to False). Optional, the
default is False.

• include_private (bool) – if True, private datasets will be included in the results. Only
private datasets from the user’s organizations will be returned and sysadmins will be returned
all private datasets. Optional, the default is False.

• use_default_schema (bool) – use default package schema instead of a custom schema
defined with an IDatasetForm plugin (default: False)

The following advanced Solr parameters are supported as well. Note that some of these are only available on
particular Solr versions. See Solr’s dismax and edismax documentation for further details on them:

qf, wt, bf, boost, tie, defType, mm

Examples:

4.9. Action API reference 189

https://lucene.apache.org/solr/guide/6_6/common-query-parameters.html
http://wiki.apache.org/solr/DisMaxQParserPlugin
http://wiki.apache.org/solr/ExtendedDisMax


CKAN documentation, Release 2.10.0a0

q=flood datasets containing the word flood, floods or flooding fq=tags:economy datasets with the tag economy
facet.field=["tags"] facet.limit=10 rows=0 top 10 tags

Results:

The result of this action is a dict with the following keys:

Return type A dictionary with the following keys

Parameters

• count (int) – the number of results found. Note, this is the total number of results found,
not the total number of results returned (which is affected by limit and row parameters used
in the input).

• results (list of dictized datasets.) – ordered list of datasets matching the query,
where the ordering defined by the sort parameter used in the query.

• facets (DEPRECATED dict) – DEPRECATED. Aggregated information about facet
counts.

• search_facets (nested dict of dicts.) – aggregated information about facet counts.
The outer dict is keyed by the facet field name (as used in the search query). Each entry of
the outer dict is itself a dict, with a “title” key, and an “items” key. The “items” key’s value
is a list of dicts, each with “count”, “display_name” and “name” entries. The display_name
is a form of the name that can be used in titles.

An example result:

{'count': 2,
'results': [ { <snip> }, { <snip> }],
'search_facets': {u'tags': {'items': [{'count': 1,

'display_name': u'tolstoy',
'name': u'tolstoy'},
{'count': 2,
'display_name': u'russian',
'name': u'russian'}

]
}

}
}

Limitations:

The full solr query language is not exposed, including.

fl The parameter that controls which fields are returned in the solr query. fl can be None or a list of result fields,
such as [‘id’, ‘extras_custom_field’]. if fl = None, datasets are returned as a list of full dictionary.

ckan.logic.action.get.resource_search(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Searches for resources in public Datasets satisfying the search criteria.

It returns a dictionary with 2 fields: count and results. The count field contains the total number of Resources
found without the limit or query parameters having an effect. The results field is a list of dictized Resource
objects.

The ‘query’ parameter is a required field. It is a string of the form {field}:{term} or a list of strings, each of
the same form. Within each string, {field} is a field or extra field on the Resource domain object.

If {field} is "hash", then an attempt is made to match the {term} as a prefix of the Resource.hash field.

190 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

If {field} is an extra field, then an attempt is made to match against the extra fields stored against the Resource.

Note: The search is limited to search against extra fields declared in the config setting ckan.
extra_resource_fields.

Note: Due to a Resource’s extra fields being stored as a json blob, the match is made against the json string
representation. As such, false positives may occur:

If the search criteria is:

query = "field1:term1"

Then a json blob with the string representation of:

{"field1": "foo", "field2": "term1"}

will match the search criteria! This is a known short-coming of this approach.

All matches are made ignoring case; and apart from the "hash" field, a term matches if it is a substring of the
field’s value.

Finally, when specifying more than one search criteria, the criteria are AND-ed together.

The order parameter is used to control the ordering of the results. Currently only ordering one field is available,
and in ascending order only.

The context may contain a flag, search_query, which if True will make this action behave as if being used by
the internal search api. ie - the results will not be dictized, and SearchErrors are thrown for bad search queries
(rather than ValidationErrors).

Parameters

• query (string or list of strings of the form {field}:{term1}) – The search criteria. See
above for description.

• order_by (string) – A field on the Resource model that orders the results.

• offset (int) – Apply an offset to the query.

• limit (int) – Apply a limit to the query.

Returns A dictionary with a count field, and a results field.

Return type dict

ckan.logic.action.get.tag_search(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return a list of tags whose names contain a given string.

By default only free tags (tags that don’t belong to any vocabulary) are searched. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be searched instead.

Parameters

• query (string or list of strings) – the string(s) to search for

• vocabulary_id (string) – the id or name of the tag vocabulary to search in (optional)

• fields (dictionary) – deprecated

• limit (int) – the maximum number of tags to return

• offset (int) – when limit is given, the offset to start returning tags from

Returns

A dictionary with the following keys:

4.9. Action API reference 191



CKAN documentation, Release 2.10.0a0

'count' The number of tags in the result.

'results' The list of tags whose names contain the given string, a list of dictionaries.

Return type dictionary

ckan.logic.action.get.tag_autocomplete(context: ckan.types.Context, data_dict: dict[str, Any])→ List[str]
Return a list of tag names that contain a given string.

By default only free tags (tags that don’t belong to any vocabulary) are searched. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be searched instead.

Parameters

• query (string) – the string to search for

• vocabulary_id (string) – the id or name of the tag vocabulary to search in (optional)

• fields (dictionary) – deprecated

• limit (int) – the maximum number of tags to return

• offset (int) – when limit is given, the offset to start returning tags from

Return type list of strings

ckan.logic.action.get.task_status_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Return a task status.

Either the id parameter or the entity_id, task_type and key parameters must be given.

Parameters

• id (string) – the id of the task status (optional)

• entity_id (string) – the entity_id of the task status (optional)

• task_type (string) – the task_type of the task status (optional)

• key (string) – the key of the task status (optional)

Return type dictionary

ckan.logic.action.get.term_translation_show(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the translations for the given term(s) and language(s).

Parameters

• terms (list of strings) – the terms to search for translations of, e.g. 'Russian',
'romantic novel'

• lang_codes (list of language code strings) – the language codes of the languages
to search for translations into, e.g. 'en', 'de' (optional, default is to search for translations
into any language)

Return type a list of term translation dictionaries each with keys 'term' (the term searched for, in
the source language), 'term_translation' (the translation of the term into the target language)
and 'lang_code' (the language code of the target language)

ckan.logic.action.get.get_site_user(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Return the ckan site user

192 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Parameters defer_commit (bool) – by default (or if set to false) get_site_user will commit and
clean up the current transaction. If set to true, caller is responsible for commiting transaction after
get_site_user is called. Leaving open connections can cause cli commands to hang! (optional,
default: False)

ckan.logic.action.get.status_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Return a dictionary with information about the site’s configuration.

Return type dictionary

ckan.logic.action.get.vocabulary_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return a list of all the site’s tag vocabularies.

Return type list of dictionaries

ckan.logic.action.get.vocabulary_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Return a single tag vocabulary.

Parameters id (string) – the id or name of the vocabulary

Returns the vocabulary.

Return type dictionary

ckan.logic.action.get.user_follower_count(context: ckan.types.Context, data_dict: dict[str, Any])→ int
Return the number of followers of a user.

Parameters id (string) – the id or name of the user

Return type int

ckan.logic.action.get.dataset_follower_count(context: ckan.types.Context, data_dict: dict[str, Any])→
int

Return the number of followers of a dataset.

Parameters id (string) – the id or name of the dataset

Return type int

ckan.logic.action.get.group_follower_count(context: ckan.types.Context, data_dict: dict[str, Any])→ int
Return the number of followers of a group.

Parameters id (string) – the id or name of the group

Return type int

ckan.logic.action.get.organization_follower_count(context: ckan.types.Context, data_dict: dict[str,
Any])→ int

Return the number of followers of an organization.

Parameters id (string) – the id or name of the organization

Return type int

ckan.logic.action.get.user_follower_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of users that are following the given user.

Parameters id (string) – the id or name of the user

Return type list of dictionaries

4.9. Action API reference 193



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.dataset_follower_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of users that are following the given dataset.

Parameters id (string) – the id or name of the dataset

Return type list of dictionaries

ckan.logic.action.get.group_follower_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of users that are following the given group.

Parameters id (string) – the id or name of the group

Return type list of dictionaries

ckan.logic.action.get.organization_follower_list(context: ckan.types.Context, data_dict: dict[str,
Any])→ List[dict[str, Any]]

Return the list of users that are following the given organization.

Parameters id (string) – the id or name of the organization

Return type list of dictionaries

ckan.logic.action.get.am_following_user(context: ckan.types.Context, data_dict: dict[str, Any])→ bool
Return True if you’re following the given user, False if not.

Parameters id (string) – the id or name of the user

Return type bool

ckan.logic.action.get.am_following_dataset(context: ckan.types.Context, data_dict: dict[str, Any])→
bool

Return True if you’re following the given dataset, False if not.

Parameters id (string) – the id or name of the dataset

Return type bool

ckan.logic.action.get.am_following_group(context: ckan.types.Context, data_dict: dict[str, Any])→ bool
Return True if you’re following the given group, False if not.

Parameters id (string) – the id or name of the group

Return type bool

ckan.logic.action.get.followee_count(context: ckan.types.Context, data_dict: dict[str, Any])→ int
Return the number of objects that are followed by the given user.

Counts all objects, of any type, that the given user is following (e.g. followed users, followed datasets, followed
groups).

Parameters id (string) – the id of the user

Return type int

ckan.logic.action.get.user_followee_count(context: ckan.types.Context, data_dict: dict[str, Any])→ int
Return the number of users that are followed by the given user.

Parameters id (string) – the id of the user

Return type int

194 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.dataset_followee_count(context: ckan.types.Context, data_dict: dict[str, Any])→
int

Return the number of datasets that are followed by the given user.

Parameters id (string) – the id of the user

Return type int

ckan.logic.action.get.group_followee_count(context: ckan.types.Context, data_dict: dict[str, Any])→ int
Return the number of groups that are followed by the given user.

Parameters id (string) – the id of the user

Return type int

ckan.logic.action.get.followee_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of objects that are followed by the given user.

Returns all objects, of any type, that the given user is following (e.g. followed users, followed datasets, followed
groups.. ).

Parameters

• id (string) – the id of the user

• q (string) – a query string to limit results by, only objects whose display name begins with
the given string (case-insensitive) wil be returned (optional)

Return type list of dictionaries, each with keys 'type' (e.g. 'user', 'dataset' or 'group'),
'display_name' (e.g. a user’s display name, or a package’s title) and 'dict' (e.g. a dict
representing the followed user, package or group, the same as the dict that would be returned by
user_show(), package_show() or group_show())

ckan.logic.action.get.user_followee_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of users that are followed by the given user.

Parameters id (string) – the id of the user

Return type list of dictionaries

ckan.logic.action.get.dataset_followee_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of datasets that are followed by the given user.

Parameters id (string) – the id or name of the user

Return type list of dictionaries

ckan.logic.action.get.group_followee_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the list of groups that are followed by the given user.

Parameters id (string) – the id or name of the user

Return type list of dictionaries

ckan.logic.action.get.organization_followee_list(context: ckan.types.Context, data_dict: dict[str,
Any])→ List[dict[str, Any]]

Return the list of organizations that are followed by the given user.

Parameters id (string) – the id or name of the user

4.9. Action API reference 195



CKAN documentation, Release 2.10.0a0

Return type list of dictionaries

ckan.logic.action.get.member_roles_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return the possible roles for members of groups and organizations.

Parameters group_type (string) – the group type, either "group" or "organization" (op-
tional, default "organization")

Returns a list of dictionaries each with two keys: "text" (the display name of the role, e.g.
"Admin") and "value" (the internal name of the role, e.g. "admin")

Return type list of dictionaries

ckan.logic.action.get.help_show(context: ckan.types.Context, data_dict: dict[str, Any])→ Optional[str]
Return the help string for a particular API action.

Parameters name (string) – Action function name (eg user_create, package_search)

Returns The help string for the action function, or None if the function does not have a docstring.

Return type string

Raises ckan.logic.NotFound: if the action function doesn’t exist

ckan.logic.action.get.config_option_show(context: ckan.types.Context, data_dict: dict[str, Any])→ Any
Show the current value of a particular configuration option.

Only returns runtime-editable config options (the ones returned by config_option_list()), which can be
updated with the config_option_update() action.

Parameters key (string) – The configuration option key

Returns The value of the config option from either the system_info table or ini file.

Return type string

Raises ckan.logic.ValidationError: if config option is not in the schema (whitelisted as ed-
itable).

ckan.logic.action.get.config_option_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[str]

Return a list of runtime-editable config options keys that can be updated with
config_option_update().

Returns A list of config option keys.

Return type list

ckan.logic.action.get.job_list(context: ckan.types.Context, data_dict: dict[str, Any])→ List[dict[str, Any]]
List enqueued background jobs.

Parameters queues (list) – Queues to list jobs from. If not given then the jobs from all queues
are listed.

Returns The currently enqueued background jobs.

Return type list

New in version 2.7.

196 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.get.job_show(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Show details for a background job.

Parameters id (string) – The ID of the background job.

Returns Details about the background job.

Return type dict

New in version 2.7.

ckan.logic.action.get.api_token_list(context: ckan.types.Context, data_dict: dict[str, Any])→
List[dict[str, Any]]

Return list of all available API Tokens for current user.

Returns collection of all API Tokens

Return type list

New in version 2.9.

4.9.2 ckan.logic.action.create

API functions for adding data to CKAN.

ckan.logic.action.create.package_create(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[dict[str, Any], str]

Create a new dataset (package).

You must be authorized to create new datasets. If you specify any groups for the new dataset, you must also be
authorized to edit these groups.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IDatasetForm plugin interface.

Parameters

• name (string) – the name of the new dataset, must be between 2 and 100 characters long
and contain only lowercase alphanumeric characters, - and _, e.g. 'warandpeace'

• title (string) – the title of the dataset (optional, default: same as name)

• private (bool) – If True creates a private dataset

• author (string) – the name of the dataset’s author (optional)

• author_email (string) – the email address of the dataset’s author (optional)

• maintainer (string) – the name of the dataset’s maintainer (optional)

• maintainer_email (string) – the email address of the dataset’s maintainer (optional)

• license_id (license id string) – the id of the dataset’s license, see license_list()
for available values (optional)

• notes (string) – a description of the dataset (optional)

• url (string) – a URL for the dataset’s source (optional)

• version (string, no longer than 100 characters) – (optional)

• state (string) – the current state of the dataset, e.g. 'active' or 'deleted', only active
datasets show up in search results and other lists of datasets, this parameter will be ignored
if you are not authorized to change the state of the dataset (optional, default: 'active')

4.9. Action API reference 197



CKAN documentation, Release 2.10.0a0

• type (string) – the type of the dataset (optional), IDatasetForm plugins associate them-
selves with different dataset types and provide custom dataset handling behaviour for these
types

• resources (list of resource dictionaries) – the dataset’s resources, see
resource_create() for the format of resource dictionaries (optional)

• tags (list of tag dictionaries) – the dataset’s tags, see tag_create() for the for-
mat of tag dictionaries (optional)

• extras (list of dataset extra dictionaries) – the dataset’s extras (optional), ex-
tras are arbitrary (key: value) metadata items that can be added to datasets, each extra dic-
tionary should have keys 'key' (a string), 'value' (a string)

• relationships_as_object (list of relationship dictionaries) – see
package_relationship_create() for the format of relationship dictionaries (op-
tional)

• relationships_as_subject (list of relationship dictionaries) – see
package_relationship_create() for the format of relationship dictionaries (optional)

• groups (list of dictionaries) – the groups to which the dataset belongs (optional),
each group dictionary should have one or more of the following keys which identify an ex-
isting group: 'id' (the id of the group, string), or 'name' (the name of the group, string),
to see which groups exist call group_list()

• owner_org (string) – the id of the dataset’s owning organization, see
organization_list() or organization_list_for_user() for available values. This
parameter can be made optional if the config option ckan.auth.create_unowned_dataset is
set to True.

Returns the newly created dataset (unless ‘return_id_only’ is set to True in the context, in which case
just the dataset id will be returned)

Return type dictionary

ckan.logic.action.create.resource_create(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Appends a new resource to a datasets list of resources.

Parameters

• package_id (string) – id of package that the resource should be added to.

• url (string) – url of resource

• description (string) – (optional)

• format (string) – (optional)

• hash (string) – (optional)

• name (string) – (optional)

• resource_type (string) – (optional)

• mimetype (string) – (optional)

• mimetype_inner (string) – (optional)

• cache_url (string) – (optional)

• size (int) – (optional)

• created (iso date string) – (optional)

198 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

• last_modified (iso date string) – (optional)

• cache_last_updated (iso date string) – (optional)

• upload (FieldStorage (optional) needs multipart/form-data) – (optional)

Returns the newly created resource

Return type dictionary

ckan.logic.action.create.resource_view_create(context: ckan.types.Context, data_dict: dict[str, Any])
→ dict[str, Any]

Creates a new resource view.

Parameters

• resource_id (string) – id of the resource

• title (string) – the title of the view

• description (string) – a description of the view (optional)

• view_type (string) – type of view

• config (JSON string) – options necessary to recreate a view state (optional)

Returns the newly created resource view

Return type dictionary

ckan.logic.action.create.resource_create_default_resource_views(context: ckan.types.Context,
data_dict: dict[str, Any])→
List[dict[str, Any]]

Creates the default views (if necessary) on the provided resource

The function will get the plugins for the default views defined in the configuration, and if some were found the
can_view method of each one of them will be called to determine if a resource view should be created. Resource
views extensions get the resource dict and the parent dataset dict.

If the latter is not provided, package_show is called to get it.

By default only view plugins that don’t require the resource data to be in the DataStore are called.
See ckan.logic.action.create.package_create_default_resource_views.`() for details on the
create_datastore_views parameter.

Parameters

• resource (dict) – full resource dict

• package (dict) – full dataset dict (optional, if not provided package_show() will be
called).

• create_datastore_views (bool) – whether to create views that rely on data being on the
DataStore (optional, defaults to False)

Returns a list of resource views created (empty if none were created)

Return type list of dictionaries

ckan.logic.action.create.package_create_default_resource_views(context: ckan.types.Context,
data_dict: dict[str, Any])→
List[dict[str, Any]]

Creates the default views on all resources of the provided dataset

By default only view plugins that don’t require the resource data to be in the DataStore are called. Passing
create_datastore_views as True will only create views that require data to be in the DataStore. The first case

4.9. Action API reference 199



CKAN documentation, Release 2.10.0a0

happens when the function is called from package_create or package_update, the second when it’s called from
the DataPusher when data was uploaded to the DataStore.

Parameters

• package (dict) – full dataset dict (ie the one obtained calling package_show()).

• create_datastore_views (bool) – whether to create views that rely on data being on the
DataStore (optional, defaults to False)

Returns a list of resource views created (empty if none were created)

Return type list of dictionaries

ckan.logic.action.create.package_relationship_create(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Create a relationship between two datasets (packages).

You must be authorized to edit both the subject and the object datasets.

Parameters

• subject (string) – the id or name of the dataset that is the subject of the relationship

• object – the id or name of the dataset that is the object of the relationship

• type (string) – the type of the relationship, one of 'depends_on', 'dependency_of',
'derives_from', 'has_derivation', 'links_to', 'linked_from', 'child_of' or
'parent_of'

• comment (string) – a comment about the relationship (optional)

Returns the newly created package relationship

Return type dictionary

ckan.logic.action.create.member_create(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Make an object (e.g. a user, dataset or group) a member of a group.

If the object is already a member of the group then the capacity of the membership will be updated.

You must be authorized to edit the group.

Parameters

• id (string) – the id or name of the group to add the object to

• object (string) – the id or name of the object to add

• object_type (string) – the type of the object being added, e.g. 'package' or 'user'

• capacity (string) – the capacity of the membership

Returns the newly created (or updated) membership

Return type dictionary

ckan.logic.action.create.package_collaborator_create(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Make a user a collaborator in a dataset.

If the user is already a collaborator in the dataset then their capacity will be updated.

Currently you must be an Admin on the dataset owner organization to manage collaborators.

200 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters

• id (string) – the id or name of the dataset

• user_id (string) – the id or name of the user to add or edit

• capacity (string) – the capacity or role of the membership. Must be one of “editor” or
“member”. Additionally if ckan.auth.allow_admin_collaborators is set to True, “admin” is
also allowed.

Returns the newly created (or updated) collaborator

Return type dictionary

ckan.logic.action.create.group_create(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[str, dict[str, Any]]

Create a new group.

You must be authorized to create groups.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IGroupForm plugin interface.

Parameters

• name (string) – the name of the group, a string between 2 and 100 characters long, con-
taining only lowercase alphanumeric characters, - and _

• id (string) – the id of the group (optional)

• title (string) – the title of the group (optional)

• description (string) – the description of the group (optional)

• image_url (string) – the URL to an image to be displayed on the group’s page (optional)

• type (string) – the type of the group (optional, default: 'group'), IGroupForm plu-
gins associate themselves with different group types and provide custom group handling
behaviour for these types Cannot be ‘organization’

• state (string) – the current state of the group, e.g. 'active' or 'deleted', only active
groups show up in search results and other lists of groups, this parameter will be ignored if
you are not authorized to change the state of the group (optional, default: 'active')

• approval_status (string) – (optional)

• extras (list of dataset extra dictionaries) – the group’s extras (optional), ex-
tras are arbitrary (key: value) metadata items that can be added to groups, each extra dictio-
nary should have keys 'key' (a string), 'value' (a string), and optionally 'deleted'

• packages (list of dictionaries) – the datasets (packages) that belong to the group, a
list of dictionaries each with keys 'name' (string, the id or name of the dataset) and optionally
'title' (string, the title of the dataset)

• groups (list of dictionaries) – the groups that belong to the group, a list of dictionar-
ies each with key 'name' (string, the id or name of the group) and optionally 'capacity'
(string, the capacity in which the group is a member of the group)

• users (list of dictionaries) – the users that belong to the group, a list of dictionaries
each with key 'name' (string, the id or name of the user) and optionally 'capacity' (string,
the capacity in which the user is a member of the group)

4.9. Action API reference 201



CKAN documentation, Release 2.10.0a0

Returns the newly created group (unless ‘return_id_only’ is set to True in the context, in which case
just the group id will be returned)

Return type dictionary

ckan.logic.action.create.organization_create(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[str, dict[str, Any]]

Create a new organization.

You must be authorized to create organizations.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IGroupForm plugin interface.

Parameters

• name (string) – the name of the organization, a string between 2 and 100 characters long,
containing only lowercase alphanumeric characters, - and _

• id (string) – the id of the organization (optional)

• title (string) – the title of the organization (optional)

• description (string) – the description of the organization (optional)

• image_url (string) – the URL to an image to be displayed on the organization’s page
(optional)

• state (string) – the current state of the organization, e.g. 'active' or 'deleted', only
active organizations show up in search results and other lists of organizations, this parameter
will be ignored if you are not authorized to change the state of the organization (optional,
default: 'active')

• approval_status (string) – (optional)

• extras (list of dataset extra dictionaries) – the organization’s extras (op-
tional), extras are arbitrary (key: value) metadata items that can be added to organizations,
each extra dictionary should have keys 'key' (a string), 'value' (a string), and optionally
'deleted'

• packages (list of dictionaries) – the datasets (packages) that belong to the organi-
zation, a list of dictionaries each with keys 'name' (string, the id or name of the dataset) and
optionally 'title' (string, the title of the dataset)

• users (list of dictionaries) – the users that belong to the organization, a list of dictio-
naries each with key 'name' (string, the id or name of the user) and optionally 'capacity'
(string, the capacity in which the user is a member of the organization)

Returns the newly created organization (unless ‘return_id_only’ is set to True in the context, in which
case just the organization id will be returned)

Return type dictionary

ckan.logic.action.create.user_create(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Create a new user.

You must be authorized to create users.

Parameters

• name (string) – the name of the new user, a string between 2 and 100 characters in length,
containing only lowercase alphanumeric characters, - and _

202 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

• email (string) – the email address for the new user

• password (string) – the password of the new user, a string of at least 4 characters

• id (string) – the id of the new user (optional)

• fullname (string) – the full name of the new user (optional)

• about (string) – a description of the new user (optional)

• image_url (string) – the URL to an image to be displayed on the group’s page (optional)

• plugin_extras (dict) – private extra user data belonging to plugins. Only sysadmin users
may set this value. It should be a dict that can be dumped into JSON, and plugins should
namespace their extras with the plugin name to avoid collisions with other plugins, eg:

{
"name": "test_user",
"email": "test@example.com",
"plugin_extras": {

"my_plugin": {
"private_extra": 1

},
"another_plugin": {

"another_extra": True
}

}
}

Returns the newly created user

Return type dictionary

ckan.logic.action.create.user_invite(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Invite a new user.

You must be authorized to create group members.

Parameters

• email (string) – the email of the user to be invited to the group

• group_id (string) – the id or name of the group

• role (string) – role of the user in the group. One of member, editor, or admin

Returns the newly created user

Return type dictionary

ckan.logic.action.create.vocabulary_create(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Create a new tag vocabulary.

You must be a sysadmin to create vocabularies.

Parameters

• name (string) – the name of the new vocabulary, e.g. 'Genre'

• tags (list of tag dictionaries) – the new tags to add to the new vocabulary, for the
format of tag dictionaries see tag_create()

4.9. Action API reference 203



CKAN documentation, Release 2.10.0a0

Returns the newly-created vocabulary

Return type dictionary

ckan.logic.action.create.tag_create(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Create a new vocabulary tag.

You must be a sysadmin to create vocabulary tags.

You can only use this function to create tags that belong to a vocabulary, not to create free tags. (To create a new
free tag simply add the tag to a package, e.g. using the package_update() function.)

Parameters

• name (string) – the name for the new tag, a string between 2 and 100 characters long
containing only alphanumeric characters, spaces and the characters -, _ and ., e.g. 'Jazz'

• vocabulary_id (string) – the id of the vocabulary that the new tag should be added to,
e.g. the id of vocabulary 'Genre'

Returns the newly-created tag

Return type dictionary

ckan.logic.action.create.follow_user(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Start following another user.

You must provide your API key in the Authorization header.

Parameters id (string) – the id or name of the user to follow, e.g. 'joeuser'

Returns a representation of the ‘follower’ relationship between yourself and the other user

Return type dictionary

ckan.logic.action.create.follow_dataset(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Start following a dataset.

You must provide your API key in the Authorization header.

Parameters id (string) – the id or name of the dataset to follow, e.g. 'warandpeace'

Returns a representation of the ‘follower’ relationship between yourself and the dataset

Return type dictionary

ckan.logic.action.create.group_member_create(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Make a user a member of a group.

You must be authorized to edit the group.

Parameters

• id (string) – the id or name of the group

• username (string) – name or id of the user to be made member of the group

• role (string) – role of the user in the group. One of member, editor, or admin

Returns the newly created (or updated) membership

Return type dictionary

204 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.create.organization_member_create(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Make a user a member of an organization.

You must be authorized to edit the organization.

Parameters

• id (string) – the id or name of the organization

• username (string) – name or id of the user to be made member of the organization

• role (string) – role of the user in the organization. One of member, editor, or admin

Returns the newly created (or updated) membership

Return type dictionary

ckan.logic.action.create.follow_group(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Start following a group.

You must provide your API key in the Authorization header.

Parameters id (string) – the id or name of the group to follow, e.g. 'roger'

Returns a representation of the ‘follower’ relationship between yourself and the group

Return type dictionary

ckan.logic.action.create.api_token_create(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Create new API Token for current user.

Apart from the user and name field that are required by default implementation, there may be additional fields
registered by extensions.

Parameters

• user (string) – name or id of the user who owns new API Token

• name (string) – distinctive name for API Token

Returns Returns a dict with the key “token” containing the encoded token value. Extensions can
privide additional fields via add_extra method of IApiToken

Return type dictionary

4.9.3 ckan.logic.action.update

API functions for updating existing data in CKAN.

ckan.logic.action.update.resource_update(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Update a resource.

To update a resource you must be authorized to update the dataset that the resource belongs to.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use resource_patch instead.

4.9. Action API reference 205



CKAN documentation, Release 2.10.0a0

For further parameters see resource_create().

Parameters id (string) – the id of the resource to update

Returns the updated resource

Return type string

ckan.logic.action.update.resource_view_update(context: ckan.types.Context, data_dict: dict[str, Any])
→ dict[str, Any]

Update a resource view.

To update a resource_view you must be authorized to update the resource that the resource_view belongs to.

For further parameters see resource_view_create().

Parameters id (string) – the id of the resource_view to update

Returns the updated resource_view

Return type string

ckan.logic.action.update.resource_view_reorder(context: ckan.types.Context, data_dict: dict[str, Any])
→ dict[str, Any]

Reorder resource views.

Parameters

• id (string) – the id of the resource

• order (list of strings) – the list of id of the resource to update the order of the views

Returns the updated order of the view

Return type dictionary

ckan.logic.action.update.package_update(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[str, dict[str, Any]]

Update a dataset (package).

You must be authorized to edit the dataset and the groups that it belongs to.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use package_patch instead.

It is recommended to call ckan.logic.action.get.package_show(), make the desired changes to the result,
and then call package_update() with it.

Plugins may change the parameters of this function depending on the value of the dataset’s type attribute, see
the IDatasetForm plugin interface.

For further parameters see package_create().

Parameters id (string) – the name or id of the dataset to update

Returns the updated dataset (if 'return_package_dict' is True in the context, which is the de-
fault. Otherwise returns just the dataset id)

Return type dictionary

206 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.update.package_revise(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Revise a dataset (package) selectively with match, filter and update parameters.

You must be authorized to edit the dataset and the groups that it belongs to.

Parameters

• match (dict) – a dict containing “id” or “name” values of the dataset to update, all values
provided must match the current dataset values or a ValidationError will be raised. e.g.
{"name": "my-data", "resources": {["name": "big.csv"]}} would abort if
the my-data dataset’s first resource name is not “big.csv”.

• filter (comma-separated string patterns or list of string patterns) – a
list of string patterns of fields to remove from the current dataset. e.g. "-resources__1"
would remove the second resource, "+title, +resources, -*" would remove all fields
at the dataset level except title and all resources (default: [])

• update (dict) – a dict with values to update/create after filtering e.g. {"resources":
[{"description": "file here"}]} would update the description for the first resource

• include (comma-separated-string patterns or list of string patterns) – a
list of string pattern of fields to include in response e.g. "-*" to return nothing (default: []
all fields returned)

match and update parameters may also be passed as “flattened keys”, using either the item numeric index or its
unique id (with a minimum of 5 characters), e.g. update__resource__1f9ab__description="guidebook"
would set the description of the resource with id starting with “1f9ab” to “guidebook”, and
update__resource__-1__description="guidebook" would do the same on the last resource in the
dataset.

The extend suffix can also be used on the update parameter to add a new item to a list, e.g.
update__resources__extend=[{"name": "new resource", "url": "https://example.com"}]
will add a new resource to the dataset with the provided name and url.

Usage examples:

• Change description in dataset, checking for old description:

match={"notes": "old notes", "name": "xyz"}
update={"notes": "new notes"}

• Identical to above, but using flattened keys:

match__name="xyz"
match__notes="old notes"
update__notes="new notes"

• Replace all fields at dataset level only, keep resources (note: dataset id and type fields can’t be deleted)

match={"id": "1234abc-1420-cbad-1922"}
filter=["+resources", "-*"]
update={"name": "fresh-start", "title": "Fresh Start"}

• Add a new resource (__extend on flattened key):

match={"id": "abc0123-1420-cbad-1922"}
update__resources__extend=[{"name": "new resource", "url": "http://example.com"}
→˓]

4.9. Action API reference 207



CKAN documentation, Release 2.10.0a0

• Update a resource by its index:

match={"name": "my-data"}
update__resources__0={"name": "new name, first resource"}

• Update a resource by its id (provide at least 5 characters):

match={"name": "their-data"}
update__resources__19cfad={"description": "right one for sure"}

• Replace all fields of a resource:

match={"id": "34a12bc-1420-cbad-1922"}
filter=["+resources__1492a__id", "-resources__1492a__*"]
update__resources__1492a={"name": "edits here", "url": "http://example.com"}

Returns a dict containing ‘package’:the updated dataset with fields filtered by include parameter

Return type dictionary

ckan.logic.action.update.package_resource_reorder(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Reorder resources against datasets. If only partial resource ids are supplied then these are assumed to be first and
the other resources will stay in their original order

Parameters

• id (string) – the id or name of the package to update

• order (list) – a list of resource ids in the order needed

ckan.logic.action.update.package_relationship_update(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Update a relationship between two datasets (packages).

The subject, object and type parameters are required to identify the relationship. Only the comment can be
updated.

You must be authorized to edit both the subject and the object datasets.

Parameters

• subject (string) – the name or id of the dataset that is the subject of the relationship

• object (string) – the name or id of the dataset that is the object of the relationship

• type (string) – the type of the relationship, one of 'depends_on', 'dependency_of',
'derives_from', 'has_derivation', 'links_to', 'linked_from', 'child_of' or
'parent_of'

• comment (string) – a comment about the relationship (optional)

Returns the updated relationship

Return type dictionary

ckan.logic.action.update.group_update(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Update a group.

You must be authorized to edit the group.

208 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use group_patch instead.

Plugins may change the parameters of this function depending on the value of the group’s type attribute, see the
IGroupForm plugin interface.

For further parameters see group_create().

Parameters id (string) – the name or id of the group to update

Returns the updated group

Return type dictionary

ckan.logic.action.update.organization_update(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Update a organization.

You must be authorized to edit the organization.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use organization_patch instead.

For further parameters see organization_create().

Parameters

• id (string) – the name or id of the organization to update

• packages – ignored. use package_owner_org_update() to change package ownership

Returns the updated organization

Return type dictionary

ckan.logic.action.update.user_update(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Update a user account.

Normal users can only update their own user accounts. Sysadmins can update any user account. Can not modify
exisiting user’s name.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use user_patch instead.

For further parameters see user_create().

Parameters id (string) – the name or id of the user to update

Returns the updated user account

Return type dictionary

ckan.logic.action.update.task_status_update(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Update a task status.

Parameters

4.9. Action API reference 209



CKAN documentation, Release 2.10.0a0

• id (string) – the id of the task status to update

• entity_id (string) –

• entity_type (string) –

• task_type (string) –

• key (string) –

• value – (optional)

• state – (optional)

• last_updated – (optional)

• error – (optional)

Returns the updated task status

Return type dictionary

ckan.logic.action.update.task_status_update_many(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Update many task statuses at once.

Parameters data (list of dictionaries) – the task_status dictionaries to update, for the format
of task status dictionaries see task_status_update()

Returns the updated task statuses

Return type list of dictionaries

ckan.logic.action.update.term_translation_update(context: ckan.types.Context, data_dict: dict[str,
Any])→ dict[str, Any]

Create or update a term translation.

You must be a sysadmin to create or update term translations.

Parameters

• term (string) – the term to be translated, in the original language, e.g. 'romantic
novel'

• term_translation (string) – the translation of the term, e.g. 'Liebesroman'

• lang_code (string) – the language code of the translation, e.g. 'de'

Returns the newly created or updated term translation

Return type dictionary

ckan.logic.action.update.term_translation_update_many(context: ckan.types.Context, data_dict:
dict[str, Any])→ dict[str, Any]

Create or update many term translations at once.

Parameters data (list of dictionaries) – the term translation dictionaries to create or update,
for the format of term translation dictionaries see term_translation_update()

Returns a dictionary with key 'success'whose value is a string stating how many term translations
were updated

Return type string

210 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.update.vocabulary_update(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Update a tag vocabulary.

You must be a sysadmin to update vocabularies.

For further parameters see vocabulary_create().

Parameters id (string) – the id of the vocabulary to update

Returns the updated vocabulary

Return type dictionary

ckan.logic.action.update.package_owner_org_update(context: ckan.types.Context, data_dict: dict[str,
Any])→ None

Update the owning organization of a dataset

Parameters

• id (string) – the name or id of the dataset to update

• organization_id (string) – the name or id of the owning organization

ckan.logic.action.update.bulk_update_private(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Make a list of datasets private

Parameters

• datasets (list of strings) – list of ids of the datasets to update

• org_id (int) – id of the owning organization

ckan.logic.action.update.bulk_update_public(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Make a list of datasets public

Parameters

• datasets (list of strings) – list of ids of the datasets to update

• org_id (int) – id of the owning organization

ckan.logic.action.update.bulk_update_delete(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Make a list of datasets deleted

Parameters

• datasets (list of strings) – list of ids of the datasets to update

• org_id (int) – id of the owning organization

ckan.logic.action.update.config_option_update(context: ckan.types.Context, data_dict: dict[str, Any])
→ dict[str, Any]

New in version 2.4.

Allows to modify some CKAN runtime-editable config options

It takes arbitrary key, value pairs and checks the keys against the config options update schema. If some of the
provided keys are not present in the schema a ValidationError is raised. The values are then validated against
the schema, and if validation is passed, for each key, value config option:

• It is stored on the system_info database table

4.9. Action API reference 211



CKAN documentation, Release 2.10.0a0

• The Pylons config object is updated.

• The app_globals (g) object is updated (this only happens for options explicitly defined in the
app_globals module.

The following lists a key parameter, but this should be replaced by whichever config options want to be updated,
eg:

get_action('config_option_update)({}, {
'ckan.site_title': 'My Open Data site',
'ckan.homepage_layout': 2,

})

Parameters key (string) – a configuration option key (eg ckan.site_title). It must be present
on the update_configuration_schema

Returns a dictionary with the options set

Return type dictionary

Note: You can see all available runtime-editable configuration options calling the config_option_list()
action

Note: Extensions can modify which configuration options are runtime-editable. For details, check Making
configuration options runtime-editable.

Warning: You should only add config options that you are comfortable they can be edited during runtime,
such as ones you’ve added in your own extension, or have reviewed the use of in core CKAN.

4.9.4 ckan.logic.action.patch

New in version 2.3. API functions for partial updates of existing data in CKAN

ckan.logic.action.patch.package_patch(context: ckan.types.Context, data_dict: dict[str, Any])→
Union[str, dict[str, Any]]

Patch a dataset (package).

Parameters id (string) – the id or name of the dataset

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict.

You are able to partially update and/or create resources with package_patch. If you are updating existing resources
be sure to provide the resource id. Existing resources excluded from the package_patch data_dict will be removed.
Resources in the package data_dict without an id will be treated as new resources and will be added. New
resources added with the patch method do not create the default views.

You must be authorized to edit the dataset and the groups that it belongs to.

212 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.patch.resource_patch(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Patch a resource

Parameters id (string) – the id of the resource

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.group_patch(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str,
Any]

Patch a group

Parameters id (string) – the id or name of the group

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.organization_patch(context: ckan.types.Context, data_dict: dict[str, Any])→
dict[str, Any]

Patch an organization

Parameters id (string) – the id or name of the organization

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.user_patch(context: ckan.types.Context, data_dict: dict[str, Any])→ dict[str, Any]
Patch a user

Parameters id (string) – the id or name of the user

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

4.9.5 ckan.logic.action.delete

API functions for deleting data from CKAN.

ckan.logic.action.delete.user_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Delete a user.

Only sysadmins can delete users.

Parameters id (string) – the id or usernamename of the user to delete

ckan.logic.action.delete.package_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Delete a dataset (package).

This makes the dataset disappear from all web & API views, apart from the trash.

You must be authorized to delete the dataset.

Parameters id (string) – the id or name of the dataset to delete

4.9. Action API reference 213



CKAN documentation, Release 2.10.0a0

ckan.logic.action.delete.dataset_purge(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Purge a dataset.

Warning: Purging a dataset cannot be undone!

Purging a database completely removes the dataset from the CKAN database, whereas deleting a dataset simply
marks the dataset as deleted (it will no longer show up in the front-end, but is still in the db).

You must be authorized to purge the dataset.

Parameters id (string) – the name or id of the dataset to be purged

ckan.logic.action.delete.resource_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Delete a resource from a dataset.

You must be a sysadmin or the owner of the resource to delete it.

Parameters id (string) – the id of the resource

ckan.logic.action.delete.resource_view_delete(context: ckan.types.Context, data_dict: dict[str, Any])
→ None

Delete a resource_view.

Parameters id (string) – the id of the resource_view

ckan.logic.action.delete.resource_view_clear(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Delete all resource views, or all of a particular type.

Parameters view_types (list) – specific types to delete (optional)

ckan.logic.action.delete.package_relationship_delete(context: ckan.types.Context, data_dict: dict[str,
Any])→ None

Delete a dataset (package) relationship.

You must be authorised to delete dataset relationships, and to edit both the subject and the object datasets.

Parameters

• subject (string) – the id or name of the dataset that is the subject of the relationship

• object (string) – the id or name of the dataset that is the object of the relationship

• type (string) – the type of the relationship

ckan.logic.action.delete.member_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Remove an object (e.g. a user, dataset or group) from a group.

You must be authorized to edit a group to remove objects from it.

Parameters

• id (string) – the id of the group

• object (string) – the id or name of the object to be removed

• object_type (string) – the type of the object to be removed, e.g. package or user

214 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.delete.package_collaborator_delete(context: ckan.types.Context, data_dict: dict[str,
Any])→ None

Remove a collaborator from a dataset.

Currently you must be an Admin on the dataset owner organization to manage collaborators.

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters

• id (string) – the id or name of the dataset

• user_id (string) – the id or name of the user to remove

ckan.logic.action.delete.group_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Delete a group.

You must be authorized to delete the group.

Parameters id (string) – the name or id of the group

ckan.logic.action.delete.organization_delete(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Delete an organization.

You must be authorized to delete the organization and no datasets should belong to the organization unless
‘ckan.auth.create_unowned_dataset=True’

Parameters id (string) – the name or id of the organization

ckan.logic.action.delete.group_purge(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Purge a group.

Warning: Purging a group cannot be undone!

Purging a group completely removes the group from the CKAN database, whereas deleting a group simply marks
the group as deleted (it will no longer show up in the frontend, but is still in the db).

Datasets in the organization will remain, just not in the purged group.

You must be authorized to purge the group.

Parameters id (string) – the name or id of the group to be purged

ckan.logic.action.delete.organization_purge(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Purge an organization.

Warning: Purging an organization cannot be undone!

Purging an organization completely removes the organization from the CKAN database, whereas deleting an
organization simply marks the organization as deleted (it will no longer show up in the frontend, but is still in
the db).

Datasets owned by the organization will remain, just not in an organization any more.

You must be authorized to purge the organization.

4.9. Action API reference 215



CKAN documentation, Release 2.10.0a0

Parameters id (string) – the name or id of the organization to be purged

ckan.logic.action.delete.task_status_delete(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Delete a task status.

You must be a sysadmin to delete task statuses.

Parameters id (string) – the id of the task status to delete

ckan.logic.action.delete.vocabulary_delete(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Delete a tag vocabulary.

You must be a sysadmin to delete vocabularies.

Parameters id (string) – the id of the vocabulary

ckan.logic.action.delete.tag_delete(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Delete a tag.

You must be a sysadmin to delete tags.

Parameters

• id (string) – the id or name of the tag

• vocabulary_id (string) – the id or name of the vocabulary that the tag belongs to (op-
tional, default: None)

ckan.logic.action.delete.unfollow_user(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Stop following a user.

Parameters id (string) – the id or name of the user to stop following

ckan.logic.action.delete.unfollow_dataset(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Stop following a dataset.

Parameters id (string) – the id or name of the dataset to stop following

ckan.logic.action.delete.group_member_delete(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Remove a user from a group.

You must be authorized to edit the group.

Parameters

• id (string) – the id or name of the group

• username (string) – name or id of the user to be removed

ckan.logic.action.delete.organization_member_delete(context: ckan.types.Context, data_dict: dict[str,
Any])→ None

Remove a user from an organization.

You must be authorized to edit the organization.

Parameters

• id (string) – the id or name of the organization

• username (string) – name or id of the user to be removed

216 Chapter 4. API guide



CKAN documentation, Release 2.10.0a0

ckan.logic.action.delete.unfollow_group(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Stop following a group.

Parameters id (string) – the id or name of the group to stop following

ckan.logic.action.delete.job_clear(context: Context, data_dict: DataDict)→ list[str]
Clear background job queues.

Does not affect jobs that are already being processed.

Parameters queues (list) – The queues to clear. If not given then ALL queues are cleared.

Returns The cleared queues.

Return type list

New in version 2.7.

ckan.logic.action.delete.job_cancel(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Cancel a queued background job.

Removes the job from the queue and deletes it.

Parameters id (string) – The ID of the background job.

New in version 2.7.

ckan.logic.action.delete.api_token_revoke(context: ckan.types.Context, data_dict: dict[str, Any])→
None

Delete API Token.

Parameters

• token (string) – Token to remove(required if jti not specified).

• jti (string) – Id of the token to remove(overrides token if specified).

New in version 3.0.

4.9. Action API reference 217



CKAN documentation, Release 2.10.0a0

218 Chapter 4. API guide



CHAPTER

FIVE

EXTENDING GUIDE

The following sections will teach you how to customize and extend CKAN’s features by developing your own CKAN
extensions.

See also:

Some core extensions come packaged with CKAN. Core extensions don’t need to be installed before you can use them
as they’re installed when you install CKAN, they can simply be enabled by following the setup instructions in each
extension’s documentation (some core extensions are already enabled by default). For example, the datastore extension,
multilingual extension, and stats extension are all core extensions, and the data viewer also uses core extensions to
enable data previews for different file formats.

See also:

External extensions are CKAN extensions that don’t come packaged with CKAN, but must be downloaded and in-
stalled separately. Find external extensions at https://extensions.ckan.org/. Again, follow each extension’s own docu-
mentation to install, setup, and use the extension.

5.1 Writing extensions tutorial

This tutorial will walk you through the process of creating a simple CKAN extension, and introduce the
core concepts that CKAN extension developers need to know along the way. As an example, we’ll use the
example_iauthfunctions extension that’s packaged with CKAN. This is a simple CKAN extension that customizes
some of CKAN’s authorization rules.

5.1.1 Installing CKAN

Before you can start developing a CKAN extension, you’ll need a working source install of CKAN on your system. If
you don’t have a CKAN source install already, follow the instructions in Installing CKAN from source before continuing.

Note: If you are developing extension without actual source installation of CKAN(i.e. if you have installed CKAN as
package via pip install ckan), you can install all main and dev dependencies with the following commands:

pip install -r https://raw.githubusercontent.com/ckan/ckan/ckan-2.9.5/requirements.txt
pip install -r https://raw.githubusercontent.com/ckan/ckan/ckan-2.9.5/dev-requirements.
→˓txt

219

https://extensions.ckan.org/


CKAN documentation, Release 2.10.0a0

5.1.2 Creating a new extension

Extensions

A CKAN extension is a Python package that modifies or extends CKAN. Each extension contains one or more
plugins that must be added to your CKAN config file to activate the extension’s features.

You can use cookiecutter command to create an “empty” extension from a template. Or the CLI command ckan
generate extension. For whichever method you choose, the first step is to activate your CKAN virtual environment:

. /usr/lib/ckan/default/bin/activate

cookiecutter

When you run cookiecutter, your new extension’s directory will be created in the current working directory by
default (you can override this with the -o option), so change to the directory that you want your extension to be
created in. Usually you’ll want to track your extension code using a version control system such as git, so you
wouldn’t want to create your extension in the ckan source directory because that directory already contains the
CKAN git repo. Let’s use the parent directory instead:

cd /usr/lib/ckan/default/src

Now run cookiecutter to create your extension:

cookiecutter ckan/contrib/cookiecutter/ckan_extension/

CLI Command

Using the ckan generate extension place the extension’s directory in the ckan source code’s parent directory
(this can be changed the using the -o option). Run the command to create the extension:

ckan generate extension

The commands will present a few prompts. The information you give will end up in your extension’s setup.py file
(where you can edit them later if you want).

Note: The first prompt is for the name of your next extension. CKAN extension names have to begin with ckanext-.
This tutorial uses the project name ckanext-iauthfunctions.

Once the command has completed, your new CKAN extension’s project directory will have been created and will
contain a few directories and files to get you started:

ckanext-iauthfunctions/
ckanext/

__init__.py
iauthfunctions/

__init__.py
ckanext_iauthfunctions.egg-info/
setup.py

220 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

ckanext_iauthfunctions.egg_info is a directory containing automatically generated metadata about your project.
It’s used by Python’s packaging and distribution tools. In general, you don’t need to edit or look at anything in this
directory, and you should not add it to version control.

setup.py is the setup script for your project. As you’ll see later, you use this script to install your project into a virtual
environment. It contains several settings that you’ll update as you develop your project.

ckanext/iauthfunctions is the Python package directory where we’ll add the source code files for our extension.

5.1.3 Creating a plugin class

Plugins

Each CKAN extension contains one or more plugins that provide the extension’s features.

cookiecutter should have created the following file file ckanext-iauthfunctions/ckanext/iauthfunctions/
plugin.py. Edit it to match the following:

# encoding: utf-8

import ckan.plugins as plugins

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
pass

Our plugin is a normal Python class, named ExampleIAuthFunctionsPlugin in this example, that inherits from
CKAN’s SingletonPlugin class.

Note: Every CKAN plugin class should inherit from SingletonPlugin.

5.1.4 Adding the plugin to setup.py

Now let’s add our class to the entry_points in setup.py. This identifies the plugin class to CKAN once the extension
is installed in CKAN’s virtualenv, and associates a plugin name with the class. Edit ckanext-iauthfunctions/
setup.py and add a line to the entry_points section like this:

entry_points='''
[ckan.plugins]
example_iauthfunctions=ckanext.iauthfunctions.plugin:ExampleIAuthFunctionsPlugin

''',

5.1. Writing extensions tutorial 221



CKAN documentation, Release 2.10.0a0

5.1.5 Installing the extension

When you install CKAN , you create a Python virtual environment in a directory on your system (/usr/lib/ckan/default
by default) and install the CKAN Python package and the other packages that CKAN depends on into this virtual
environment. Before we can use our plugin, we must install our extension into our CKAN virtual environment.

Make sure your virtualenv is activated, change to the extension’s directory, and run python setup.py develop:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckanext-iauthfunctions
python setup.py develop

5.1.6 Enabling the plugin

An extension’s plugins must be added to the ckan.plugins setting in your CKAN config file so that CKAN will call the
plugins’ methods. The name that you gave to your plugin class in the left-hand-side of the assignment in the setup.py
file (example_iauthfunctions in this example) is the name you’ll use for your plugin in CKAN’s config file:

ckan.plugins = stats text_view recline_view example_iauthfunctions

You should now be able to start CKAN in the development web server and have it start up without any problems:

$ ckan -c /etc/ckan/default/ckan.ini run
Starting server in PID 13961.
serving on 0.0.0.0:5000 view at http://127.0.0.1:5000

If your plugin is in the ckan.plugins setting and CKAN starts without crashing, then your plugin is installed and CKAN
can find it. Of course, your plugin doesn’t do anything yet.

5.1.7 Troubleshooting

PluginNotFoundException

If CKAN crashes with a PluginNotFoundException like this:

ckan.plugins.core.PluginNotFoundException: example_iauthfunctions

then:

• Check that the name you’ve used for your plugin in your CKAN config file is the same as the name you’ve used
in your extension’s setup.py file

• Check that you’ve run python setup.py develop in your extension’s directory, with your CKAN virtual
environment activated. Every time you add a new plugin to your extension’s setup.py file, you need to run
python setup.py develop again before you can use the new plugin.

222 Chapter 5. Extending guide

http://www.virtualenv.org
http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

ImportError

If you get an ImportError from CKAN relating to your plugin, it’s probably because the path to your plugin class in
your setup.py file is wrong.

5.1.8 Implementing the IAuthFunctions plugin interface

Plugin interfaces

CKAN provides a number of plugin interfaces that plugins must implement to hook into CKAN and modify or
extend it. Each plugin interface defines a number of methods that a plugin that implements the interface must
provide. CKAN will call your plugin’s implementations of these methods, to allow your plugin to do its stuff.

To modify CKAN’s authorization behavior, we’ll implement the IAuthFunctions plugin interface. This interface
defines just one method, that takes no parameters and returns a dictionary:

get_auth_functions() Return the authorization functions provided by this plu-
gin.

Action functions and authorization functions

At this point, it’s necessary to take a short diversion to explain how authorization works in CKAN.

Every action that can be carried out using the CKAN web interface or API is implemented by an action function in
one of the four files ckan/logic/action/{create,delete,get,update}.py.

For example, when creating a dataset either using the web interface or using the package_create() API
call, ckan.logic.action.create.package_create() is called. There’s also ckan.logic.action.get.
package_show(), ckan.logic.action.update.package_update(), and ckan.logic.action.delete.
package_delete().

For a full list of the action functions available in CKAN, see the Action API reference.

Each action function has a corresponding authorization function in one of the four files ckan/logic/auth/
{create,delete,get,update}.py, CKAN calls this authorization function to decide whether the user is au-
thorized to carry out the requested action. For example, when creating a new package using the web interface or
API, ckan.logic.auth.create.package_create() is called.

The IAuthFunctions plugin interface allows CKAN plugins to hook into this authorization system to add their own
authorization functions or override the default authorization functions. In this way, plugins have complete control
to customize CKAN’s auth.

Whenever a user tries to create a new group via the web interface or the API, CKAN calls the group_create()
authorization function to decide whether to allow the action. Let’s override this function and simply prevent anyone
from creating new groups(Note: this is default behavior. In order to go further, you need to change ckan.auth.
user_create_groups to True in configuration file). Edit your plugin.py file so that it looks like this:

# encoding: utf-8
from __future__ import annotations

from typing import Any, Optional
from ckan.types import AuthResult, Context

(continues on next page)

5.1. Writing extensions tutorial 223



CKAN documentation, Release 2.10.0a0

(continued from previous page)

import ckan.plugins as plugins

def group_create(
context: Context,
data_dict: Optional[dict[str, Any]] = None) -> AuthResult:

return {'success': False, 'msg': 'No one is allowed to create groups'}

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

def get_auth_functions(self):
return {'group_create': group_create}

Our ExampleIAuthFunctionsPlugin class now calls implements() to tell CKAN that it implements the
IAuthFunctions interface, and provides an implementation of the interface’s get_auth_functions() method that
overrides the default group_create() function with a custom one.

See also:

Starting from CKAN 2.10, you can also use the ckan.plugins.toolkit.blanket decorators to implement common
interfaces in your plugins. See the blanket method in the Plugins toolkit reference.

Our custom function simply returns {'success': False} to refuse to let anyone create a new group.

If you now restart CKAN and reload the /group page, as long as you’re not a sysadmin user you should see the Add
Group button disappear. The CKAN web interface automatically hides buttons that the user is not authorized to use.
Visiting /group/new directly will redirect you to the login page. If you try to call group_create() via the API,
you’ll receive an Authorization Error from CKAN:

$ http 127.0.0.1:5000/api/3/action/group_create Authorization:*** name=my_group
HTTP/1.0 403 Forbidden
Access-Control-Allow-Headers: X-CKAN-API-KEY, Authorization, Content-Type
Access-Control-Allow-Methods: POST, PUT, GET, DELETE, OPTIONS
Access-Control-Allow-Origin: *
Cache-Control: no-cache
Content-Length: 2866
Content-Type: application/json;charset=utf-8
Date: Wed, 12 Jun 2013 13:38:01 GMT
Pragma: no-cache
Server: PasteWSGIServer/0.5 Python/2.7.4

{
"error": {

"__type": "Authorization Error",
"message": "Access denied"

},
"help": "Create a new group...",
"success": false

}

If you’re logged in as a sysadmin user however, you’ll still be able to create new groups. Sysadmin users can always
carry out any action, they bypass the authorization functions.

224 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

5.1.9 Using the plugins toolkit

Let’s make our custom authorization function a little smarter, and allow only users who are members of a particular
group named curators to create new groups.

First run CKAN, login and then create a new group called curators. Then edit plugin.py so that it looks like this:

Note: This version of plugin.py will crash if the user is not logged in or if the site doesn’t have a group called
curators. You’ll want to create a curators group in your CKAN before editing your plugin to look like this. See
Exception handling below.

# encoding: utf-8
from __future__ import annotations

from ckan.types import (
AuthFunction, AuthResult, Context, ContextValidator, DataDict)

from typing import Optional, cast
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit

def group_create(
context: Context, data_dict: Optional[DataDict] = None) -> AuthResult:

# Get the user name of the logged-in user.
user_name: str = context['user']

# Get a list of the members of the 'curators' group.
members = toolkit.get_action('member_list')(

{},
{'id': 'curators', 'object_type': 'user'})

# 'members' is a list of (user_id, object_type, capacity) tuples, we're
# only interested in the user_ids.
member_ids = [member_tuple[0] for member_tuple in members]

# We have the logged-in user's user name, get their user id.
convert_user_name_or_id_to_id = cast(

ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id'))

user_id = convert_user_name_or_id_to_id(user_name, context)

# Finally, we can test whether the user is a member of the curators group.
if user_id in member_ids:

return {'success': True}
else:

return {'success': False,
'msg': 'Only curators are allowed to create groups'}

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

(continues on next page)

5.1. Writing extensions tutorial 225



CKAN documentation, Release 2.10.0a0

(continued from previous page)

def get_auth_functions(self) -> dict[str, AuthFunction]:
return {'group_create': group_create}

context

The context parameter of our group_create() function is a dictionary that CKAN passes to all authorization and
action functions containing some computed variables. Our function gets the name of the logged-in user from context:

user_name: str = context['user']

data_dict

The data_dict parameter of our group_create() function is another dictionary that CKAN passes to all autho-
rization and action functions. data_dict contains any data posted by the user to CKAN, eg. any fields they’ve
completed in a web form they’re submitting or any JSON fields they’ve posted to the API. If we inspect the contents
of the data_dict passed to our group_create() authorization function, we’ll see that it contains the details of the
group the user wants to create:

{'description': u'A really cool group',
'image_url': u'',
'name': u'my_group',
'title': u'My Group',
'type': 'group',
'users': [{'capacity': 'admin', 'name': u'seanh'}]}

The plugins toolkit

CKAN’s plugins toolkit is a Python module containing core CKAN functions, classes and exceptions for use by CKAN
extensions.

The toolkit’s get_action() function returns a CKAN action function. The action functions available to extensions
are the same functions that CKAN uses internally to carry out actions when users make requests to the web interface
or API. Our code uses get_action() to get the member_list() action function, which it uses to get a list of the
members of the curators group:

members = toolkit.get_action('member_list')(
{},
{'id': 'curators', 'object_type': 'user'})

Calling member_list() in this way is equivalent to posting the same data dict to the /api/3/action/member_list
API endpoint. For other action functions available from get_action(), see Action API reference.

The toolkit’s get_validator() function returns validator and converter functions from ckan.logic.converters
for plugins to use. This is the same set of converter functions that CKAN’s action functions use to convert user-provided
data. Our code uses get_validator() to get the convert_user_name_or_id_to_id() converter function, which
it uses to convert the name of the logged-in user to their user id:

226 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

convert_user_name_or_id_to_id = cast(
ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id'))

user_id = convert_user_name_or_id_to_id(user_name, context)

Finally, we can test whether the logged-in user is a member of the curators group, and allow or refuse the action:

if user_id in member_ids:
return {'success': True}

else:
return {'success': False,

'msg': 'Only curators are allowed to create groups'}

5.1.10 Exception handling

There are two bugs in our plugin.py file that need to be fixed using exception handling. First, the class will crash if
the site does not have a group named curators.

Tip: If you’ve already created a curators group and want to test what happens when the site has no curators group,
you can use CKAN’s command line interface to clean and reinitialize your database.

Try visiting the /group page in CKAN with our example_iauthfunctions plugin activated in your CKAN config
file and with no curators group in your site. If you have debug = false in your CKAN config file, you’ll see
something like this in your browser:

Error 500

Server Error

An internal server error occurred

If you have debug = true in your CKAN config file, then you’ll see a traceback page with details about the crash.

You’ll also get a 500 Server Error if you try to create a group using the group_create API action.

To handle the situation where the site has no curators group without crashing, we’ll have to handle the exception that
CKAN’s member_list() function raises when it’s asked to list the members of a group that doesn’t exist. Replace the
member_list line in your plugin.py file with these lines:

try:
members = toolkit.get_action('member_list')(

{},
{'id': 'curators', 'object_type': 'user'})

except toolkit.ObjectNotFound:
# The curators group doesn't exist.
return {'success': False,

'msg': "The curators groups doesn't exist, so only sysadmins "
"are authorized to create groups."}

5.1. Writing extensions tutorial 227



CKAN documentation, Release 2.10.0a0

With these try and except clauses added, we should be able to load the /group page and add groups, even if there
isn’t already a group called curators.

Second, plugin.py will crash if a user who is not logged-in tries to create a group. If you logout of CKAN, and then
visit /group/new you’ll see another 500 Server Error. You’ll also get this error if you post to the group_create()
API action without providing an API key.

When the user isn’t logged in, context['user'] contains the user’s IP address instead of a user name:

{'model': <module 'ckan.model' from ...>,
'user': u'127.0.0.1'}

When we pass this IP address as the user name to convert_user_name_or_id_to_id(), the converter function will
raise an exception because no user with that user name exists. We need to handle that exception as well, replace the
convert_user_name_or_id_to_id line in your plugin.py file with these lines:

convert_user_name_or_id_to_id = cast(
ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id'))

try:
user_id = convert_user_name_or_id_to_id(user_name, context)

except toolkit.Invalid:
# The user doesn't exist (e.g. they're not logged-in).
return {'success': False,

'msg': 'You must be logged-in as a member of the curators '
'group to create new groups.'}

5.1.11 We’re done!

Here’s our final, working plugin.py module in full:

# encoding: utf-8

from ckan.types import AuthResult, Context, ContextValidator, DataDict
from typing import Optional, cast
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit

def group_create(
context: Context, data_dict: Optional[DataDict] = None) -> AuthResult:

# Get the user name of the logged-in user.
user_name = context['user']

# Get a list of the members of the 'curators' group.
try:

members = toolkit.get_action('member_list')(
{},
{'id': 'curators', 'object_type': 'user'})

except toolkit.ObjectNotFound:
# The curators group doesn't exist.
return {'success': False,

(continues on next page)

228 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

'msg': "The curators groups doesn't exist, so only sysadmins "
"are authorized to create groups."}

# 'members' is a list of (user_id, object_type, capacity) tuples, we're
# only interested in the user_ids.
member_ids = [member_tuple[0] for member_tuple in members]

# We have the logged-in user's user name, get their user id.
convert_user_name_or_id_to_id = cast(

ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id'))

try:
user_id = convert_user_name_or_id_to_id(user_name, context)

except toolkit.Invalid:
# The user doesn't exist (e.g. they're not logged-in).
return {'success': False,

'msg': 'You must be logged-in as a member of the curators '
'group to create new groups.'}

# Finally, we can test whether the user is a member of the curators group.
if user_id in member_ids:

return {'success': True}
else:

return {'success': False,
'msg': 'Only curators are allowed to create groups'}

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

def get_auth_functions(self):
return {'group_create': group_create}

In working through this tutorial, you’ve covered all the key concepts needed for writing CKAN extensions, including:

• Creating an extension

• Creating a plugin within your extension

• Adding your plugin to your extension’s setup.py file, and installing your extension

• Making your plugin implement one of CKAN’s plugin interfaces

• Using the plugins toolkit

• Handling exceptions

5.1. Writing extensions tutorial 229



CKAN documentation, Release 2.10.0a0

5.1.12 Troubleshooting

AttributeError

If you get an AttributeError like this one:

AttributeError: 'ExampleIAuthFunctionsPlugin' object has no attribute 'get_auth_functions
→˓'

it means that your plugin class does not implement one of the plugin interface’s methods. A plugin must implement
every method of every plugin interface that it implements.

Todo: Can you user inherit=True to avoid having to implement them all?

Other AttributeErrors can happen if your method returns the wrong type of value, check the documentation for
each plugin interface method to see what your method should return.

TypeError

If you get a TypeError like this one:

TypeError: get_auth_functions() takes exactly 3 arguments (1 given)

it means that one of your plugin methods has the wrong number of parameters. A plugin has to implement each method
in a plugin interface with the same parameters as in the interface.

5.2 Using custom config settings in extensions

Extensions can define their own custom config settings that users can add to their CKAN config files to configure the
behavior of the extension.

Continuing with the IAuthFunctions example from Writing extensions tutorial, let’s make an alternative ver-
sion of the extension that allows users to create new groups if a new config setting ckan.iauthfunctions.
users_can_create_groups is True:

# encoding: utf-8

from typing import Optional
from ckan.types import AuthResult, Context, DataDict

import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
from ckan.config.declaration import Declaration, Key

def group_create(
context: Context,
data_dict: Optional[DataDict] = None) -> AuthResult:

# Get the value of the ckan.iauthfunctions.users_can_create_groups
# setting from the CKAN config file as a string, or False if the setting

(continues on next page)

230 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# isn't in the config file.
users_can_create_groups = toolkit.config.get_value(

'ckan.iauthfunctions.users_can_create_groups')

if users_can_create_groups:
return {'success': True}

else:
return {'success': False,

'msg': 'Only sysadmins can create groups'}

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)
plugins.implements(plugins.IConfigDeclaration)

def get_auth_functions(self):
return {'group_create': group_create}

# IConfigDeclaration

def declare_config_options(self, declaration: Declaration, key: Key):
declaration.declare_bool(

key.ckan.iauthfunctions.users_can_create_groups)

The group_create authorization function in this plugin uses config to read the setting from the config file, then calls
ckan.plugins.toolkit.asbool() to convert the value from a string (all config settings values are strings, when
read from the file) to a boolean.

Note: There are also asint() and aslist() functions in the plugins toolkit.

With this plugin enabled, you should find that users can create new groups if you have ckan.iauthfunctions.
users_can_create_groups = True in the [app:main] section of your CKAN config file. Otherwise, only sysad-
min users will be allowed to create groups.

Note: Names of config settings provided by extensions should include the name of the extension, to avoid conflicting
with core config settings or with config settings from other extensions. See Avoid name clashes.

Note: The users still need to be logged-in to create groups. In general creating, updating or deleting content in CKAN
requires the user to be logged-in to a registered user account, no matter what the relevant authorization function says.

5.2. Using custom config settings in extensions 231



CKAN documentation, Release 2.10.0a0

5.3 Making configuration options runtime-editable

Extensions can allow certain configuration options to be edited during runtime, as opposed to having to edit the con-
figuration file and restart the server.

Warning: Only configuration options which are not critical, sensitive or could cause the CKAN instance to break
should be made runtime-editable. You should only add config options that you are comfortable they can be edited
during runtime, such as ones you’ve added in your own extension, or have reviewed the use of in core CKAN.

Note: Only sysadmin users are allowed to modify runtime-editable configuration options.

In this tutorial we will show how to make changes to our extension to make two configuration options runtime-editable:
ckan.datasets_per_page and a custom one named ckanext.example_iconfigurer.test_conf. You can see the
changes in the example_iconfigurer extension that’s packaged with CKAN. If you haven’t done yet, you should
check the Writing extensions tutorial first.

This tutorial assumes that we have CKAN running on the paster development server at http://localhost:5000, and that
we are using the API key of a sysadmin user.

First of all, let’s call the config_option_list() API action to see what configuration options are editable during
runtime (the | python -m json.tool bit at the end is added to format the output nicely):

curl -H "Authorization: XXX" http://localhost:5000/api/action/config_option_list |␣
→˓python -m json.tool
{

"help": "http://localhost:5000/api/3/action/help_show?name=config_option_list",
"result": [

"ckan.site_custom_css",
"ckan.main_css",
"ckan.site_title",
"ckan.site_about",
"ckan.site_url",
"ckan.site_logo",
"ckan.site_description",
"ckan.site_intro_text",
"ckan.homepage_style",
"ckan.hola"

],
"success": true

}

We can see that the two options that we want to make runtime-editable are not on the list. Trying to update one of them
with the config_option_update() action would return an error.

To include them, we need to add them to the schema that CKAN will use to decide which configuration options can be
edited safely at runtime. This is done with the update_config_schema() method of the IConfigurer interface.

Let’s have a look at how our extension should look like:

# encoding: utf-8

import ckan.plugins as plugins
(continues on next page)

232 Chapter 5. Extending guide

../maintaining/configuration.html#ckan-configuration-file
../maintaining/configuration.html#ckan-configuration-file
http://localhost:5000


CKAN documentation, Release 2.10.0a0

(continued from previous page)

import ckan.plugins.toolkit as toolkit
from ckan.types import Schema

class ExampleIConfigurerPlugin(plugins.SingletonPlugin):

plugins.implements(plugins.IConfigurer)

# IConfigurer

def update_config_schema(self, schema: Schema):

ignore_missing = toolkit.get_validator('ignore_missing')
unicode_safe = toolkit.get_validator('unicode_safe')
is_positive_integer = toolkit.get_validator('is_positive_integer')

schema.update({
# This is an existing CKAN core configuration option, we are just
# making it available to be editable at runtime
'ckan.datasets_per_page': [ignore_missing, is_positive_integer],

# This is a custom configuration option
'ckanext.example_iconfigurer.test_conf': [ignore_missing,

unicode_safe],
})

return schema

The update_config_schema method will receive the default schema for runtime-editable configuration options used
by CKAN core. We can then add keys to it to make new options runtime-editable (or remove them if we don’t want them
to be runtime-editable). The schema is a dictionary mapping configuration option keys to lists of validator and converter
functions to be applied to those keys. To get validator functions defined in CKAN core we use the get_validator()
function.

Note: Make sure that the first validator applied to each key is the ignore_missing one, otherwise this key will need
to be always set when updating the configuration.

Restart the web server and do another request to the config_option_list() API action:

curl -H "Authorization: XXX" http://localhost:5000/api/action/config_option_list |␣
→˓python -m json.tool
{

"help": "http://localhost:5000/api/3/action/help_show?name=config_option_list",
"result": [

"ckan.datasets_per_page",
"ckanext.example_iconfigurer.test_conf",
"ckan.site_custom_css",
"ckan.main_css",
"ckan.site_title",
"ckan.site_about",
"ckan.site_url",

(continues on next page)

5.3. Making configuration options runtime-editable 233



CKAN documentation, Release 2.10.0a0

(continued from previous page)

"ckan.site_logo",
"ckan.site_description",
"ckan.site_intro_text",
"ckan.homepage_style",
"ckan.hola"

],
"success": true

}

Our two new configuration options are available to be edited at runtime. We can test it calling the
config_option_update() action:

curl -X POST -H "Authorization: XXX" http://localhost:5000/api/action/config_option_
→˓update -d "{\"ckan.datasets_per_page\": 5}" | python -m json.tool
{

"help": "http://localhost:5001/api/3/action/help_show?name=config_option_update",
"result": {

"ckan.datasets_per_page": 5
},
"success": true

}

The configuration has now been updated. If you visit the main search page at http://localhost:5000/dataset only 5
datasets should appear in the results as opposed to the usual 20.

At this point both our configuration options can be updated via the API, but we also want to make them available on
the administration interface so non-technical users don’t need to use the API to change them.

To do so, we will extend the CKAN core template as described in the Customizing CKAN’s templates documentation.

First add the update_config() method to your plugin and register the extension templates folder:

# encoding: utf-8

import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
from ckan.types import Schema
from ckan.common import CKANConfig

class ExampleIConfigurerPlugin(plugins.SingletonPlugin):

plugins.implements(plugins.IConfigurer)

# IConfigurer

def update_config(self, config: CKANConfig):
# Add extension templates directory
toolkit.add_template_directory(config, 'templates')

def update_config_schema(self, schema: Schema):

ignore_missing = toolkit.get_validator('ignore_missing')
unicode_safe = toolkit.get_validator('unicode_safe')

(continues on next page)

234 Chapter 5. Extending guide

http://localhost:5000/dataset


CKAN documentation, Release 2.10.0a0

(continued from previous page)

is_positive_integer = toolkit.get_validator('is_positive_integer')

schema.update({
# This is an existing CKAN core configuration option, we are just
# making it available to be editable at runtime
'ckan.datasets_per_page': [ignore_missing, is_positive_integer],

# This is a custom configuration option
'ckanext.example_iconfigurer.test_conf': [ignore_missing,

unicode_safe],
})

return schema

Now create a new file config.html file under ckanext/yourextension/templates/admin/ with the following
contents:

{% ckan_extends %}

{% import 'macros/form.html' as form %}

{% block admin_form %}

{{ super() }}

<h3>Custom configuration options </h3>

{{ form.input('ckan.datasets_per_page', id='field-ckan.datasets_per_page', label=_(
→˓'Datasets per page'), value=data['ckan.datasets_per_page'], error=errors['ckan.
→˓datasets_per_page']) }}

{{ form.input('ckanext.example_iconfigurer.test_conf', id='field-ckanext.example_
→˓iconfigurer.test_conf', label=_('Test conf'), value=data['ckanext.example_iconfigurer.
→˓test_conf'], error=errors['ckanext.example_iconfigurer.test_conf']) }}

{% endblock %}

{% block admin_form_help %}

{{ super() }}

<p><strong>Datasets per page:</strong> Number of datasets displayed in dataset␣
→˓listings (eg search page).</p>

<p><strong>Test conf:</strong> An example configuration option, set from an extension.
→˓</p>

{% endblock %}

This template is extending the default core one. The first block adds two new fields for our configuration options below
the existing ones. The second adds a helper text for them on the left hand column.

5.3. Making configuration options runtime-editable 235



CKAN documentation, Release 2.10.0a0

Restart the server and navigate to http://localhost:5000/ckan-admin/config. You should see the newfields at the bottom
of the form:

Updating the values on the form should update the configuration as before.

5.4 Testing extensions

CKAN extensions can have their own tests that are run using pytest in much the same way as running CKAN’s own
tests (see Testing CKAN).

Continuing with our example_iauthfunctions extension, first we need a CKAN config file to be used when running our
tests. Create the file ckanext-iauthfunctions/test.ini with the following contents:

[app:main]
use = config:../ckan/test-core.ini

The use line declares that this config file inherits the settings from the config file used to run CKAN’s own tests
(../ckan should be the path to your CKAN source directory, relative to your test.ini file).

The test.ini file is a CKAN config file just like your /etc/ckan/default/ckan.ini file, and it can contain any CKAN
config file settings that you want CKAN to use when running your tests, for example:

[app:main]
use = config:../ckan/test-core.ini
ckan.site_title = My Test CKAN Site
ckan.site_description = A test site for testing my CKAN extension

Next, make the directory that will contain our test modules:

mkdir ckanext-iauthfunctions/ckanext/iauthfunctions/tests/

236 Chapter 5. Extending guide

http://localhost:5000/ckan-admin/config


CKAN documentation, Release 2.10.0a0

Finally, create the file ckanext-iauthfunctions/ckanext/iauthfunctions/tests/test_iauthfunctions.
py with the following contents:

# encoding: utf-8
'''Tests for the ckanext.example_iauthfunctions extension.

'''
import pytest

import ckan.logic as logic
import ckan.tests.factories as factories
import ckan.tests.helpers as helpers
from ckan.plugins.toolkit import NotAuthorized, ObjectNotFound

@pytest.mark.ckan_config('ckan.plugins',
'example_iauthfunctions_v6_parent_auth_functions')

@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
class TestAuthV6(object):

def test_resource_delete_editor(self):
'''Normally organization admins can delete resources
Our plugin prevents this by blocking delete organization.

Ensure the delete button is not displayed (as only resource delete
is checked for showing this)

'''
user = factories.User()
owner_org = factories.Organization(users=[{

'name': user['id'],
'capacity': 'admin'

}])
dataset = factories.Dataset(owner_org=owner_org['id'])
resource = factories.Resource(package_id=dataset['id'])
with pytest.raises(logic.NotAuthorized) as e:

logic.check_access('resource_delete', {'user': user['name']},
{'id': resource['id']})

assert e.value.message == 'User %s not authorized to delete resource %s' % (
user['name'], resource['id'])

def test_resource_delete_sysadmin(self):
'''Normally organization admins can delete resources
Our plugin prevents this by blocking delete organization.

Ensure the delete button is not displayed (as only resource delete
is checked for showing this)

'''
user = factories.Sysadmin()
owner_org = factories.Organization(users=[{

'name': user['id'],
'capacity': 'admin'

(continues on next page)

5.4. Testing extensions 237



CKAN documentation, Release 2.10.0a0

(continued from previous page)

}])
dataset = factories.Dataset(owner_org=owner_org['id'])
resource = factories.Resource(package_id=dataset['id'])
assert logic.check_access('resource_delete', {'user': user['name']},

{'id': resource['id']})

@pytest.mark.ckan_config('ckan.plugins',
'example_iauthfunctions_v5_custom_config_setting')

@pytest.mark.ckan_config('ckan.iauthfunctions.users_can_create_groups', False)
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
class TestAuthV5(object):

def test_sysadmin_can_create_group_when_config_is_false(self):
sysadmin = factories.Sysadmin()
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

def test_user_cannot_create_group_when_config_is_false(self):
user = factories.User()
context = {'ignore_auth': False, 'user': user['name']}
with pytest.raises(NotAuthorized):

helpers.call_action('group_create', context, name='test-group')

def test_visitor_cannot_create_group_when_config_is_false(self):
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):

helpers.call_action('group_create', context, name='test-group')

@pytest.mark.ckan_config('ckan.plugins',
'example_iauthfunctions_v5_custom_config_setting')

@pytest.mark.ckan_config('ckan.iauthfunctions.users_can_create_groups', True)
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
class TestAuthV5WithUserCreateGroup(object):

def test_sysadmin_can_create_group_when_config_is_true(self):
sysadmin = factories.Sysadmin()
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

def test_user_can_create_group_when_config_is_true(self):
user = factories.User()
context = {'ignore_auth': False, 'user': user['name']}
helpers.call_action('group_create', context, name='test-group')

def test_visitor_cannot_create_group_when_config_is_true(self):
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):

helpers.call_action('group_create', context, name='test-group')

(continues on next page)

238 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

@pytest.fixture
def curators_group():

'''This is a helper method for test methods to call when they want
the 'curators' group to be created.
'''
sysadmin = factories.Sysadmin()

# Create a user who will *not* be a member of the curators group.
noncurator = factories.User()

# Create a user who will be a member of the curators group.
curator = factories.User()

# Create the curators group, with the 'curator' user as a member.
users = [{'name': curator['name'], 'capacity': 'member'}]
context = {'ignore_auth': False, 'user': sysadmin['name']}
group = helpers.call_action('group_create',

context,
name='curators',
users=users)

return (noncurator, curator, group)

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
def test_group_create_with_no_curators_group():

'''Test that group_create doesn't crash when there's no curators group.
'''
sysadmin = factories.Sysadmin()

# Make sure there's no curators group.
assert 'curators' not in helpers.call_action('group_list', {})

# Make our sysadmin user create a group. CKAN should not crash.
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
def test_group_create_with_visitor(curators_group):

'''A visitor (not logged in) should not be able to create a group.

Note: this also tests that the group_create auth function doesn't
crash when the user isn't logged in.
'''
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):

helpers.call_action('group_create',
context,
name='this_group_should_not_be_created')

(continues on next page)

5.4. Testing extensions 239



CKAN documentation, Release 2.10.0a0

(continued from previous page)

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
def test_group_create_with_non_curator(curators_group):

'''A user who isn't a member of the curators group should not be able
to create a group.
'''
noncurator, _, _ = curators_group
context = {'ignore_auth': False, 'user': noncurator['name']}
with pytest.raises(NotAuthorized):

helpers.call_action('group_create',
context,
name='this_group_should_not_be_created')

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins', 'with_request_context')
def test_group_create_with_curator(curators_group):

'''A member of the curators group should be able to create a group.
'''
_, curator, _ = curators_group
name = 'my-new-group'
context = {'ignore_auth': False, 'user': curator['name']}
result = helpers.call_action('group_create', context, name=name)

assert result['name'] == name

To run these extension tests, cd into the ckanext-iauthfunctions directory and run this command:

pytest --ckan-ini=test.ini ckanext/iauthfunctions/tests

Some notes on how these tests work:

• Pytest has lots of useful functions for testing, see the pytest documentation.

• We’re calling ckan.tests.call_action() This is a convenience function that CKAN provides for its own
tests.

• The CKAN core Testing coding standards can usefully be applied to writing tests for plugins.

• CKAN core provides:

– ckan.tests.factories for creating test data

– ckan.tests.helpers a collection of helper functions for use in tests

– ckan.tests.pytest_ckan.fixtures for setting up the test environment

which are also useful for testing extensions.

• You might also find it useful to read the Flask testing documentation (or Pylons testing documentation for plugins
using legacy pylons controllers).

• Avoid importing the plugin modules directly into your test modules (e.g from example_iauthfunctions import
plugin_v5_custom_config_setting). This causes the plugin to be registered and loaded before the entire test run,

240 Chapter 5. Extending guide

https://docs.pytest.org/en/latest/
https://flask-doc.readthedocs.io/en/latest/testing.html
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/testing.html


CKAN documentation, Release 2.10.0a0

so the plugin will be loaded for all tests. This can cause conflicts and test failures.

Todo: Link to CKAN guidelines for how to write tests, once those guidelines have been written. Also add any more
extension-specific testing details here.

5.5 Best practices for writing extensions

5.5.1 Follow CKAN’s coding standards

See Contributing guide.

5.5.2 Use the plugins toolkit instead of importing CKAN

Try to limit your extension to interacting with CKAN only through CKAN’s plugin interfaces and plugins toolkit. It’s
a good idea to keep your extension code separate from CKAN as much as possible, so that internal changes in CKAN
from one release to the next don’t break your extension.

5.5.3 Don’t edit CKAN’s database tables

An extension can create its own tables in the CKAN database, but it should not write to core CKAN tables directly,
add columns to core tables, or use foreign keys against core tables.

5.5.4 Use migrations when introducing new models

Any new model provided by extension must use migration script for creating and updating relevant tables. As well as
core tables, extensions should provide revisioned workflow for reproducing correct state of DB. There are few conve-
nient tools available in CKAN for this purpose:

• New migration script can be created via CLI interface:

ckan generate migration -p PLUGIN_NAME -m 'MIGRATION MESSAGE'

One should take care and use actual plugin’s name, not extension name instead of PLUGIN_NAME. This may
become important when an extension provides multiple plugins, which contain migration scripts. If those scripts
should be applied independently(i.e., there is no sense in particular migrations, unless specific plugin is enabled),
-p/--plugin option gives you enough control. Otherwise, if extenson named ckanext-ext contains just single
plugin ext, command for new migration will look like ckan generate migration -p ext.

Migration scripts are created under EXTENSION_ROOT/ckanext/EXTENSION_NAME/migration/PLUGIN_NAME/versions.
Once created, migration script contains empty upgrade and downgrade function, which need to be updated
according to desired changes. More details abailable in Alembic documentation.

• Apply migration script with:

ckan db upgrade -p PLUGIN_NAME

This command will check current state of DB and apply only required migrations, so it’s idempotent.

• Revert changes introduced by plugin’s migration scripts with:

5.5. Best practices for writing extensions 241

https://alembic.sqlalchemy.org/en/latest/tutorial.html#create-a-migration-script


CKAN documentation, Release 2.10.0a0

ckan db downgrade -p PLUGIN_NAME

5.5.5 Implement each plugin class in a separate Python module

This keeps CKAN’s plugin loading order simple, see ckan.plugins.

5.5.6 Avoid name clashes

Many of the names you pick for your identifiers and files must be unique in relation to the names used by core CKAN
and other extensions. To avoid conflicts you should prefix any public name that your extension introduces with the
name of your extension. For example:

• The names of configuration settings introduced by your extension should have the form my_extension.
my_config_setting.

• The names of templates and template snippets introduced by your extension should begin with the name of your
extension:

snippets/my_extension_useful_snippet.html

If you have add a lot of templates you can also put them into a separate folder named after your extension instead.

• The names of template helper functions introduced by your extension should begin with the name of your exten-
sion. For example:

def get_helpers(self):
'''Register the most_popular_groups() function above as a template
helper function.

'''
# Template helper function names should begin with the name of the
# extension they belong to, to avoid clashing with functions from
# other extensions.
return {'example_theme_most_popular_groups': most_popular_groups}

• The names of JavaScript modules introduced by your extension should begin with the name of your extension.
For example assets/example_theme_popover.js:

// Enable JavaScript's strict mode. Strict mode catches some common
// programming errors and throws exceptions, prevents some unsafe actions from
// being taken, and disables some confusing and bad JavaScript features.
"use strict";

ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {
console.log("I've been initialized for element: ", this.el);

}
};

});

242 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• The names of API action functions introduced by your extension should begin with the name of your extension.
For example my_extension_foobarize_everything.

• The names of background job queues introduced by your extension should begin with the name of your extension.
For example my_extension:super-special-job-queue.

In some situations, a resource may even be shared between multiple CKAN instances, which requires an even higher
degree of uniqueness for the corresponding names. In that case, you should also prefix your identifiers with the CKAN
site ID, which is available via

try:
# CKAN 2.7 and later
from ckan.common import config

except ImportError:
# CKAN 2.6 and earlier
from pylons import config

site_id = config[u'ckan.site_id']

Currently this only affects the Redis database:

• All keys in the Redis database created by your extension should be prefixed with both the CKAN site ID and
your extension’s name.

5.5.7 Internationalize user-visible strings

All user-visible strings should be internationalized, see String internationalization.

5.5.8 Add third party libraries to requirements.txt

If your extension requires third party libraries, rather than adding them to setup.py, they should be added to
requirements.txt, which can be installed with:

pip install -r requirements.txt

To prevent accidental breakage of your extension through backwards-incompatible behaviour of newer versions of your
dependencies, their versions should be pinned, such as:

requests==2.7.0

On the flip side, be mindful that this could also create version conflicts with requirements of considerably newer or
older extensions.

5.5.9 Do not automatically modify the database structure

If your extension uses custom database tables then it needs to modify the database structure, for example to add the tables
after its installation or to migrate them after an update. These modifications should not be performed automatically
when the extension is loaded, since this can lead to dead-locks and other problems.

Instead, create a ckan command which can be run separately.

5.5. Best practices for writing extensions 243

https://github.com/ckan/ideas-and-roadmap/issues/164


CKAN documentation, Release 2.10.0a0

5.6 Customizing dataset and resource metadata fields using IDataset-
Form

Storing additional metadata for a dataset beyond the default metadata in CKAN is a common use case. CKAN provides
a simple way to do this by allowing you to store arbitrary key/value pairs against a dataset when creating or updating
the dataset. These appear under the “Additional Information” section on the web interface and in ‘extras’ field of the
JSON when accessed via the API.

Default extras can only take strings for their keys and values, no validation is applied to the inputs and you cannot make
them mandatory or restrict the possible values to a defined list. By using CKAN’s IDatasetForm plugin interface, a
CKAN plugin can add custom, first-class metadata fields to CKAN datasets, and can do custom validation of these
fields.

See also:

In this tutorial we are assuming that you have read the Writing extensions tutorial.

You may also want to check the [ckanext-scheming](https://github.com/ckan/ckanext-scheming) extension, as it will
allow metadata schema configuration using a YAML or JSON schema description, replete with custom validation and
template snippets for editing and display.

5.6.1 CKAN schemas and validation

When a dataset is created, updated or viewed, the parameters passed to CKAN (e.g. via the web form when creating or
updating a dataset, or posted to an API end point) are validated against a schema. For each parameter, the schema will
contain a corresponding list of functions that will be run against the value of the parameter. Generally these functions
are used to validate the value (and raise an error if the value fails validation) or convert the value to a different value.

For example, the schemas can allow optional values by using the ignore_missing() validator or check that a dataset
exists using package_id_exists(). A list of available validators can be found at the Validator functions reference.
You can also define your own Custom validators.

We will be customizing these schemas to add our additional fields. The IDatasetForm interface allows us to override
the schemas for creation, updating and displaying of datasets.

create_package_schema() Return the schema for validating new dataset dicts.
update_package_schema() Return the schema for validating updated dataset dicts.
show_package_schema() Return a schema to validate datasets before they're

shown to the user.
is_fallback() Return True if this plugin is the fallback plugin.
package_types() Return an iterable of dataset (package) types that this

plugin handles.

CKAN allows you to have multiple IDatasetForm plugins, each handling different dataset types. So you could customize
the CKAN web front end, for different types of datasets. In this tutorial we will be defining our plugin as the fallback
plugin. This plugin is used if no other IDatasetForm plugin is found that handles that dataset type.

The IDatasetForm also has other additional functions that allow you to provide a custom template to be rendered for
the CKAN frontend, but we will not be using them for this tutorial.

244 Chapter 5. Extending guide

https://github.com/ckan/ckanext-scheming


CKAN documentation, Release 2.10.0a0

Adding custom fields to datasets

Create a new plugin named ckanext-extrafields and create a class named ExampleIDatasetFormPlugins inside
ckanext-extrafields/ckanext/extrafields/plugin.py that implements the IDatasetForm interface and in-
herits from SingletonPlugin and DefaultDatasetForm.

# encoding: utf-8
from __future__ import annotations

from ckan.types import Schema
import ckan.plugins as p
import ckan.plugins.toolkit as tk

class ExampleIDatasetFormPlugin(p.SingletonPlugin, tk.DefaultDatasetForm):
p.implements(p.IDatasetForm)

Updating the CKAN schema

The create_package_schema() function is used whenever a new dataset is created, we’ll want up-
date the default schema and insert our custom field here. We will fetch the default schema defined in
default_create_package_schema() by running create_package_schema()’s super function and update it.

def create_package_schema(self) -> Schema:
# let's grab the default schema in our plugin
schema: Schema = super(

ExampleIDatasetFormPlugin, self).create_package_schema()
# our custom field
schema.update({

'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

})
return schema

The CKAN schema is a dictionary where the key is the name of the field and the value is a list of validators and
converters. Here we have a validator to tell CKAN to not raise a validation error if the value is missing and a converter
to convert the value to and save as an extra. We will want to change the update_package_schema() function with
the same update code.

def update_package_schema(self) -> Schema:
schema: Schema = super(

ExampleIDatasetFormPlugin, self).update_package_schema()
# our custom field
schema.update({

'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

})
return schema

The show_package_schema() is used when the package_show() action is called, we want the de-
fault_show_package_schema to be updated to include our custom field. This time, instead of converting to an extras
field, we want our field to be converted from an extras field. So we want to use the convert_from_extras() converter.

5.6. Customizing dataset and resource metadata fields using IDatasetForm 245



CKAN documentation, Release 2.10.0a0

def show_package_schema(self) -> Schema:
schema: Schema = super(

ExampleIDatasetFormPlugin, self).show_package_schema()
schema.update({

'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]

})
return schema

Dataset types

The package_types() function defines a list of dataset types that this plugin handles. Each dataset has a field con-
taining its type. Plugins can register to handle specific types of dataset and ignore others. Since our plugin is not for
any specific type of dataset and we want our plugin to be the default handler, we update the plugin code to contain the
following:

schema: Schema = super(
ExampleIDatasetFormPlugin, self).show_package_schema()

schema.update({
'custom_text': [tk.get_converter('convert_from_extras'),

tk.get_validator('ignore_missing')]
})
return schema

def is_fallback(self):
# Return True to register this plugin as the default handler for
# package types not handled by any other IDatasetForm plugin.
return True

def package_types(self) -> list[str]:
# This plugin doesn't handle any special package types, it just
# registers itself as the default (above).
return []

Updating templates

In order for our new field to be visible on the CKAN front-end, we need to update the templates. Add an additional
line to make the plugin implement the IConfigurer interface

class ExampleIDatasetFormPlugin(p.SingletonPlugin, tk.DefaultDatasetForm):
p.implements(p.IDatasetForm)
p.implements(p.IConfigurer)

This interface allows to implement a function update_config() that allows us to update the CKAN config, in our
case we want to add an additional location for CKAN to look for templates. Add the following code to your plugin.

def update_config(self, config: CKANConfig):
# Add this plugin's templates dir to CKAN's extra_template_paths, so

(continues on next page)

246 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# that CKAN will use this plugin's custom templates.
tk.add_template_directory(config, 'templates')

You will also need to add a directory under your extension directory to store the templates. Create a directory called
ckanext-extrafields/ckanext/extrafields/templates/ and the subdirectories ckanext-extrafields/
ckanext/extrafields/templates/package/snippets/.

We need to override a few templates in order to get our custom field rendered. A common option when using a custom
schema is to remove the default custom field handling that allows arbitrary key/value pairs. Create a template file in
our templates directory called package/snippets/package_metadata_fields.html containing

{% ckan_extends %}

{# You could remove 'free extras' from the package form like this, but we keep them for␣
→˓this example's tests.
{% block custom_fields %}
{% endblock %}

#}

This overrides the custom_fields block with an empty block so the default CKAN custom fields form does not render.

New in version 2.3: Starting from CKAN 2.3 you can combine free extras with custom fields handled with
convert_to_extras and convert_from_extras. On prior versions you’ll always need to remove the free extras
handling.

Next add a template in our template directory called package/snippets/package_basic_fields.html containing

{% ckan_extends %}

{% block package_basic_fields_custom %}
{{ form.input('custom_text', label=_('Custom Text'), id='field-custom_text',␣

→˓placeholder=_('custom text'), value=data.custom_text, error=errors.custom_text,␣
→˓classes=['control-medium']) }}
{% endblock %}

This adds our custom_text field to the editing form. Finally we want to display our custom_text field on the dataset
page. Add another file called package/snippets/additional_info.html containing

{% ckan_extends %}

{% block extras %}
{% if pkg_dict.custom_text %}
<tr>
<th scope="row" class="dataset-label">{{ _("Custom Text") }}</th>
<td class="dataset-details">{{ pkg_dict.custom_text }}</td>

</tr>
{% endif %}

{% endblock %}

This template overrides the default extras rendering on the dataset page and replaces it to just display our custom field.

You’re done! Make sure you have your plugin installed and setup as in the extension/tutorial. Then run a development
server and you should now have an additional field called “Custom Text” when displaying and adding/editing a dataset.

5.6. Customizing dataset and resource metadata fields using IDatasetForm 247



CKAN documentation, Release 2.10.0a0

Cleaning up the code

Before we continue further, we can clean up the create_package_schema() and update_package_schema().
There is a bit of duplication that we could remove. Replace the two functions with:

def _modify_package_schema(self, schema: Schema) -> Schema:
schema.update({

'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

})
return schema

def create_package_schema(self):
schema: Schema = super(

ExampleIDatasetFormPlugin, self).create_package_schema()
schema = self._modify_package_schema(schema)
return schema

def update_package_schema(self):
schema: Schema = super(

ExampleIDatasetFormPlugin, self).update_package_schema()
schema = self._modify_package_schema(schema)
return schema

5.6.2 Custom validators

You may define custom validators in your extensions and you can share validators between extensions by registering
them with the IValidators interface.

Any of the following objects may be used as validators as part of a custom dataset, group or organization schema.
CKAN’s validation code will check for and attempt to use them in this order:

1. a function taking a single parameter: validator(value)

2. a function taking four parameters: validator(key, flattened_data, errors, context)

3. a function taking two parameters validator(value, context)

Note: Object constructors(including str, int, etc.) and some built-in functions cannot be used as validators. In order to
use them, create a thin wrapper which passes values into these callables and converts expected exceptions into ckan.
plugins.toolkit.Invalid.

Example:

def int_validator(value):
try:

return int(value)
except ValueError:

raise Invalid(f"Invalid literal for integer: {value}")

248 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

validator(value)

The simplest form of validator is a callable taking a single parameter. For example:

from ckan.plugins.toolkit import Invalid

def starts_with_b(value):
if not value.startswith('b'):

raise Invalid("Doesn't start with b")
return value

The starts_with_b validator causes a validation error for values not starting with ‘b’. On a web form this validation
error would appear next to the field to which the validator was applied.

return value must be used by validators when accepting data or the value will be converted to None. This form is
useful for converting data as well, because the return value will replace the field value passed:

def embiggen(value):
return value.upper()

The embiggen validator will convert values passed to all-uppercase.

validator(value, context)

Validators that need access to the database or information about the user may be written as a callable taking two
parameters. context['session'] is the sqlalchemy session object and context['user'] is the username of the
logged-in user:

from ckan.plugins.toolkit import Invalid

def fred_only(value, context):
if value and context['user'] != 'fred':

raise Invalid('only fred may set this value')
return value

Otherwise this is the same as the single-parameter form above.

validator(key, flattened_data, errors, context)

Validators that need to access or update multiple fields may be written as a callable taking four parameters.

All fields and errors in a flattened form are passed to the validator. The validator must fetch values from
flattened_data and may replace values in flattened_data. The return value from this function is ignored.

key is the flattened key for the field to which this validator was applied. For example ('notes',) for the dataset notes
field or ('resources', 0, 'url') for the url of the first resource of the dataset. These flattened keys are the same
in both the flattened_data and errors dicts passed.

errors contains lists of validation errors for each field.

context is the same value passed to the two-parameter form above.

Note that this form can be tricky to use because some of the values in flattened_datawill have had validators applied
but other fields won’t. You may add this type of validator to the special schema fields '__before' or '__after' to
have them run before or after all the other validation takes place to avoid the problem of working with partially-validated
data.

5.6. Customizing dataset and resource metadata fields using IDatasetForm 249



CKAN documentation, Release 2.10.0a0

The validator has to be registered. Example:

from ckan import plugins

class ExampleIValidatorsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IValidators)

def get_validators(self) -> dict[str, Validator]:
return {

u'equals_fortytwo': equals_fortytwo,
u'negate': negate,
u'unicode_only': unicode_please,

}

5.6.3 Tag vocabularies

If you need to add a custom field where the input options are restricted to a provided list of options, you can use tag
vocabularies Tag Vocabularies. We will need to create our vocabulary first. By calling vocabulary_create(). Add
a function to your plugin.py above your plugin class.

def create_country_codes():
user = tk.get_action('get_site_user')({'ignore_auth': True}, {})
context: Context = {'user': user['name']}
try:

data = {'id': 'country_codes'}
tk.get_action('vocabulary_show')(context, data)

except tk.ObjectNotFound:
data = {'name': 'country_codes'}
vocab = tk.get_action('vocabulary_create')(context, data)
for tag in (u'uk', u'ie', u'de', u'fr', u'es'):

data: dict[str, Any] = {'name': tag, 'vocabulary_id': vocab['id']}
tk.get_action('tag_create')(context, data)

This code block is taken from the example_idatsetform plugin. create_country_codes tries to fetch the vo-
cabulary country_codes using vocabulary_show(). If it is not found it will create it and iterate over the list of
countries ‘uk’, ‘ie’, ‘de’, ‘fr’, ‘es’. For each of these a vocabulary tag is created using tag_create(), belonging to the
vocabulary country_code.

Although we have only defined five tags here, additional tags can be created at any point by a sysadmin user by calling
tag_create() using the API or action functions. Add a second function below create_country_codes

def country_codes():
create_country_codes()
try:

tag_list = tk.get_action('tag_list')
country_codes = tag_list({}, {'vocabulary_id': 'country_codes'})
return country_codes

except tk.ObjectNotFound:
return None

250 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

country_codes will call create_country_codes so that the country_codes vocabulary is created if it does not
exist. Then it calls tag_list() to return all of our vocabulary tags together. Now we have a way of retrieving our tag
vocabularies and creating them if they do not exist. We just need our plugin to call this code.

Adding tags to the schema

Update _modify_package_schema() and show_package_schema()

def _modify_package_schema(self, schema: Schema):
schema.update({

'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

})
schema.update({

'country_code': [
tk.get_validator('ignore_missing'),
cast(ValidatorFactory,

tk.get_converter('convert_to_tags'))('country_codes'),
]

})
return schema

def show_package_schema(self) -> Schema:
schema: Any = super(

ExampleIDatasetFormPlugin, self).show_package_schema()
schema.update({

'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]

})

schema['tags']['__extras'].append(tk.get_converter('free_tags_only'))
schema.update({

'country_code': [
cast(ValidatorFactory,

tk.get_converter('convert_from_tags'))('country_codes'),
tk.get_validator('ignore_missing')]

})
return schema

We are adding our tag to our plugin’s schema. A converter is required to convert the field in to our tag in a similar way
to how we converted our field to extras earlier. In show_package_schema() we convert from the tag back again but
we have an additional line with another converter containing free_tags_only(). We include this line so that vocab
tags are not shown mixed with normal free tags.

5.6. Customizing dataset and resource metadata fields using IDatasetForm 251



CKAN documentation, Release 2.10.0a0

Adding tags to templates

Add an additional plugin.implements line to to your plugin to implement the ITemplateHelpers, we will need to add
a get_helpers() function defined for this interface.

p.implements(p.ITemplateHelpers)

def get_helpers(self):
return {'country_codes': country_codes}

Our intention here is to tie our country_code fetching/creation to when they are used in the templates. Add the code
below to package/snippets/package_metadata_fields.html

#}

{% block package_metadata_fields %}

<div class="control-group">
<label class="control-label" for="field-country_code">{{ _("Country Code") }}</label>
<div class="controls">
<select id="field-country_code" name="country_code" data-module="autocomplete">
{% for country_code in h.country_codes() %}

<option value="{{ country_code }}" {% if country_code in data.get('country_code
→˓', []) %}selected="selected"{% endif %}>{{ country_code }}</option>

{% endfor %}
</select>

</div>
</div>

{{ super() }}

{% endblock %}

This adds our country code to our template, here we are using the additional helper country_codes that we defined in
our get_helpers function in our plugin.

5.6.4 Adding custom fields to resources

In order to customize the fields in a resource the schema for resources needs to be modified in a similar way to the
datasets. The resource schema is nested in the dataset dict as package[‘resources’]. We modify this dict in a similar
way to the dataset schema. Change _modify_package_schema to the following.

def _modify_package_schema(self, schema: Schema):
# Add our custom country_code metadata field to the schema.

schema.update({
'country_code': [

tk.get_validator('ignore_missing'),
cast(

ValidatorFactory,
tk.get_converter('convert_to_tags'))('country_codes')]

})
(continues on next page)

252 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# Add our custom_test metadata field to the schema, this one will use
# convert_to_extras instead of convert_to_tags.
schema.update({

'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

})
# Add our custom_resource_text metadata field to the schema
cast(Schema, schema['resources']).update({

'custom_resource_text' : [ tk.get_validator('ignore_missing') ]
})

return schema

Update show_package_schema() similarly

def show_package_schema(self) -> Schema:
schema: Schema = super(

ExampleIDatasetFormPlugin, self).show_package_schema()

# Don't show vocab tags mixed in with normal 'free' tags
# (e.g. on dataset pages, or on the search page)
_extras = cast("list[Validator]",

cast(Schema, schema['tags'])['__extras'])
_extras.append(tk.get_converter('free_tags_only'))

# Add our custom country_code metadata field to the schema.
schema.update({

'country_code': [
cast(

ValidatorFactory,
tk.get_converter('convert_from_tags'))('country_codes'),

tk.get_validator('ignore_missing')]
})

# Add our custom_text field to the dataset schema.
schema.update({

'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]

})

cast(Schema, schema['resources']).update({
'custom_resource_text' : [ tk.get_validator('ignore_missing') ]

})
return schema

Add the code below to package/snippets/resource_form.html

{% ckan_extends %}

{% block basic_fields_url %}
{{ super() }}

{{ form.input('custom_resource_text', label=_('Custom Text'), id='field-custom_
→˓resource_text', placeholder=_('custom resource text'), value=data.custom_resource_text,
→˓ error=errors.custom_resource_text, classes=['control-medium']) }}

(continues on next page)

5.6. Customizing dataset and resource metadata fields using IDatasetForm 253



CKAN documentation, Release 2.10.0a0

(continued from previous page)

{% endblock %}

This adds our custom_resource_text to the editing form of the resources.

Save and reload your development server CKAN will take any additional keys from the resource schema and save them
the its extras field. The templates will automatically check this field and display them in the resource_read page.

5.6.5 Sorting by custom fields on the dataset search page

Now that we’ve added our custom field, we can customize the CKAN web front end search page to sort datasets by
our custom field. Add a new file called ckanext-extrafields/ckanext/extrafields/templates/package/
search.html containing:

{% ckan_extends %}

{% block form %}
{% set facets = {
'fields': fields_grouped,
'search': search_facets,
'titles': facet_titles,
'translated_fields': translated_fields,
'remove_field': remove_field }

%}
{% set sorting = [
(_('Relevance'), 'score desc, metadata_modified desc'),
(_('Name Ascending'), 'title_string asc'),
(_('Name Descending'), 'title_string desc'),
(_('Last Modified'), 'metadata_modified desc'),
(_('Custom Field Ascending'), 'custom_text asc'),
(_('Custom Field Descending'), 'custom_text desc'),
(_('Popular'), 'views_recent desc') if g.tracking_enabled else (false, false) ]

%}
{% snippet 'snippets/search_form.html', type='dataset', query=q, sorting=sorting,␣

→˓sorting_selected=sort_by_selected, count=page.item_count, facets=facets, show_
→˓empty=request.args, error=query_error %}
{% endblock %}

This overrides the search ordering drop down code block, the code is the same as the default dataset search block but
we are adding two additional lines that define the display name of that search ordering (e.g. Custom Field Ascending)
and the SOLR sort ordering (e.g. custom_text asc). If you reload your development server you should be able to see
these two additional sorting options on the dataset search page.

The SOLR sort ordering can define arbitrary functions for custom sorting, but this is beyond the scope of this tuto-
rial for further details see http://wiki.apache.org/solr/CommonQueryParameters#sort and http://wiki.apache.org/solr/
FunctionQuery

You can find the complete source for this tutorial at https://github.com/ckan/ckan/tree/master/ckanext/example_
idatasetform

254 Chapter 5. Extending guide

http://wiki.apache.org/solr/CommonQueryParameters#sort
http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/FunctionQuery
https://github.com/ckan/ckan/tree/master/ckanext/example_idatasetform
https://github.com/ckan/ckan/tree/master/ckanext/example_idatasetform


CKAN documentation, Release 2.10.0a0

5.7 Plugin interfaces reference

ckan.plugins contains a few core classes and functions for plugins to use:

ckan.plugins

class ckan.plugins.SingletonPlugin(*args, **kwargs)
Base class for plugins which are singletons (ie most of them)

One singleton instance of this class will be created when the plugin is loaded. Subsequent calls to the class
constructor will always return the same singleton instance.

class ckan.plugins.Plugin(*args, **kwargs)
Base class for plugins which require multiple instances.

Unless you need multiple instances of your plugin object you should probably use SingletonPlugin.

ckan.plugins.implements(interface, inherit=None, namespace=None, service=False)
Can be used in the class definition of Plugin subclasses to declare the extension points that are implemented by
this interface class.

ckan.plugins.interfaces

A collection of interfaces that CKAN plugins can implement to customize and extend CKAN.

class ckan.plugins.interfaces.Interface

Base class for custom interfaces.

Marker base class for extension point interfaces. This class is not intended to be instantiated. Instead, the
declaration of subclasses of Interface are recorded, and these classes are used to define extension points.

classmethod provided_by(instance: SingletonPlugin)→ bool
Check that the object is an instance of the class that implements the interface.

classmethod implemented_by(other: Type[SingletonPlugin])→ bool
Check whether the class implements the current interface.

class ckan.plugins.interfaces.IMiddleware

Hook into the CKAN middleware stack

Note that methods on this interface will be called two times, one for the Pylons stack and one for the Flask stack
(eventually there will be only the Flask stack).

make_middleware(app: CKANFlask, config: CKANConfig)→ CKANFlask
Return an app configured with this middleware

When called on the Flask stack, this method will get the actual Flask app so plugins wanting to install Flask
extensions can do it like this:

import ckan.plugins as p
from flask_mail import Mail

class MyPlugin(p.SingletonPlugin):

p.implements(p.Middleware)
(continues on next page)

5.7. Plugin interfaces reference 255



CKAN documentation, Release 2.10.0a0

(continued from previous page)

def make_middleware(app, config):

mail = Mail(app)

return app

make_error_log_middleware(app: CKANFlask, config: CKANConfig)→ CKANFlask
Return an app configured with this error log middleware

Note that both on the Flask and Pylons middleware stacks, this method will receive a wrapped WSGI app,
not the actual Flask or Pylons app.

class ckan.plugins.interfaces.IAuthFunctions

Override CKAN’s authorization functions, or add new auth functions.

get_auth_functions()→ dict[str, AuthFunction]
Return the authorization functions provided by this plugin.

Return a dictionary mapping authorization function names (strings) to functions. For example:

{'user_create': my_custom_user_create_function,
'group_create': my_custom_group_create}

When a user tries to carry out an action via the CKAN API or web interface and CKAN or a CKAN plugin
calls check_access('some_action') as a result, an authorization function named 'some_action'will
be searched for in the authorization functions registered by plugins and in CKAN’s core authorization
functions (found in ckan/logic/auth/).

For example when action function 'package_create' is called, a 'package_create' authorization
function is searched for.

If an extension registers an authorization function with the same name as one of CKAN’s default autho-
rization functions (as with 'user_create' and 'group_create' above), the extension’s function will
override the default one.

Each authorization function should take two parameters context and data_dict, and should return a dic-
tionary {'success': True} to authorize the action or {'success': False} to deny it, for example:

def user_create(context, data_dict=None):
if (some condition):

return {'success': True}
else:

return {'success': False, 'msg': 'Not allowed to register'}

The context object will contain a model that can be used to query the database, a user containing the
name of the user doing the request (or their IP if it is an anonymous web request) and an auth_user_obj
containing the actual model.User object (or None if it is an anonymous request).

See ckan/logic/auth/ for more examples.

Note that by default, all auth functions provided by extensions are assumed to require a validated user or API
key, otherwise a ckan.logic.NotAuthorized: exception will be raised. This check will be performed
before calling the actual auth function. If you want to allow anonymous access to one of your actions, its
auth function must be decorated with the auth_allow_anonymous_access decorator, available in the
plugins toolkit.

For example:

256 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

import ckan.plugins as p

@p.toolkit.auth_allow_anonymous_access
def my_search_action(context, data_dict):

# Note that you can still return {'success': False} if for some
# reason access is denied.

def my_create_action(context, data_dict):
# Unless there is a logged in user or a valid API key provided
# NotAuthorized will be raised before reaching this function.

By decorating a registered auth function with the ckan.plugins.toolkit.chained_auth_function
decorator you can create a chain of auth checks that are completed when auth is requested. This chain
starts with the last chained auth function to be registered and ends with the original auth function (or a
non-chained plugin override version). Chained auth functions must accept an extra parameter, specifically
the next auth function in the chain, for example:

auth_function(next_auth, context, data_dict).

The chained auth function may call the next_auth function, optionally passing different values, handling
exceptions, returning different values and/or raising different exceptions to the caller.

class ckan.plugins.interfaces.IDomainObjectModification

Receives notification of new, changed and deleted datasets.

notify(entity: Any, operation: str)→ None
Send a notification on entity modification.

Parameters

• entity – instance of module.Package.

• operation – ‘new’, ‘changed’ or ‘deleted’.

notify_after_commit(entity: Any, operation: Any)→ None
** DEPRECATED **

Supposed to send a notification after entity modification, but it doesn’t work.

Parameters

• entity – instance of module.Package.

• operation – ‘new’, ‘changed’ or ‘deleted’.

class ckan.plugins.interfaces.IFeed

For extending the default Atom feeds

get_feed_class()→ ckan.types.PFeedFactory
Allows plugins to provide a custom class to generate feed items.

Returns feed class

Return type type

The feed item generator’s constructor is called as follows:

feed_class(
feed_title, # Mandatory

(continues on next page)

5.7. Plugin interfaces reference 257



CKAN documentation, Release 2.10.0a0

(continued from previous page)

feed_link, # Mandatory
feed_description, # Mandatory
language, # Optional, always set to 'en'
author_name, # Optional
author_link, # Optional
feed_guid, # Optional
feed_url, # Optional
previous_page, # Optional, url of previous page of feed
next_page, # Optional, url of next page of feed
first_page, # Optional, url of first page of feed
last_page, # Optional, url of last page of feed

)

get_item_additional_fields(dataset_dict: dict[str, Any])→ dict[str, Any]
Allows plugins to set additional fields on a feed item.

Parameters dataset_dict (dictionary) – the dataset metadata

Returns the fields to set

Return type dictionary

class ckan.plugins.interfaces.IGroupController

Hook into the Group view. These methods will usually be called just before committing or returning the respective
object i.e. when all validation, synchronization and authorization setup are complete.

read(entity: model.Group)→ None
Called after IGroupController.before_view inside group_read.

create(entity: model.Group)→ None
Called after group has been created inside group_create.

edit(entity: model.Group)→ None
Called after group has been updated inside group_update.

delete(entity: model.Group)→ None
Called before commit inside group_delete.

before_view(data_dict: DataDict)→ dict[str, Any]
Extensions will receive this before the group gets displayed. The dictionary passed will be the one that gets
sent to the template.

class ckan.plugins.interfaces.IOrganizationController

Hook into the Organization view. These methods will usually be called just before committing or returning the
respective object i.e. when all validation, synchronization and authorization setup are complete.

read(entity: model.Group)→ None
Called after IOrganizationController.before_view inside organization_read.

create(entity: model.Group)→ None
Called after organization had been created inside organization_create.

edit(entity: model.Group)→ None
Called after organization had been updated inside organization_update.

delete(entity: model.Group)→ None
Called before commit inside organization_delete.

258 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

before_view(data_dict: DataDict)→ dict[str, Any]
Extensions will receive this before the organization gets displayed. The dictionary passed will be the one
that gets sent to the template.

class ckan.plugins.interfaces.IPackageController

Hook into the dataset view.

read(entity: model.Package)→ None
Called after IPackageController.before_dataset_view inside package_show.

create(entity: model.Package)→ None
Called after the dataset had been created inside package_create.

edit(entity: model.Package)→ None
Called after the dataset had been updated inside package_update.

delete(entity: model.Package)→ None
Called before commit inside package_delete.

after_dataset_create(context: Context, pkg_dict: dict[str, Any])→ None
Extensions will receive the validated data dict after the dataset has been created (Note that the create method
will return a dataset domain object, which may not include all fields). Also the newly created dataset id
will be added to the dict.

after_dataset_update(context: Context, pkg_dict: dict[str, Any])→ None
Extensions will receive the validated data dict after the dataset has been updated.

after_dataset_delete(context: Context, pkg_dict: dict[str, Any])→ None
Extensions will receive the data dict (typically containing just the dataset id) after the dataset has been
deleted.

after_dataset_show(context: Context, pkg_dict: dict[str, Any])→ None
Extensions will receive the validated data dict after the dataset is ready for display.

before_dataset_search(search_params: dict[str, Any])→ dict[str, Any]
Extensions will receive a dictionary with the query parameters, and should return a modified (or not) version
of it.

search_params will include an extras dictionary with all values from fields starting with ext_, so extensions
can receive user input from specific fields.

after_dataset_search(search_results: dict[str, Any], search_params: dict[str, Any])→ dict[str, Any]
Extensions will receive the search results, as well as the search parameters, and should return a modified
(or not) object with the same structure:

{'count': '', 'results': '', 'search_facets': ''}

Note that count and facets may need to be adjusted if the extension changed the results for some reason.

search_params will include an extras dictionary with all values from fields starting with ext_, so extensions
can receive user input from specific fields.

before_dataset_index(pkg_dict: dict[str, Any])→ dict[str, Any]
Extensions will receive what will be given to Solr for indexing. This is essentially a flattened dict (except
for multi-valued fields such as tags) of all the terms sent to the indexer. The extension can modify this by
returning an altered version.

5.7. Plugin interfaces reference 259



CKAN documentation, Release 2.10.0a0

before_dataset_view(pkg_dict: dict[str, Any])→ dict[str, Any]
Extensions will receive this before the dataset gets displayed. The dictionary passed will be the one that
gets sent to the template.

class ckan.plugins.interfaces.IPluginObserver

Hook into the plugin loading mechanism itself

before_load(plugin: SingletonPlugin)→ None
Called before a plugin is loaded. This method is passed the plugin class.

after_load(service: Any)→ None
Called after a plugin has been loaded. This method is passed the instantiated service object.

before_unload(plugin: SingletonPlugin)→ None
Called before a plugin is loaded. This method is passed the plugin class.

after_unload(service: Any)→ None
Called after a plugin has been unloaded. This method is passed the instantiated service object.

class ckan.plugins.interfaces.IConfigurable

Hook called during the startup of CKAN

See also IConfigurer.

configure(config: CKANConfig)→ None
Called during CKAN’s initialization.

This function allows plugins to initialize themselves during CKAN’s initialization. It is called after most
of the environment (e.g. the database) is already set up.

Note that this function is not only called during the initialization of the main CKAN process but also
during the execution of paster commands and background jobs, since these run in separate processes and
are therefore initialized independently.

Parameters config (ckan.common.CKANConfig) – dict-like configuration object

class ckan.plugins.interfaces.IConfigDeclaration

Register additional configuration options.

While it’s not necessary, declared config options can be printed out using CLI or additionally verified in code.
This makes the task of adding new configuration, removing obsolete config options, checking the sanity of config
options much simpler for extension consumers.

declare_config_options(declaration: Declaration, key: Key)
Register extra config options.

Example:

from ckan.config.declaration import Declaration, Key

def declare_config_options(
self, declaration: Declaration, key: Key):

declaration.annotate("MyExt config section")
group = key.ckanext.my_ext.feature
declaration.declare(group.enabled, "no").set_description(

"Enables feature"
)
declaration.declare(group.mode, "simple")

260 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

Produces the following config suggestion:

####### MyExt config section #######
# Enables feature
ckanext.my_ext.feature.enabled = no
# ckanext.my_ext.feature.mode = simple

See declare configuration guide for details.

Parameters

• declaration (ckan.config.declaration.Declaration) – object containing all the
config declarations

• key (ckan.config.declaration.Key) – object for generic option access.

class ckan.plugins.interfaces.IConfigurer

Configure the CKAN environment via the config object

See also IConfigurable.

update_config(config: CKANConfig)→ None
Called by load_environment at the earliest point that config is available to plugins. The config should be
updated in place.

Parameters config – config object

update_config_schema(schema: dict[str, Union[list[Validator], Schema]])→ dict[str,
Union[list[Validator], Schema]]

Return a schema with the runtime-editable config options.

CKAN will use the returned schema to decide which configuration options can be edited during runtime
(using ckan.logic.action.update.config_option_update()) and to validate them before storing
them.

Defaults to ckan.logic.schema.default_update_configuration_schema(), which will be passed
to all extensions implementing this method, which can add or remove runtime-editable config options to it.

Parameters schema (dictionary) – a dictionary mapping runtime-editable configuration op-
tion keys to lists of validator and converter functions to be applied to those keys

Returns a dictionary mapping runtime-editable configuration option keys to lists of validator and
converter functions to be applied to those keys

Return type dictionary

class ckan.plugins.interfaces.IActions

Allow adding of actions to the logic layer.

get_actions()→ dict[str, Action]
Should return a dict, the keys being the name of the logic function and the values being the functions
themselves.

By decorating a function with the ckan.logic.side_effect_free decorator, the associated action will
be made available to a GET request (as well as the usual POST request) through the Action API.

By decorating a function with ckan.plugins.toolkit.chained_action, the action will ‘intercept’
calls to an existing action function. This allows a plugin to modify the behaviour of an existing ac-
tion function. Chained actions must be defined as action_function(original_action, context,
data_dict), where the function’s name matches the original action function it intercepts, the first param-
eter is the action function it intercepts (in the next plugin or in core ckan). The chained action may call

5.7. Plugin interfaces reference 261



CKAN documentation, Release 2.10.0a0

the original_action function, optionally passing different values, handling exceptions, returning different
values and/or raising different exceptions to the caller. When multiple plugins chain to an action, the first
plugin declaring is called first, and if it chooses to call the original_action, then the chained action in the
next plugin to be declared next is called, and so on.

class ckan.plugins.interfaces.IResourceUrlChange

Receives notification of changed URL on a resource.

notify(resource: model.Resource)→ None
Called when a resource url has changed.

:param resource, instance of model.Resource

class ckan.plugins.interfaces.IDatasetForm

Customize CKAN’s dataset (package) schemas and forms.

By implementing this interface plugins can customise CKAN’s dataset schema, for example to add new custom
fields to datasets.

Multiple IDatasetForm plugins can be used at once, each plugin associating itself with different dataset types
using the package_types() and is_fallback() methods below, and then providing different schemas and
templates for different types of dataset. When a dataset view action is invoked, the type field of the dataset will
determine which IDatasetForm plugin (if any) gets delegated to.

When implementing IDatasetForm, you can inherit from ckan.plugins.toolkit.DefaultDatasetForm,
which provides default implementations for each of the methods defined in this interface.

See ckanext/example_idatasetform for an example plugin.

package_types()→ Sequence[str]
Return an iterable of dataset (package) types that this plugin handles.

If a request involving a dataset of one of the returned types is made, then this plugin instance will be
delegated to.

There cannot be two IDatasetForm plugins that return the same dataset type, if this happens then CKAN
will raise an exception at startup.

Return type iterable of strings

is_fallback()→ bool
Return True if this plugin is the fallback plugin.

When no IDatasetForm plugin’s package_types() match the type of the dataset being processed, the
fallback plugin is delegated to instead.

There cannot be more than one IDatasetForm plugin whose is_fallback() method returns True, if this
happens CKAN will raise an exception at startup.

If no IDatasetForm plugin’s is_fallback() method returns True, CKAN will use
DefaultDatasetForm as the fallback.

Return type bool

create_package_schema()→ dict[str, Union[list[Validator], Schema]]
Return the schema for validating new dataset dicts.

CKAN will use the returned schema to validate and convert data coming from users (via the dataset form
or API) when creating new datasets, before entering that data into the database.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s create_package_schema() method to get the default schema and then
modify and return it.

262 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

CKAN’s convert_to_tags() or convert_to_extras() functions can be used to convert custom fields
into dataset tags or extras for storing in the database.

See ckanext/example_idatasetform for examples.

Returns a dictionary mapping dataset dict keys to lists of validator and converter functions to be
applied to those keys

Return type dictionary

update_package_schema()→ dict[str, Union[list[Validator], Schema]]
Return the schema for validating updated dataset dicts.

CKAN will use the returned schema to validate and convert data coming from users (via the dataset form
or API) when updating datasets, before entering that data into the database.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s update_package_schema() method to get the default schema and then
modify and return it.

CKAN’s convert_to_tags() or convert_to_extras() functions can be used to convert custom fields
into dataset tags or extras for storing in the database.

See ckanext/example_idatasetform for examples.

Returns a dictionary mapping dataset dict keys to lists of validator and converter functions to be
applied to those keys

Return type dictionary

show_package_schema()→ dict[str, Union[list[Validator], Schema]]
Return a schema to validate datasets before they’re shown to the user.

CKAN will use the returned schema to validate and convert data coming from the database before it is
returned to the user via the API or passed to a template for rendering.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s show_package_schema() method to get the default schema and then
modify and return it.

If you have used convert_to_tags() or convert_to_extras() in your create_package_schema()
and update_package_schema() then you should use convert_from_tags() or
convert_from_extras() in your show_package_schema() to convert the tags or extras in the
database back into your custom dataset fields.

See ckanext/example_idatasetform for examples.

Returns a dictionary mapping dataset dict keys to lists of validator and converter functions to be
applied to those keys

Return type dictionary

setup_template_variables(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Add variables to the template context for use in dataset templates.

This function is called before a dataset template is rendered. If you have custom dataset templates that
require some additional variables, you can add them to the template context ckan.plugins.toolkit.c
here and they will be available in your templates. See ckanext/example_idatasetform for an example.

new_template(package_type: str)→ str
Return the path to the template for the new dataset page.

The path should be relative to the plugin’s templates dir, e.g. 'package/new.html'.

5.7. Plugin interfaces reference 263



CKAN documentation, Release 2.10.0a0

Return type string

read_template(package_type: str)→ str
Return the path to the template for the dataset read page.

The path should be relative to the plugin’s templates dir, e.g. 'package/read.html'.

If the user requests the dataset in a format other than HTML, then CKAN will try to render a template file
with the same path as returned by this function, but a different filename extension, e.g. 'package/read.
rdf'. If your extension (or another one) does not provide this version of the template file, the user will get
a 404 error.

Return type string

edit_template(package_type: str)→ str
Return the path to the template for the dataset edit page.

The path should be relative to the plugin’s templates dir, e.g. 'package/edit.html'.

Return type string

search_template(package_type: str)→ str
Return the path to the template for use in the dataset search page.

This template is used to render each dataset that is listed in the search results on the dataset search page.

The path should be relative to the plugin’s templates dir, e.g. 'package/search.html'.

Return type string

history_template(package_type: str)→ str

Warning: This template is removed. The function exists for compatibility. It now returns None.

resource_template(package_type: str)→ str
Return the path to the template for the resource read page.

The path should be relative to the plugin’s templates dir, e.g. 'package/resource_read.html'.

Return type string

package_form(package_type: str)→ str
Return the path to the template for the dataset form.

The path should be relative to the plugin’s templates dir, e.g. 'package/form.html'.

Return type string

resource_form(package_type: str)→ str
Return the path to the template for the resource form.

The path should be relative to the plugin’s templates dir, e.g. 'package/snippets/resource_form.
html'

Return type string

validate(context: Context, data_dict: DataDict, schema: Schema, action: str)→ Optional[tuple[dict[str,
Any], dict[str, Any]]]

Customize validation of datasets.

When this method is implemented it is used to perform all validation for these datasets. The default imple-
mentation calls and returns the result from ckan.plugins.toolkit.navl_validate.

264 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

This is an adavanced interface. Most changes to validation should be accomplished by cus-
tomizing the schemas returned from show_package_schema(), create_package_schema() and
update_package_schema(). If you need to have a different schema depending on the user or value
of any field stored in the dataset, or if you wish to use a different method for validation, then this method
may be used.

Parameters

• context (dictionary) – extra information about the request

• data_dict (dictionary) – the dataset to be validated

• schema (dictionary) – a schema, typically from show_package_schema(),
create_package_schema() or update_package_schema()

• action (string) – 'package_show', 'package_create' or 'package_update'

Returns (data_dict, errors) where data_dict is the possibly-modified dataset and errors is a dic-
tionary with keys matching data_dict and lists-of-string-error-messages as values

Return type (dictionary, dictionary)

prepare_dataset_blueprint(package_type: str, blueprint: flask.blueprints.Blueprint)→
flask.blueprints.Blueprint

Update or replace dataset blueprint for given package type.

Internally CKAN registers blueprint for every custom dataset type. Before default routes added to this
blueprint and it registered inside application this method is called. It can be used either for registration of
the view function under new path or under existing path(like /new), in which case this new function will be
used instead of default one.

Note, this blueprint has prefix /{package_type}.

Return type flask.Blueprint

prepare_resource_blueprint(package_type: str, blueprint: flask.blueprints.Blueprint)→
flask.blueprints.Blueprint

Update or replace resource blueprint for given package type.

Internally CKAN registers separate resource blueprint for every custom dataset type. Before default routes
added to this blueprint and it registered inside application this method is called. It can be used either for
registration of the view function under new path or under existing path(like /new), in which case this new
function will be used instead of default one.

Note, this blueprint has prefix /{package_type}/<id>/resource.

Return type flask.Blueprint

class ckan.plugins.interfaces.IValidators

Add extra validators to be returned by ckan.plugins.toolkit.get_validator().

get_validators()→ dict[str, Validator]
Return the validator functions provided by this plugin.

Return a dictionary mapping validator names (strings) to validator functions. For example:

{'valid_shoe_size': shoe_size_validator,
'valid_hair_color': hair_color_validator}

These validator functions would then be available when a plugin calls ckan.plugins.toolkit.
get_validator().

5.7. Plugin interfaces reference 265



CKAN documentation, Release 2.10.0a0

class ckan.plugins.interfaces.IResourceView

Add custom view renderings for different resource types.

info()→ dict[str, Any]
Returns a dictionary with configuration options for the view.

The available keys are:

Parameters

• name – name of the view type. This should match the name of the actual plugin (eg
image_view or recline_view).

• title – title of the view type. Will be displayed on the frontend. This should be translat-
able (ie wrapped with toolkit._('Title')).

• default_title – default title that will be used if the view is created automatically (op-
tional, defaults to ‘View’).

• default_description – default description that will be used if the view is created auto-
matically (optional, defaults to ‘’).

• icon – icon for the view type. Should be one of the Font Awesome types without the fa
fa- prefix eg. compass (optional, defaults to ‘picture’).

• always_available – the view type should be always available when creating new views
regardless of the format of the resource (optional, defaults to False).

• iframed – the view template should be iframed before rendering. You generally want this
option to be True unless the view styles and JavaScript don’t clash with the main site theme
(optional, defaults to True).

• preview_enabled – the preview button should appear on the edit view form. Some view
types have their previews integrated with the form (optional, defaults to False).

• full_page_edit – the edit form should take the full page width of the page (optional,
defaults to False).

• schema – schema to validate extra configuration fields for the view (optional). Schemas are
defined as a dictionary, with the keys being the field name and the values a list of validator
functions that will get applied to the field. For instance:

{
'offset': [ignore_empty, natural_number_validator],
'limit': [ignore_empty, natural_number_validator],

}

Example configuration object:

{'name': 'image_view',
'title': toolkit._('Image'),
'schema': {
'image_url': [ignore_empty, unicode]

},
'icon': 'picture-o',
'always_available': True,
'iframed': False,
}

Returns a dictionary with the view type configuration

266 Chapter 5. Extending guide

http://fortawesome.github.io/Font-Awesome/3.2.1/icons


CKAN documentation, Release 2.10.0a0

Return type dict

can_view(data_dict: dict[str, Any])→ bool
Returns whether the plugin can render a particular resource.

The data_dict contains the following keys:

Parameters

• resource – dict of the resource fields

• package – dict of the full parent dataset

Returns True if the plugin can render a particular resource, False otherwise

Return type bool

setup_template_variables(context: Context, data_dict: DataDict)→ dict[str, Any]
Adds variables to be passed to the template being rendered.

This should return a new dict instead of updating the input data_dict.

The data_dict contains the following keys:

Parameters

• resource_view – dict of the resource view being rendered

• resource – dict of the parent resource fields

• package – dict of the full parent dataset

Returns a dictionary with the extra variables to pass

Return type dict

view_template(context: ckan.types.Context, data_dict: dict[str, Any])→ str
Returns a string representing the location of the template to be rendered when the view is displayed

The path will be relative to the template directory you registered using the add_template_directory()
on the update_config method, for instance views/my_view.html.

Parameters

• resource_view – dict of the resource view being rendered

• resource – dict of the parent resource fields

• package – dict of the full parent dataset

Returns the location of the view template.

Return type string

form_template(context: ckan.types.Context, data_dict: dict[str, Any])→ str
Returns a string representing the location of the template to be rendered when the edit view form is displayed

The path will be relative to the template directory you registered using the add_template_directory()
on the update_config method, for instance views/my_view_form.html.

Parameters

• resource_view – dict of the resource view being rendered

• resource – dict of the parent resource fields

• package – dict of the full parent dataset

5.7. Plugin interfaces reference 267



CKAN documentation, Release 2.10.0a0

Returns the location of the edit view form template.

Return type string

class ckan.plugins.interfaces.IResourceController

Hook into the resource view.

before_resource_create(context: Context, resource: dict[str, Any])→ None
Extensions will receive this before a resource is created.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

• resource (dictionary) – An object representing the resource to be added to the dataset
(the one that is about to be created).

after_resource_create(context: Context, resource: dict[str, Any])→ None
Extensions will receive this after a resource is created.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

• resource (dictionary) – An object representing the latest resource added to the dataset
(the one that was just created). A key in the resource dictionary worth mentioning is
url_type which is set to upload when the resource file is uploaded instead of linked.

before_resource_update(context: Context, current: dict[str, Any], resource: dict[str, Any])→ None
Extensions will receive this before a resource is updated.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

• current (dictionary) – The current resource which is about to be updated

• resource (dictionary) – An object representing the updated resource which will replace
the current one.

after_resource_update(context: Context, resource: dict[str, Any])→ None
Extensions will receive this after a resource is updated.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

• resource (dictionary) – An object representing the updated resource in the dataset (the
one that was just updated). As with after_resource_create, a noteworthy key in the
resource dictionary url_type which is set to upload when the resource file is uploaded
instead of linked.

before_resource_delete(context: Context, resource: dict[str, Any], resources: list[dict[str, Any]])→
None

Extensions will receive this before a resource is deleted.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

268 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• resource (dictionary) – An object representing the resource that is about to be deleted.
This is a dictionary with one key: id which holds the id string of the resource that should
be deleted.

• resources (list) – The list of resources from which the resource will be deleted (includ-
ing the resource to be deleted if it existed in the dataset).

after_resource_delete(context: Context, resources: list[dict[str, Any]])→ None
Extensions will receive this after a resource is deleted.

Parameters

• context (dictionary) – The context object of the current request, this includes for ex-
ample access to the model and the user.

• resources – A list of objects representing the remaining resources after a resource has
been removed.

before_resource_show(resource_dict: dict[str, Any])→ dict[str, Any]
Extensions will receive the validated data dict before the resource is ready for display.

Be aware that this method is not only called for UI display, but also in other methods, like when a resource
is deleted, because package_show is used to get access to the resources in a dataset.

class ckan.plugins.interfaces.IGroupForm

Allows customisation of the group form and its underlying schema.

The behaviour of the plugin is determined by 5 method hooks:

• group_form(self)

• form_to_db_schema(self)

• db_to_form_schema(self)

• check_data_dict(self, data_dict)

• setup_template_variables(self, context, data_dict)

Furthermore, there can be many implementations of this plugin registered at once. With each instance associating
itself with 0 or more group type strings. When a group form action is invoked, the group type determines which
of the registered plugins to delegate to. Each implementation must implement these methods which are used to
determine the group-type -> plugin mapping:

• is_fallback(self)

• group_types(self)

• group_controller(self)

Implementations might want to consider mixing in ckan.lib.plugins.DefaultGroupForm which provides default
behaviours for the 5 method hooks.

is_fallback()→ bool
Returns true if this provides the fallback behaviour, when no other plugin instance matches a group’s type.

There must be exactly one fallback view defined, any attempt to register more than one will throw an
exception at startup. If there’s no fallback registered at startup the ckan.lib.plugins.DefaultGroupForm
used as the fallback.

group_types()→ Iterable[str]
Returns an iterable of group type strings.

If a request involving a group of one of those types is made, then this plugin instance will be delegated to.

5.7. Plugin interfaces reference 269



CKAN documentation, Release 2.10.0a0

There must only be one plugin registered to each group type. Any attempts to register more than one plugin
instance to a given group type will raise an exception at startup.

group_controller()→ str
Returns the name of the group view

The group view is the view, that is used to handle requests of the group type(s) of this plugin.

If this method is not provided, the default group view is used (group).

new_template(group_type: str)→ str
Returns a string representing the location of the template to be rendered for the ‘new’ page. Uses the
default_group_type configuration option to determine which plugin to use the template from.

index_template(group_type: str)→ str
Returns a string representing the location of the template to be rendered for the index page. Uses the
default_group_type configuration option to determine which plugin to use the template from.

read_template(group_type: str)→ str
Returns a string representing the location of the template to be rendered for the read page

history_template(group_type: str)→ str
Returns a string representing the location of the template to be rendered for the history page

edit_template(group_type: str)→ str
Returns a string representing the location of the template to be rendered for the edit page

group_form(group_type: str)→ str
Returns a string representing the location of the template to be rendered. e.g. group/new_group_form.
html.

form_to_db_schema()→ dict[str, Union[list[Validator], Schema]]
Returns the schema for mapping group data from a form to a format suitable for the database.

db_to_form_schema()→ dict[str, Union[list[Validator], Schema]]
Returns the schema for mapping group data from the database into a format suitable for the form (optional)

check_data_dict(data_dict: dict[str, Any], schema: Optional[dict[str, Union[list[Validator], Schema]]] =
None)→ None

Check if the return data is correct.

raise a DataError if not.

setup_template_variables(context: ckan.types.Context, data_dict: dict[str, Any])→ None
Add variables to c just prior to the template being rendered.

validate(context: Context, data_dict: DataDict, schema: Schema, action: str)→ Optional[tuple[dict[str,
Any], dict[str, Any]]]

Customize validation of groups.

When this method is implemented it is used to perform all validation for these groups. The default imple-
mentation calls and returns the result from ckan.plugins.toolkit.navl_validate.

This is an adavanced interface. Most changes to validation should be accomplished by customizing the
schemas returned from form_to_db_schema() and db_to_form_schema() If you need to have a differ-
ent schema depending on the user or value of any field stored in the group, or if you wish to use a different
method for validation, then this method may be used.

Parameters

• context (dictionary) – extra information about the request

270 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• data_dict (dictionary) – the group to be validated

• schema (dictionary) – a schema, typically from form_to_db_schema(), or
db_to_form_schema()

• action (string) – 'group_show', 'group_create', 'group_update',
'organization_show', 'organization_create' or 'organization_update'

Returns (data_dict, errors) where data_dict is the possibly-modified group and errors is a dictio-
nary with keys matching data_dict and lists-of-string-error-messages as values

Return type (dictionary, dictionary)

prepare_group_blueprint(group_type: str, blueprint: flask.blueprints.Blueprint)→
flask.blueprints.Blueprint

Update or replace group blueprint for given group type.

Internally CKAN registers separate blueprint for every custom group type. Before default routes added to
this blueprint and it registered inside application this method is called. It can be used either for registration
of the view function under new path or under existing path(like /new), in which case this new function will
be used instead of default one.

Note, this blueprint has prefix /{group_type}.

Return type flask.Blueprint

class ckan.plugins.interfaces.ITagController

Hook into the Tag view. These will usually be called just before committing or returning the respective object,
i.e. when all validation, synchronization and authorization setup are complete.

before_view(tag_dict: dict[str, Any])→ dict[str, Any]
Extensions will receive this before the tag gets displayed. The dictionary passed will be the one that gets
sent to the template.

class ckan.plugins.interfaces.ITemplateHelpers

Add custom template helper functions.

By implementing this plugin interface plugins can provide their own template helper functions, which custom
templates can then access via the h variable.

See ckanext/example_itemplatehelpers for an example plugin.

get_helpers()→ dict[str, Callable[..., Any]]
Return a dict mapping names to helper functions.

The keys of the dict should be the names with which the helper functions will be made available to tem-
plates, and the values should be the functions themselves. For example, a dict like: {'example_helper':
example_helper} allows templates to access the example_helper function via h.example_helper().

Function names should start with the name of the extension providing the function, to prevent name clashes
between extensions.

By decorating a registered helper function with the ckan.plugins.toolkit.chained_helper decorator
you can create a chain of helpers that are called in a sequence. This chain starts with the first chained helper
to be registered and ends with the original helper (or a non-chained plugin override version). Chained
helpers must accept an extra parameter, specifically the next helper in the chain, for example:

helper(next_helper, *args, **kwargs).

The chained helper function may call the next_helper function, optionally passing different values, handling
exceptions, returning different values and/or raising different exceptions to the caller.

5.7. Plugin interfaces reference 271



CKAN documentation, Release 2.10.0a0

class ckan.plugins.interfaces.IFacets

Customize the search facets shown on search pages.

By implementing this interface plugins can customize the search facets that are displayed for filtering search
results on the dataset search page, organization pages and group pages.

The facets_dict passed to each of the functions below is an OrderedDict in which the keys are CKAN’s
internal names for the facets and the values are the titles that will be shown for the facets in the web interface.
The order of the keys in the dict determine the order that facets appear in on the page. For example:

{'groups': _('Groups'),
'tags': _('Tags'),
'res_format': _('Formats'),
'license': _('License')}

To preserve ordering, make sure to add new facets to the existing dict rather than updating it, ie do this:

facets_dict['groups'] = p.toolkit._('Publisher')
facets_dict['secondary_publisher'] = p.toolkit._('Secondary Publisher')

rather than this:

facets_dict.update({
'groups': p.toolkit._('Publisher'),
'secondary_publisher': p.toolkit._('Secondary Publisher'),

})

Dataset searches can be faceted on any field in the dataset schema that it makes sense to facet on. This means any
dataset field that is in CKAN’s Solr search index, basically any field that you see returned by package_show().

If there are multiple IFacets plugins active at once, each plugin will be called (in the order that they’re listed
in the CKAN config file) and they will each be able to modify the facets dict in turn.

dataset_facets(facets_dict: OrderedDict[str, Any], package_type: str)→ OrderedDict[str, Any]
Modify and return the facets_dict for the dataset search page.

The package_type is the type of dataset that these facets apply to. Plugins can provide different search
facets for different types of dataset. See IDatasetForm .

Parameters

• facets_dict (OrderedDict) – the search facets as currently specified

• package_type (string) – the dataset type that these facets apply to

Returns the updated facets_dict

Return type OrderedDict

group_facets(facets_dict: OrderedDict[str, Any], group_type: str, package_type: Optional[str])→
OrderedDict[str, Any]

Modify and return the facets_dict for a group’s page.

The package_type is the type of dataset that these facets apply to. Plugins can provide different search
facets for different types of dataset. See IDatasetForm .

The group_type is the type of group that these facets apply to. Plugins can provide different search facets
for different types of group. See IGroupForm .

Parameters

272 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• facets_dict (OrderedDict) – the search facets as currently specified

• group_type (string) – the group type that these facets apply to

• package_type (string) – the dataset type that these facets apply to

Returns the updated facets_dict

Return type OrderedDict

organization_facets(facets_dict: OrderedDict[str, Any], organization_type: str, package_type:
Optional[str])→ OrderedDict[str, Any]

Modify and return the facets_dict for an organization’s page.

The package_type is the type of dataset that these facets apply to. Plugins can provide different search
facets for different types of dataset. See IDatasetForm .

The organization_type is the type of organization that these facets apply to. Plugins can provide dif-
ferent search facets for different types of organization. See IGroupForm .

Parameters

• facets_dict (OrderedDict) – the search facets as currently specified

• organization_type (string) – the organization type that these facets apply to

• package_type (string) – the dataset type that these facets apply to

Returns the updated facets_dict

Return type OrderedDict

class ckan.plugins.interfaces.IAuthenticator

Allows custom authentication methods to be integrated into CKAN.

All interface methods except for the abort() one support returning a Flask response object. This can be used
for instance to issue redirects or set cookies in the response. If a response object is returned there will be no
further processing of the current request and that response will be returned. This can be used by plugins to:

• Issue a redirect:

def identify(self):

return toolkit.redirect_to('myplugin.custom_endpoint')

• Set or clear cookies (or headers):

from Flask import make_response

def identify(self)::

response = make_response(toolkit.render('my_page.html'))
response.set_cookie(cookie_name, expires=0)

return response

identify()→ Optional[flask.wrappers.Response]
Called to identify the user.

If the user is identified then it should set:

• g.user: The name of the user

5.7. Plugin interfaces reference 273



CKAN documentation, Release 2.10.0a0

• g.userobj: The actual user object

Alternatively, plugins can return a response object in order to prevent the default CKAN authorization flow.
See the IAuthenticator documentation for more details.

login()→ Optional[flask.wrappers.Response]
Called before the login starts (that is before asking the user for user name and a password in the default
authentication).

Plugins can return a response object to prevent the default CKAN authorization flow. See the
IAuthenticator documentation for more details.

logout()→ Optional[flask.wrappers.Response]
Called before the logout starts (that is before clicking the logout button in the default authentication).

Plugins can return a response object to prevent the default CKAN authorization flow. See the
IAuthenticator documentation for more details.

abort(status_code: int, detail: str, headers: Optional[dict[str, Any]], comment: Optional[str])→ tuple[int,
str, Optional[dict[str, Any]], Optional[str]]

Called on abort. This allows aborts due to authorization issues to be overridden

class ckan.plugins.interfaces.ITranslation

Allows extensions to provide their own translation strings.

i18n_directory()→ str
Change the directory of the .mo translation files

i18n_locales()→ list[str]
Change the list of locales that this plugin handles

i18n_domain()→ str
Change the gettext domain handled by this plugin

class ckan.plugins.interfaces.IUploader

Extensions implementing this interface can provide custom uploaders to upload resources and group images.

get_uploader(upload_to: str, old_filename: Optional[str])→ Optional[ckan.types.PUploader]
Return an uploader object to upload general files that must implement the following methods:

__init__(upload_to, old_filename=None)

Set up the uploader.

Parameters

• upload_to (string) – name of the subdirectory within the storage directory to upload
the file

• old_filename (string) – name of an existing image asset, so the extension can replace
it if necessary

update_data_dict(data_dict, url_field, file_field, clear_field)

Allow the data_dict to be manipulated before it reaches any validators.

Parameters

• data_dict (dictionary) – data_dict to be updated

• url_field (string) – name of the field where the upload is going to be

274 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• file_field (string) – name of the key where the FieldStorage is kept (i.e the field where
the file data actually is).

• clear_field (string) – name of a boolean field which requests the upload to be deleted.

upload(max_size)

Perform the actual upload.

Parameters max_size (int) – upload size can be limited by this value in MBs.

get_resource_uploader(resource: dict[str, Any])→ Optional[PResourceUploader]
Return an uploader object used to upload resource files that must implement the following methods:

__init__(resource)

Set up the resource uploader.

Parameters resource (dictionary) – resource dict

Optionally, this method can set the following two attributes on the class instance so they are set in the
resource object:

• filesize (int): Uploaded file filesize.

• mimetype (str): Uploaded file mimetype.

upload(id, max_size)

Perform the actual upload.

Parameters

• id (string) – resource id, can be used to create filepath

• max_size (int) – upload size can be limited by this value in MBs.

get_path(id)

Required by the resource_download action to determine the path to the file.

Parameters id (string) – resource id

class ckan.plugins.interfaces.IBlueprint

Register an extension as a Flask Blueprint.

get_blueprint()→ Union[list[Blueprint], Blueprint]
Return either a single Flask Blueprint object or a list of Flask Blueprint objects to be registered by the app.

class ckan.plugins.interfaces.IPermissionLabels

Extensions implementing this interface can override the permission labels applied to datasets to precisely control
which datasets are visible to each user.

Implementations might want to consider mixing in ckan.lib.plugins.DefaultPermissionLabels which
provides default behaviours for these methods.

See ckanext/example_ipermissionlabels for an example plugin.

get_dataset_labels(dataset_obj: model.Package)→ list[str]
Return a list of unicode strings to be stored in the search index as the permission lables for a dataset dict.

Parameters dataset_obj (Package model object) – dataset details

Returns permission labels

Return type list of unicode strings

5.7. Plugin interfaces reference 275



CKAN documentation, Release 2.10.0a0

get_user_dataset_labels(user_obj: Optional['model.User'])→ list[str]
Return the permission labels that give a user permission to view a dataset. If any of the labels returned from
this method match any of the labels returned from get_dataset_labels() then this user is permitted to
view that dataset.

Parameters user_obj (User model object or None) – user details

Returns permission labels

Return type list of unicode strings

class ckan.plugins.interfaces.IForkObserver

Observe forks of the CKAN process.

before_fork()→ None
Called shortly before the CKAN process is forked.

class ckan.plugins.interfaces.IApiToken

Extend functionality of API Tokens.

This interface is unstable and new methods may be introduced in future. Always use inherit=True when imple-
menting it.

Example:

p.implements(p.IApiToken, inherit=True)

create_api_token_schema(schema: dict[str, Union[list[Validator], Schema]])→ dict[str,
Union[list[Validator], Schema]]

Return the schema for validating new API tokens.

Parameters schema (dict) – a dictionary mapping api_token dict keys to lists of validator and
converter functions to be applied to those keys

Returns a dictionary mapping api_token dict keys to lists of validator and converter functions to
be applied to those keys

Return type dict

decode_api_token(encoded: str, **kwargs: Any)→ Optional[dict[str, Any]]
Make an attempt to decode API Token provided in request.

Decode token if it possible and return dictionary with mandatory jti key(token id for DB lookup) and
optional additional items, which will be used further in preprocess_api_token.

Parameters

• encoded (str) – API Token provided in request

• kwargs (dict) – any additional parameters that can be added in future or by plugins.
Current implementation won’t pass any additional fields, but plugins may use this feature,
passing JWT aud or iss claims, for example

Returns dictionary with all the decoded fields or None

Return type dict | None

encode_api_token(data: dict[str, Any], **kwargs: Any)→ Optional[str]
Make an attempt to encode API Token.

Encode token if it possible and return string, that will be shown to user.

Parameters

276 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• data (dict) – dictionary, containing all postprocessed data

• kwargs (dict) – any additional parameters that can be added in future or by plugins.
Current implementation won’t pass any additional fields, but plugins may use this feature,
passing JWT aud or iss claims, for example

Returns token as encodes string or None

Return type str | None

preprocess_api_token(data: Mapping[str, Any])→ Mapping[str, Any]
Handle additional info from API Token.

Allows decoding or extracting any kind of additional information from API Token, before it used for fetching
current user from database.

Parameters data (dict) – dictionary with all fields that were previously created in postpro-
cess_api_token (potentially modified by some other plugin already.)

Returns dictionary that will be passed into other plugins and, finally, used for fetching User
instance

Return type dict

postprocess_api_token(data: dict[str, Any], jti: str, data_dict: dict[str, Any])→ dict[str, Any]
Encode additional information into API Token.

Allows passing any kind of additional information into API Token or performing side effects, before it
shown to user.

Parameters

• data (dict) – dictionary representing newly generated API Token. May be already mod-
ified by some plugin.

• jti (str) – Id of the token

• data_dict (dict) – data used for token creation.

Returns dictionary with fields that will be encoded into final API Token

Return type dict

add_extra_fields(data_dict: DataDict)→ dict[str, Any]
Provide additional information alongside with API Token.

Any extra information that is not itself a part of a token, but can extend its functionality(for example, refresh
token) is registered here.

Parameters data_dict (dict) – dictionary that will bre returned from api_token_create API
call.

Returns dictionary with token and optional set of extra fields.

Return type dict

class ckan.plugins.interfaces.IClick

Allow extensions to define click commands.

get_commands()→ list['click.Command']
Return a list of command functions objects to be registered by the click.add_command.

Example:

5.7. Plugin interfaces reference 277



CKAN documentation, Release 2.10.0a0

p.implements(p.IClick)
# IClick
def get_commands(self):

"""Call me via: `ckan hello`"""
import click
@click.command()
def hello():

click.echo('Hello, World!')
return [hello]

Returns command functions objects

Return type list of function objects

class ckan.plugins.interfaces.ISignal

Subscribe to CKAN signals.

get_signal_subscriptions()→ Dict[blinker.base.Signal, Iterable[Union[Any, Dict[str, Any]]]]
Return a mapping of signals to their listeners.

Note that keys are not strings, they are instances of blinker.Signal. When using signals provided by
CKAN core, it is better to use the references from the plugins toolkit for better future compatibility. Values
should be a list of listener functions:

def get_signal_subscriptions(self):
import ckan.plugins.toolkit as tk

# or, even better, but requires additional dependency:
# pip install ckantoolkit
import ckantoolkit as tk

return {
tk.signals.request_started: [request_listener],
tk.signals.register_blueprint: [

first_blueprint_listener,
second_blueprint_listener

]
}

Listeners are callables that accept one mandatory argument (sender) and an arbitrary number of named
arguments (text). The best signature for a listener is def(sender, **kwargs).

The sender argument will be different depending on the signal and will be generally used to conditionally
executing code on the listener. For example, the register_blueprint signal is sent every time a custom
dataset/group/organization blueprint is registered (using ckan.plugins.interfaces.IDatasetForm
or ckan.plugins.interfaces.IGroupForm). Depending on the kind of blueprint, sender may be
‘dataset’, ‘group’, ‘organization’ or ‘resource’. If you want to do some work only for ‘dataset’ blueprints,
you may end up with something similar to:

import ckan.plugins.toolkit as tk

def dataset_blueprint_listener(sender, **kwargs):
if sender != 'dataset':

return
(continues on next page)

278 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# Otherwise, do something..

class ExamplePlugin(plugins.SingletonPlugin)
plugins.implements(plugins.ISignal)

def get_signal_subscriptions(self):

return {
tk.signals.register_blueprint: [

dataset_blueprint_listener,
]

}

Because this is a really common use case, there is additional form of listener registration supported.
Instead of just callables, one can use dictionaries of form {'receiver': CALLABLE, 'sender':
DESIRED_SENDER}. The following code snippet has the same effect than the previous one:

import ckan.plugins.toolkit as tk

def dataset_blueprint_listener(sender, **kwargs):
# do something..

class ExamplePlugin(plugins.SingletonPlugin)
plugins.implements(plugins.ISignal)

def get_signal_subscriptions(self):

return {
tk.signals.register_blueprint: [{

'receiver': dataset_blueprint_listener,
'sender': 'dataset'

}]
}

The two forms of registration can be mixed when multiple listeners are registered, callables and dictionaries
with receiver/sender keys:

import ckan.plugins.toolkit as tk

def log_registration(sender, **kwargs):
log.info("Log something")

class ExamplePlugin(plugins.SingletonPlugin)
plugins.implements(plugins.ISignal)

def get_signal_subscriptions(self):
return {

tk.signals.request_started: [
log_registration,
{'receiver': log_registration, 'sender': 'dataset'}

]
}

5.7. Plugin interfaces reference 279



CKAN documentation, Release 2.10.0a0

Even though it is possible to change mutable arguments inside the listener, or return something from it,
the main purpose of signals is the triggering of side effects, like logging, starting background jobs, calls to
external services, etc.

Any mutation or attempt to change CKAN behavior through signals should be considered unsafe and may
lead to hard to track bugs in the future. So never modify the arguments of signal listener and treat them as
constants.

Always check for the presence of the desired value inside the received context (named arguments). Argu-
ments passed to signals may change over time, and some arguments may disappear.

Returns mapping of subscriptions to signals

Return type dict

5.8 Plugins toolkit reference

As well as using the variables made available to them by implementing plugin interfaces, plugins will likely want to
be able to use parts of the CKAN core library. To allow this, CKAN provides a stable set of classes and functions
that plugins can use safe in the knowledge that this interface will remain stable, backward-compatible and with clear
deprecation guidelines when new versions of CKAN are released. This interface is available in CKAN’s plugins toolkit.
.. py:class:: ckan.plugins.toolkit.CkanVersionException

Exception raised by requires_ckan_version() if the required CKAN version is not available.

class ckan.plugins.toolkit.DefaultDatasetForm

The default implementatinon of IDatasetForm .

This class serves two purposes:

1. It provides a base class for plugin classes that implement IDatasetForm to inherit from, so they can inherit
the default behavior and just modify the bits they need to.

2. It is used as the default fallback plugin when no registered IDatasetForm plugin handles the given dataset
type and no other plugin has registered itself as the fallback plugin.

Note: DefaultDatasetForm doesn’t call implements(), because we don’t want it being registered.

class ckan.plugins.toolkit.DefaultGroupForm

Provides a default implementation of the pluggable Group controller behaviour.

This class has 2 purposes:

• it provides a base class for IGroupForm implementations to use if only a subset of the method hooks need
to be customised.

• it provides the fallback behaviour if no plugin is setup to provide the fallback behaviour.

Note: this isn’t a plugin implementation. This is deliberate, as we don’t want this being registered.

class ckan.plugins.toolkit.DefaultOrganizationForm

Provides a default implementation of the pluggable Group controller behaviour.

This class has 2 purposes:

• it provides a base class for IGroupForm implementations to use if only a subset of the method hooks need
to be customised.

280 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• it provides the fallback behaviour if no plugin is setup to provide the fallback behaviour.

Note: this isn’t a plugin implementation. This is deliberate, as we don’t want this being registered.

class ckan.plugins.toolkit.HelperError

Raised if an attempt to access an undefined helper is made.

Normally, this would be a subclass of AttributeError, but Jinja2 will catch and ignore them. We want this to be
an explicit failure re #2908.

class ckan.plugins.toolkit.Invalid

Exception raised by some validator, converter and dictization functions when the given value is invalid.

class ckan.plugins.toolkit.NotAuthorized

Exception raised when the user is not authorized to call the action.

For example package_create() raises NotAuthorized if the user is not authorized to create packages.

class ckan.plugins.toolkit.ObjectNotFound

Exception raised by logic functions when a given object is not found.

For example package_show() raises ObjectNotFound if no package with the given id exists.

class ckan.plugins.toolkit.StopOnError

error to stop validations for a particualar key

class ckan.plugins.toolkit.UnknownValidator

Exception raised when a requested validator function cannot be found.

class ckan.plugins.toolkit.ValidationError

Exception raised by action functions when validating their given data_dict fails.

ckan.plugins.toolkit._()

Translates a string to the current locale.

The _() function is a reference to the ugettext() function. Everywhere in your code where you want strings
to be internationalized (made available for translation into different languages), wrap them in the _() function,
eg.:

msg = toolkit._("Hello")

Returns the localized unicode string.

ckan.plugins.toolkit.abort(status_code, detail, headers, comment)
Abort the current request immediately by returning an HTTP exception.

This is a wrapper for flask.abort() that adds some CKAN custom behavior, including allowing
IAuthenticator plugins to alter the abort response, and showing flash messages in the web interface.

ckan.plugins.toolkit.add_ckan_admin_tab(config_, route_name, tab_label, config_var, icon)
Update ‘ckan.admin_tabs’ dict the passed config dict.

ckan.plugins.toolkit.add_public_directory(config_, relative_path)
Add a path to the extra_public_paths config setting.

The path is relative to the file calling this function.

Webassets addition: append directory to webassets load paths in order to correctly rewrite relative css paths and
resolve public urls.

5.8. Plugins toolkit reference 281



CKAN documentation, Release 2.10.0a0

ckan.plugins.toolkit.add_resource(path, name)
Add a WebAssets library to CKAN.

WebAssets libraries are directories containing static resource files (e.g. CSS, JavaScript or image files) that can
be compiled into WebAsset Bundles.

See Theming guide for more details.

ckan.plugins.toolkit.add_template_directory(config_, relative_path)
Add a path to the extra_template_paths config setting.

The path is relative to the file calling this function.

ckan.plugins.toolkit.asbool(obj)
Convert a string (e.g. 1, true, True) into a boolean.

Example:

assert asbool("yes") is True

ckan.plugins.toolkit.asint(obj)
Convert a string into an int.

Example:

assert asint("111") == 111

ckan.plugins.toolkit.aslist(obj, sep, strip)
Convert a space-separated string into a list.

Example:

assert aslist("a b c") == ["a", "b", "c"]

ckan.plugins.toolkit.auth_allow_anonymous_access(action)
Flag an auth function as not requiring a logged in user

This means that check_access won’t automatically raise a NotAuthorized exception if an authenticated user is
not provided in the context. (The auth function can still return False if for some reason access is not granted).

ckan.plugins.toolkit.auth_disallow_anonymous_access(action)
Flag an auth function as requiring a logged in user

This means that check_access will automatically raise a NotAuthorized exception if an authenticated user is not
provided in the context, without calling the actual auth function.

ckan.plugins.toolkit.auth_sysadmins_check(action)
A decorator that prevents sysadmins from being automatically authorized to call an action function.

Normally sysadmins are allowed to call any action function (for example when they’re using the Action API or
the web interface), if the user is a sysadmin the action function’s authorization function will not even be called.

If an action function is decorated with this decorator, then its authorization function will always be called, even
if the user is a sysadmin.

ckan.plugins.toolkit.base

The base functionality for web-views.

Provides functions for rendering templates, aborting the request, etc.

282 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

ckan.plugins.toolkit.blanket

Quick implementations of simple plugin interfaces.

Blankets allow to reduce boilerplate code in plugins by simplifying the way common interfaces are registered.

For instance, this is how template helpers are generally added using the ITemplateHelpers interface:

from ckan import plugins as p
from ckanext.myext import helpers

class MyPlugin(p.SingletonPlugin):

p.implements(ITemplateHelpers)

def get_helpers(self):

return {
'my_ext_custom_helper_1': helpers.my_ext_custom_helper_1,
'my_ext_custom_helper_2': helpers.my_ext_custom_helper_2,

}

The same pattern is used for IActions, IAuthFunctions, etc.

With Blankets, assuming that you have created your module in the expected path with the expected name (see
below), you can automate the registration of your helpers using the corresponding blanket decorator from the
plugins toolkit:

@p.toolkit.blanket.helpers
class MyPlugin(p.SingletonPlugin):

pass

The following table lists the available blanket decorators, the interface they implement and the default source
where the blanket will automatically look for items to import:

5.8. Plugins toolkit reference 283



CKAN documentation, Release 2.10.0a0

Decorator Interfaces Default source
toolkit.
blanket.
helpers

ITemplateHelpers ckanext.myext.helpers

toolkit.
blanket.
auth_functions

IAuthFunctions ckanext.myext.logic.auth

toolkit.
blanket.
actions

IActions ckanext.myext.logic.action

toolkit.
blanket.
validators

IValidators ckanext.myext.logic.validators

toolkit.
blanket.
blueprints

IBlueprint ckanext.myext.logic.views

toolkit.
blanket.cli

IClick ckanext.myext.cli

toolkit.
blanket.
config_declarations

IConfigDeclarationckanext/myext/config_declaration.{json,yaml,
toml}

Note: By default, all local module members, whose __name__/name doesn’t start with an underscore are
exported. If the module has __all__ list, only members listed inside this list will be exported.

If your extension uses a different naming convention for your modules, it is still possible to use blankets by
passing the relevant module as a parameter to the decorator:

import ckanext.myext.custom_actions as custom_module

@p.toolkit.blanket.actions(custom_module)
class MyPlugin(p.SingletonPlugin):

pass

Note: The config_declarations blanket is an exception. Instead of a module object it accepts path to the
JSON, YAML or TOML file with the config declarations.

You can also pass a function that produces the artifacts required by the interface:

def all_actions():
return {'ext_action': ext_action}

@p.toolkit.blanket.actions(all_actions)
class MyPlugin(p.SingletonPlugin):

pass

Or just a dict with the items required by the interface:

all_actions = {'ext_action': ext_action}

(continues on next page)

284 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

@p.toolkit.blanket.actions(all_actions)
class MyPlugin(p.SingletonPlugin):

pass

ckan.plugins.toolkit.c

The Pylons template context object.

[Deprecated]: Use toolkit.g instead.

This object is used to pass request-specific information to different parts of the code in a thread-safe way (so that
variables from different requests being executed at the same time don’t get confused with each other).

Any attributes assigned to c are available throughout the template and application code, and are local to the
current request.

ckan.plugins.toolkit.chained_action(func)
Decorator function allowing action function to be chained.

This allows a plugin to modify the behaviour of an existing action function. A Chained action function must be
defined as action_function(original_action, context, data_dict) where the first parameter will be
set to the action function in the next plugin or in core ckan. The chained action may call the original_action func-
tion, optionally passing different values, handling exceptions, returning different values and/or raising different
exceptions to the caller.

Usage:

from ckan.plugins.toolkit import chained_action

@chained_action
@side_effect_free
def package_search(original_action, context, data_dict):

return original_action(context, data_dict)

Parameters func (callable) – chained action function

Returns chained action function

Return type callable

ckan.plugins.toolkit.chained_auth_function(func)
Decorator function allowing authentication functions to be chained.

This chain starts with the last chained auth function to be registered and ends with the original auth function (or
a non-chained plugin override version). Chained auth functions must accept an extra parameter, specifically the
next auth function in the chain, for example:

auth_function(next_auth, context, data_dict).

The chained auth function may call the next_auth function, optionally passing different values, handling excep-
tions, returning different values and/or raising different exceptions to the caller.

Usage:

from ckan.plugins.toolkit import chained_auth_function

@chained_auth_function
(continues on next page)

5.8. Plugins toolkit reference 285



CKAN documentation, Release 2.10.0a0

(continued from previous page)

@auth_allow_anonymous_access
def user_show(next_auth, context, data_dict=None):

return next_auth(context, data_dict)

Parameters func (callable) – chained authentication function

Returns chained authentication function

Return type callable

ckan.plugins.toolkit.chained_helper(func)
Decorator function allowing helper functions to be chained.

This chain starts with the first chained helper to be registered and ends with the original helper (or a non-chained
plugin override version). Chained helpers must accept an extra parameter, specifically the next helper in the
chain, for example:

helper(next_helper, *args, **kwargs).

The chained helper function may call the next_helper function, optionally passing different values, handling
exceptions, returning different values and/or raising different exceptions to the caller.

Usage:

from ckan.plugins.toolkit import chained_helper

@chained_helper
def ckan_version(next_func, **kw):

return next_func(**kw)

Parameters func (callable) – chained helper function

Returns chained helper function

Return type callable

ckan.plugins.toolkit.check_access(action, context, data_dict)
Calls the authorization function for the provided action

This is the only function that should be called to determine whether a user (or an anonymous request) is allowed
to perform a particular action.

The function accepts a context object, which should contain a ‘user’ key with the name of the user performing
the action, and optionally a dictionary with extra data to be passed to the authorization function.

For example:

check_access('package_update', context, data_dict)

If not already there, the function will add an auth_user_obj key to the context object with the actual User object
(in case it exists in the database). This check is only performed once per context object.

Raise NotAuthorized if the user is not authorized to call the named action function.

If the user is authorized to call the action, return True.

Parameters

286 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

• action (string) – the name of the action function, eg. 'package_create'

• context (dict) –

• data_dict (dict) –

Raises NotAuthorized if the user is not authorized to call the named action

ckan.plugins.toolkit.check_ckan_version(min_version, max_version)
Return True if the CKAN version is greater than or equal to min_version and less than or equal to
max_version, return False otherwise.

If no min_version is given, just check whether the CKAN version is less than or equal to max_version.

If no max_version is given, just check whether the CKAN version is greater than or equal to min_version.

Parameters

• min_version (string) – the minimum acceptable CKAN version, eg. '2.1'

• max_version (string) – the maximum acceptable CKAN version, eg. '2.3'

ckan.plugins.toolkit.ckan

ckan package itself.

ckan.plugins.toolkit.config

The CKAN configuration object.

It stores the configuration values defined in the CKAN configuration file, eg:

title = toolkit.config.get_value("ckan.site_title")

ckan.plugins.toolkit.enqueue_job(fn, args, kwargs, title, queue, rq_kwargs)
Enqueue a job to be run in the background.

Parameters

• fn (function) – Function to be executed in the background

• args (list) – List of arguments to be passed to the function. Pass an empty list if there are
no arguments (default).

• kwargs (dict) – Dict of keyword arguments to be passed to the function. Pass an empty
dict if there are no keyword arguments (default).

• title (string) – Optional human-readable title of the job.

• queue (string) – Name of the queue. If not given then the default queue is used.

• rq_kwargs (dict) – Dict of keyword arguments that will get passed to the RQ
enqueue_call invocation (eg timeout, depends_on, ttl etc).

Returns The enqueued job.

Return type rq.job.Job

ckan.plugins.toolkit.error_shout(exception)
Report CLI error with a styled message.

ckan.plugins.toolkit.g

The Flask global object.

This object is used to pass request-specific information to different parts of the code in a thread-safe way (so that
variables from different requests being executed at the same time don’t get confused with each other).

5.8. Plugins toolkit reference 287



CKAN documentation, Release 2.10.0a0

Any attributes assigned to g are available throughout the template and application code, and are local to the
current request.

It is a bad pattern to pass variables to the templates using the g object. Pass them explicitly from the view
functions as extra_vars, eg:

return toolkit.render(
'myext/package/read.html',
extra_vars={

u'some_var': some_value,
u'some_other_var': some_other_value,

}
)

ckan.plugins.toolkit.get_action(action)
Return the named ckan.logic.action function.

For example get_action('package_create') will normally return the ckan.logic.action.create.
package_create() function.

For documentation of the available action functions, see Action API reference.

You should always use get_action() instead of importing an action function directly, because IActions
plugins can override action functions, causing get_action() to return a plugin-provided function instead of
the default one.

Usage:

import ckan.plugins.toolkit as toolkit

# Call the package_create action function:
toolkit.get_action('package_create')(context, data_dict)

As the context parameter passed to an action function is commonly:

context = {'model': ckan.model, 'session': ckan.model.Session,
'user': user}

an action function returned by get_action() will automatically add these parameters to the context if they
are not defined. This is especially useful for plugins as they should not really be importing parts of ckan eg
ckan.model and as such do not have access to model or model.Session.

If a context of None is passed to the action function then the default context dict will be created.

Note: Many action functions modify the context dict. It can therefore not be reused for multiple calls of the
same or different action functions.

Parameters action (string) – name of the action function to return, eg. 'package_create'

Returns the named action function

Return type callable

ckan.plugins.toolkit.get_converter(validator)
Return a validator function by name.

288 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

Parameters validator (string) – the name of the validator function to return, eg.
'package_name_exists'

Raises UnknownValidator if the named validator is not found

Returns the named validator function

Return type types.FunctionType

ckan.plugins.toolkit.get_endpoint()

Returns tuple in format: (blueprint, view).

ckan.plugins.toolkit.get_or_bust(data_dict, keys)
Return the value(s) from the given data_dict for the given key(s).

Usage:

single_value = get_or_bust(data_dict, 'a_key')
value_1, value_2 = get_or_bust(data_dict, ['key1', 'key2'])

Parameters

• data_dict (dictionary) – the dictionary to return the values from

• keys (either a string or a list) – the key(s) for the value(s) to return

Returns a single value from the dict if a single key was given, or a tuple of values if a list of keys
was given

Raises ckan.logic.ValidationError if one of the given keys is not in the given dictionary

ckan.plugins.toolkit.get_validator(validator)
Return a validator function by name.

Parameters validator (string) – the name of the validator function to return, eg.
'package_name_exists'

Raises UnknownValidator if the named validator is not found

Returns the named validator function

Return type types.FunctionType

ckan.plugins.toolkit.h

Collection of CKAN native and extension-provided helpers.

class ckan.plugins.toolkit.literal

Represents an HTML literal.

ckan.plugins.toolkit.mail_recipient(recipient_name, recipient_email, subject, body, body_html, headers,
attachments)

Sends an email to a an email address.

Note: You need to set up the Email settings to able to send emails.

Parameters

• recipient_name – the name of the recipient

• recipient_email – the email address of the recipient

5.8. Plugins toolkit reference 289



CKAN documentation, Release 2.10.0a0

• subject (string) – the email subject

• body (string) – the email body, in plain text

• body_html (string) – the email body, in html format (optional)

Headers extra headers to add to email, in the form {‘Header name’: ‘Header value’}

Type dict

Attachments a list of tuples containing file attachments to add to the email. Tuples should contain
the file name and a file-like object pointing to the file contents:

[
('some_report.csv', file_object),

]

Optionally, you can add a third element to the tuple containing the media type. If not provided,
it will be guessed using the mimetypes module:

[
('some_report.csv', file_object, 'text/csv'),

]

Type list

ckan.plugins.toolkit.mail_user(recipient, subject, body, body_html, headers, attachments)
Sends an email to a CKAN user.

You need to set up the Email settings to able to send emails.

Parameters recipient (a model.User object) – a CKAN user object

For further parameters see mail_recipient().

ckan.plugins.toolkit.missing

ckan.plugins.toolkit.navl_validate(data, schema, context)
Validate an unflattened nested dict against a schema.

ckan.plugins.toolkit.redirect_to()

Issue a redirect: return an HTTP response with a 302 Moved header.

This is a wrapper for flask.redirect() that maintains the user’s selected language when redirecting.

The arguments to this function identify the route to redirect to, they’re the same arguments as ckan.plugins.
toolkit.url_for() accepts, for example:

import ckan.plugins.toolkit as toolkit

# Redirect to /dataset/my_dataset.
return toolkit.redirect_to('dataset.read',

id='my_dataset')

Or, using a named route:

return toolkit.redirect_to('dataset.read', id='changed')

If given a single string as argument, this redirects without url parsing

290 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

return toolkit.redirect_to(’http://example.com’) return toolkit.redirect_to(‘/dataset’) return
toolkit.redirect_to(‘/some/other/path’)

ckan.plugins.toolkit.render(template_name, extra_vars)
Render a template and return the output.

This is CKAN’s main template rendering function.

Params template_name relative path to template inside registered tpl_dir

Params extra_vars additional variables available in template

ckan.plugins.toolkit.render_snippet(template, data)
Render a template snippet and return the output.

See Theming guide.

ckan.plugins.toolkit.request

Flask request object.

A new request object is created for each HTTP request. It has methods and attributes for getting things like the
request headers, query-string variables, request body variables, cookies, the request URL, etc.

ckan.plugins.toolkit.requires_ckan_version(min_version, max_version)
Raise CkanVersionException if the CKAN version is not greater than or equal to min_version and less then
or equal to max_version.

If no max_version is given, just check whether the CKAN version is greater than or equal to min_version.

Plugins can call this function if they require a certain CKAN version, other versions of CKAN will crash if a
user tries to use the plugin with them.

Parameters

• min_version (string) – the minimum acceptable CKAN version, eg. '2.1'

• max_version (string) – the maximum acceptable CKAN version, eg. '2.3'

ckan.plugins.toolkit.side_effect_free(action)
A decorator that marks the given action function as side-effect-free.

Action functions decorated with this decorator can be called with an HTTP GET request to the Action API .
Action functions that don’t have this decorator must be called with a POST request.

If your CKAN extension defines its own action functions using the IActions plugin interface, you can use this
decorator to make your actions available with GET requests instead of just with POST requests.

Example:

import ckan.plugins.toolkit as toolkit

@toolkit.side_effect_free
def my_custom_action_function(context, data_dict):

...

(Then implement IActions to register your action function with CKAN.)

ckan.plugins.toolkit.signals

Contains ckan and ckanext namespaces for signals as well as a bunch of predefined core-level signals.

Check Signals for extra detais.

5.8. Plugins toolkit reference 291

http://example.com


CKAN documentation, Release 2.10.0a0

ckan.plugins.toolkit.ungettext()

Translates a string with plural forms to the current locale.

Mark a string for translation that has pural forms in the format ungettext(singular, plural, n). Returns
the localized unicode string of the pluralized value.

Mark a string to be localized as follows:

msg = toolkit.ungettext("Mouse", "Mice", len(mouses))

ckan.plugins.toolkit.url_for()

Return the URL for an endpoint given some parameters.

This is a wrapper for flask.url_for() and routes.url_for() that adds some extra features that CKAN
needs.

To build a URL for a Flask view, pass the name of the blueprint and the view function separated by a period .,
plus any URL parameters:

url_for('api.action', ver=3, logic_function='status_show')
# Returns /api/3/action/status_show

For a fully qualified URL pass the _external=True parameter. This takes the ckan.site_url and ckan.
root_path settings into account:

url_for('api.action', ver=3, logic_function='status_show',
_external=True)

# Returns http://example.com/api/3/action/status_show

URLs built by Pylons use the Routes syntax:

url_for(controller='my_ctrl', action='my_action', id='my_dataset')
# Returns '/dataset/my_dataset'

Or, using a named route:

url_for('dataset.read', id='changed')
# Returns '/dataset/changed'

Use qualified=True for a fully qualified URL when targeting a Pylons endpoint.

For backwards compatibility, an effort is made to support the Pylons syntax when building a Flask URL, but this
support might be dropped in the future, so calls should be updated.

5.9 Validator functions reference

Validators in CKAN are user-defined functions that serves two purposes:

• Ensuring that the input satisfies certain requirements

• Converting the input to an expected form

Validators can be defined as a function that accepts one, two or four arguments. But this is an implementation detail
and validators should not be called directly. Instead, the ckan.plugins.toolkit.navl_validate() function must
be used whenever input requires validation.

292 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

import ckan.plugins.toolkit as tk
from ckanext.my_ext.validators import is_valid

data, errors = tk.navl_validate(
{"input": "value"},
{"input": [is_valid]},

)

And in order to be more flexible and allow overrides, don’t import validator functions directly. Instead, register them
via the IValidators interface and use the ckan.plugins.tookit.get_validator() function:

import ckan.plugins as p
import ckan.plugins.toolkit as tk

def is_valid(value):
return value

class MyPlugin(p.SingletonPlugin)
p.implements(p.IValidators)

def get_validators(self):
return {"is_valid": is_valid}

...
# somewhere in code
data, errors = tk.navl_validate(

{"input": "value"},
{"input": [tk.get_validator("is_valid")]},

)

As you should have already noticed, navl_validate requires two parameters and additionally accepts an optional
one. That’s their purpose:

1. Data that requires validation. Must be a dict object, with keys being the names of the fields.

2. The validation schema. It’s a mapping of field names to the lists of validators for that particular field.

3. Optional context. Contains any extra details that can change validation workflow in special cases. For the sim-
plicity sake, we are not going to use context in this section, and in general is best not to rely on context variables
inside validators.

Let’s imagine an input that contains two fields first and second. The first field must be an integer and must be
provided, while the second field is an optional string. If we have following four validators:

• is_integer

• is_string

• is_required

• is_optional

we can validate data in the following way:

input = {"first": "123"}
schema = {

"first": [is_required, is_integer],
(continues on next page)

5.9. Validator functions reference 293



CKAN documentation, Release 2.10.0a0

(continued from previous page)

"second": [is_optional, is_string],
}

data, errors = tk.navl_validate(input, schema)

If the input is valid, data contains validated input and errors is an empty dictionary. Otherwise, errors contains all
the validation errors for the provided input.

5.9.1 Built-in validators

ckan.lib.navl.validators.keep_extras(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ None

Convert dictionary into simple fields.

data, errors = tk.navl_validate(
{"input": {"hello": 1, "world": 2}},
{"input": [keep_extras]}

)
assert data == {"hello": 1, "world": 2}

ckan.lib.navl.validators.not_missing(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ None

Ensure value is not missing from the input, but may be empty.

data, errors = tk.navl_validate(
{},
{"hello": [not_missing]}

)
assert errors == {"hello": [error_message]}

ckan.lib.navl.validators.not_empty(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ None

Ensure value is available in the input and is not empty.

data, errors = tk.navl_validate(
{"hello": 0},
{"hello": [not_empty]}

)
assert errors == {"hello": [error_message]}

ckan.lib.navl.validators.if_empty_same_as(other_key: str)→ Callable[[...], Any]
Copy value from other field when current field is missing or empty.

data, errors = tk.navl_validate(
{"hello": 1},
{"hello": [], "world": [if_empty_same_as("hello")]}

)
assert data == {"hello": 1, "world": 1}

ckan.lib.navl.validators.both_not_empty(other_key: str)→ Union[Callable[[Any], Any], Callable[[Any,
ckan.types.Context], Any], Callable[[tuple[Any, ...],
dict[FlattenKey, Any], dict[FlattenKey, list[str]],
ckan.types.Context], None]]

294 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

Ensure that both, current value and other field has value.

data, errors = tk.navl_validate(
{"hello": 1},
{"hello": [], "world": [both_not_empty("hello")]}

)
assert errors == {"world": [error_message]}

data, errors = tk.navl_validate(
{"world": 1},
{"hello": [], "world": [both_not_empty("hello")]}

)
assert errors == {"world": [error_message]}

data, errors = tk.navl_validate(
{"hello": 1, "world": 2},
{"hello": [], "world": [both_not_empty("hello")]}

)
assert not errors

ckan.lib.navl.validators.empty(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors: dict[FlattenKey,
list[str]], context: ckan.types.Context)→ None

Ensure that value is not present in the input.

data, errors = tk.navl_validate(
{"hello": 1},
{"hello": [empty]}

)
assert errors == {"hello": [error_message]}

ckan.lib.navl.validators.ignore(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors: dict[FlattenKey,
list[str]], context: ckan.types.Context)→ NoReturn

Remove the value from the input and skip the rest of validators.

data, errors = tk.navl_validate(
{"hello": 1},
{"hello": [ignore]}

)
assert data == {}

ckan.lib.navl.validators.default(default_value: Any)→ Union[Callable[[Any], Any], Callable[[Any,
ckan.types.Context], Any], Callable[[tuple[Any, ...], dict[FlattenKey,
Any], dict[FlattenKey, list[str]], ckan.types.Context], None]]

Convert missing or empty value to the default one.

data, errors = tk.navl_validate(
{},
{"hello": [default("not empty")]}

)
assert data == {"hello": "not empty"}

5.9. Validator functions reference 295



CKAN documentation, Release 2.10.0a0

ckan.lib.navl.validators.configured_default(config_name: str, default_value_if_not_configured: Any)
→ Union[Callable[[Any], Any], Callable[[Any,
ckan.types.Context], Any], Callable[[tuple[Any, ...],
dict[FlattenKey, Any], dict[FlattenKey, list[str]],
ckan.types.Context], None]]

When key is missing or value is an empty string or None, replace it with a default value from config, or if that
isn’t set from the default_value_if_not_configured.

ckan.lib.navl.validators.ignore_missing(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ None

If the key is missing from the data, ignore the rest of the key’s schema.

By putting ignore_missing at the start of the schema list for a key, you can allow users to post a dict without the
key and the dict will pass validation. But if they post a dict that does contain the key, then any validators after
ignore_missing in the key’s schema list will be applied.

Raises ckan.lib.navl.dictization_functions.StopOnError – if data[key] is ckan.lib.
navl.dictization_functions.missing or None

Returns None

ckan.lib.navl.validators.ignore_empty(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ None

Skip the rest of validators if the value is empty or missing.

data, errors = tk.navl_validate(
{"hello": ""},
{"hello": [ignore_empty, isodate]}

)
assert data == {}
assert not errors

ckan.lib.navl.validators.convert_int(value: Any)→ int
Ensure that the value is a valid integer.

data, errors = tk.navl_validate(
{"hello": "world"},
{"hello": [convert_int]}

)
assert errors == {"hello": [error_message]}

ckan.lib.navl.validators.unicode_only(value: Any)→ str
Accept only unicode values

data, errors = tk.navl_validate(
{"hello": 1},
{"hello": [unicode_only]}

)
assert errors == {"hello": [error_message]}

ckan.lib.navl.validators.unicode_safe(value: Any)→ str
Make sure value passed is treated as unicode, but don’t raise an error if it’s not, just make a reasonable attempt
to convert other types passed.

This validator is a safer alternative to the old ckan idiom of using the unicode() function as a validator. It tries
not to pollute values with Python repr garbage e.g. when passed a list of strings (uses json format instead). It

296 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

also converts binary strings assuming either UTF-8 or CP1252 encodings (not ASCII, with occasional decoding
errors)

ckan.lib.navl.validators.limit_to_configured_maximum(config_option: str, default_limit: int)→
Union[Callable[[Any], Any], Callable[[Any,
ckan.types.Context], Any],
Callable[[tuple[Any, ...], dict[FlattenKey, Any],
dict[FlattenKey, list[str]], ckan.types.Context],
None]]

If the value is over a limit, it changes it to the limit. The limit is defined by a configuration option, or if that is
not set, a given int default_limit.

ckan.logic.validators.owner_org_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Validate organization for the dataset.

Depending on the settings and user’s permissions, this validator checks whether organization is optional and
ensures that specified organization can be set as an owner of dataset.

ckan.logic.validators.package_id_not_changed(value: Any, context: ckan.types.Context)→ Any
Ensures that package’s ID is not changed during the update.

ckan.logic.validators.int_validator(value: Any, context: ckan.types.Context)→ Any
Return an integer for value, which may be a string in base 10 or a numeric type (e.g. int, long, float, Decimal,
Fraction). Return None for None or empty/all-whitespace string values.

Raises ckan.lib.navl.dictization_functions.Invalid for other inputs or non-whole values

ckan.logic.validators.natural_number_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that the value is non-negative integer.

ckan.logic.validators.is_positive_integer(value: Any, context: ckan.types.Context)→ Any
Ensures that the value is an integer that is greater than zero.

ckan.logic.validators.datetime_from_timestamp_validator(value: Any, context: ckan.types.Context)
→ Any

ckan.logic.validators.boolean_validator(value: Any, context: ckan.types.Context)→ Any
Return a boolean for value. Return value when value is a python bool type. Return True for strings ‘true’, ‘yes’,
‘t’, ‘y’, and ‘1’. Return False in all other cases, including when value is an empty string or None

ckan.logic.validators.isodate(value: Any, context: ckan.types.Context)→ Any
Convert the value into datetime.datetime object.

ckan.logic.validators.package_id_exists(value: str, context: ckan.types.Context)→ Any
Ensures that the value is an existing package’s ID or name.

ckan.logic.validators.package_id_does_not_exist(value: str, context: ckan.types.Context)→ Any
Ensures that the value is not used as a package’s ID or name.

ckan.logic.validators.package_name_exists(value: str, context: ckan.types.Context)→ Any
Ensures that the value is an existing package’s name.

ckan.logic.validators.package_id_or_name_exists(package_id_or_name: str, context:
ckan.types.Context)→ Any

Return the given package_id_or_name if such a package exists.

Raises ckan.lib.navl.dictization_functions.Invalid if there is no package with the given id or name

5.9. Validator functions reference 297



CKAN documentation, Release 2.10.0a0

ckan.logic.validators.resource_id_exists(value: Any, context: ckan.types.Context)→ Any
Ensures that the value is not used as a resource’s ID or name.

ckan.logic.validators.user_id_exists(user_id: str, context: ckan.types.Context)→ Any
Raises Invalid if the given user_id does not exist in the model given in the context, otherwise returns the given
user_id.

ckan.logic.validators.user_id_or_name_exists(user_id_or_name: str, context: ckan.types.Context)→
Any

Return the given user_id_or_name if such a user exists.

Raises ckan.lib.navl.dictization_functions.Invalid if no user can be found with the given id or user
name

ckan.logic.validators.group_id_exists(group_id: str, context: ckan.types.Context)→ Any
Raises Invalid if the given group_id does not exist in the model given in the context, otherwise returns the given
group_id.

ckan.logic.validators.group_id_or_name_exists(reference: str, context: ckan.types.Context)→ Any
Raises Invalid if a group identified by the name or id cannot be found.

ckan.logic.validators.name_validator(value: Any, context: ckan.types.Context)→ Any
Return the given value if it’s a valid name, otherwise raise Invalid.

If it’s a valid name, the given value will be returned unmodified.

This function applies general validation rules for names of packages, groups, users, etc.

Most schemas also have their own custom name validator function to apply custom validation rules after this
function, for example a package_name_validator() to check that no package with the given name already
exists.

Raises ckan.lib.navl.dictization_functions.Invalid – if value is not a valid name

ckan.logic.validators.package_name_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)
→ Any

Ensures that value can be used as a package’s name

ckan.logic.validators.package_version_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that value can be used as a package’s version

ckan.logic.validators.duplicate_extras_key(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Ensures that there are no duplicated extras.

ckan.logic.validators.group_name_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Ensures that value can be used as a group’s name

ckan.logic.validators.tag_length_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that tag length is in the acceptable range.

ckan.logic.validators.tag_name_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that tag does not contain wrong characters

298 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

ckan.logic.validators.tag_not_uppercase(value: Any, context: ckan.types.Context)→ Any
Ensures that tag is lower-cased.

ckan.logic.validators.tag_string_convert(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Takes a list of tags that is a comma-separated string (in data[key]) and parses tag names. These are added to the
data dict, enumerated. They are also validated.

ckan.logic.validators.ignore_not_package_admin(key: tuple[Any, ...], data: dict[FlattenKey, Any],
errors: dict[FlattenKey, list[str]], context:
ckan.types.Context)→ Any

Ignore if the user is not allowed to administer the package specified.

ckan.logic.validators.ignore_not_sysadmin(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Ignore the field if user not sysadmin or ignore_auth in context.

ckan.logic.validators.ignore_not_group_admin(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)
→ Any

Ignore if the user is not allowed to administer for the group specified.

ckan.logic.validators.user_name_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Validate a new user name.

Append an error message to errors[key] if a user named data[key] already exists. Otherwise, do nothing.

Raises ckan.lib.navl.dictization_functions.Invalid – if data[key] is not a string

Return type None

ckan.logic.validators.user_both_passwords_entered(key: tuple[Any, ...], data: dict[FlattenKey, Any],
errors: dict[FlattenKey, list[str]], context:
ckan.types.Context)→ Any

Ensures that both password and password confirmation is not empty

ckan.logic.validators.user_password_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)
→ Any

Ensures that password is safe enough.

ckan.logic.validators.user_passwords_match(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Ensures that password and password confirmation match.

ckan.logic.validators.user_password_not_empty(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)
→ Any

Only check if password is present if the user is created via action API. If not, user_both_passwords_entered will
handle the validation

ckan.logic.validators.user_about_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that user’s about field does not contains links.

5.9. Validator functions reference 299



CKAN documentation, Release 2.10.0a0

ckan.logic.validators.vocabulary_name_validator(name: str, context: ckan.types.Context)→ Any
Ensures that the value can be used as a tag vocabulary name.

ckan.logic.validators.vocabulary_id_not_changed(value: Any, context: ckan.types.Context)→ Any
Ensures that vocabulary ID is not changed during the update.

ckan.logic.validators.vocabulary_id_exists(value: Any, context: ckan.types.Context)→ Any
Ensures that value contains existing vocabulary’s ID or name.

ckan.logic.validators.tag_in_vocabulary_validator(value: Any, context: ckan.types.Context)→ Any
Ensures that the tag belongs to the vocabulary.

ckan.logic.validators.tag_not_in_vocabulary(key: tuple[Any, ...], tag_dict: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Ensures that the tag does not belong to the vocabulary.

ckan.logic.validators.url_validator(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Checks that the provided value (if it is present) is a valid URL

ckan.logic.validators.user_name_exists(user_name: str, context: ckan.types.Context)→ Any
Ensures that user’s name exists.

ckan.logic.validators.role_exists(role: str, context: ckan.types.Context)→ Any
Ensures that value is an existing CKAN Role name.

ckan.logic.validators.datasets_with_no_organization_cannot_be_private(key: tuple[Any, ...], data:
dict[FlattenKey, Any],
errors: dict[FlattenKey,
list[str]], context:
ckan.types.Context)→
Any

ckan.logic.validators.list_of_strings(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Ensures that value is a list of strings.

ckan.logic.validators.if_empty_guess_format(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Make an attempt to guess resource’s format using URL.

ckan.logic.validators.clean_format(format: str)
Normalize resource’s format.

ckan.logic.validators.no_loops_in_hierarchy(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Checks that the parent groups specified in the data would not cause a loop in the group hierarchy, and therefore
cause the recursion up/down the hierarchy to get into an infinite loop.

300 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

ckan.logic.validators.filter_fields_and_values_should_have_same_length(key: tuple[Any, ...],
data: dict[FlattenKey,
Any], errors:
dict[FlattenKey,
list[str]], context:
ckan.types.Context)→
Any

ckan.logic.validators.filter_fields_and_values_exist_and_are_valid(key: tuple[Any, ...], data:
dict[FlattenKey, Any],
errors: dict[FlattenKey,
list[str]], context:
ckan.types.Context)→ Any

ckan.logic.validators.extra_key_not_in_root_schema(key: tuple[Any, ...], data: dict[FlattenKey, Any],
errors: dict[FlattenKey, list[str]], context:
ckan.types.Context)→ Any

Ensures that extras are not duplicating base fields

ckan.logic.validators.empty_if_not_sysadmin(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Only sysadmins may pass this value

ckan.logic.validators.strip_value(value: str)
Trims the Whitespace

ckan.logic.validators.email_validator(value: Any, context: ckan.types.Context)→ Any
Validate email input

ckan.logic.validators.collect_prefix_validate(prefix: str, *validator_names: str)→
Union[Callable[[Any], Any], Callable[[Any,
ckan.types.Context], Any], Callable[[tuple[Any, ...],
dict[FlattenKey, Any], dict[FlattenKey, list[str]],
ckan.types.Context], None]]

Return a validator that will collect top-level keys starting with prefix then apply validator_names to each one.
Results are moved to a dict under the prefix name, with prefix removed from keys

ckan.logic.validators.dict_only(value: Any)→ dict[Any, Any]
Ensures that the value is a dictionary

ckan.logic.validators.email_is_unique(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Validate email is unique

ckan.logic.validators.one_of(list_of_value: Container[Any])→ Union[Callable[[Any], Any],
Callable[[Any, ckan.types.Context], Any], Callable[[tuple[Any, ...],
dict[FlattenKey, Any], dict[FlattenKey, list[str]], ckan.types.Context], None]]

Checks if the provided value is present in a list or is an empty string

ckan.logic.validators.json_object(value: Any)→ Any
Make sure value can be serialized as a JSON object

ckan.logic.validators.extras_valid_json(extras: Any, context: ckan.types.Context)→ Any
Ensures that every item in the value dictionary is JSON-serializable.

5.9. Validator functions reference 301



CKAN documentation, Release 2.10.0a0

ckan.logic.converters.convert_to_extras(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Convert given field into an extra field.

ckan.logic.converters.convert_from_extras(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→
Any

Restore field using object’s extras.

ckan.logic.converters.extras_unicode_convert(extras: dict[FlattenKey, Any], context:
ckan.types.Context)

Convert every value of the dictionary into string.

ckan.logic.converters.free_tags_only(key: tuple[Any, ...], data: dict[FlattenKey, Any], errors:
dict[FlattenKey, list[str]], context: ckan.types.Context)→ Any

Ensure that none of the tags belong to a vocabulary.

ckan.logic.converters.convert_to_tags(vocab: Any)→ Callable[[tuple[Any, ...], dict[FlattenKey, Any],
dict[FlattenKey, list[str]], ckan.types.Context], None]

Convert list of tag names into a list of tag dictionaries

ckan.logic.converters.convert_from_tags(vocab: Any)→ Callable[[tuple[Any, ...], dict[FlattenKey, Any],
dict[FlattenKey, list[str]], ckan.types.Context], None]

ckan.logic.converters.convert_user_name_or_id_to_id(user_name_or_id: Any, context:
ckan.types.Context)→ Any

Return the user id for the given user name or id.

The point of this function is to convert user names to ids. If you have something that may be a user name or a
user id you can pass it into this function and get the user id out either way.

Also validates that a user with the given name or id exists.

Returns the id of the user with the given user name or id

Return type string

Raises ckan.lib.navl.dictization_functions.Invalid if no user can be found with the given id or user
name

ckan.logic.converters.convert_package_name_or_id_to_id(package_name_or_id: Any, context:
ckan.types.Context)→ Any

Return the package id for the given package name or id.

The point of this function is to convert package names to ids. If you have something that may be a package name
or id you can pass it into this function and get the id out either way.

Also validates that a package with the given name or id exists.

Returns the id of the package with the given name or id

Return type string

Raises ckan.lib.navl.dictization_functions.Invalid if there is no package with the given name or id

ckan.logic.converters.convert_group_name_or_id_to_id(group_name_or_id: Any, context:
ckan.types.Context)→ Any

Return the group id for the given group name or id.

The point of this function is to convert group names to ids. If you have something that may be a group name or
id you can pass it into this function and get the id out either way.

302 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

Also validates that a group with the given name or id exists.

Returns the id of the group with the given name or id

Return type string

Raises ckan.lib.navl.dictization_functions.Invalid if there is no group with the given name or id

ckan.logic.converters.convert_to_json_if_string(value: Any, context: ckan.types.Context)→ Any
Parse string value as a JSON object.

ckan.logic.converters.as_list(value: Any)
Convert whitespace separated string into a list of strings.

ckan.logic.converters.convert_to_list_if_string(value: Any)→ Any
Transform string into one-item list

ckan.logic.converters.json_or_string(value: Any)→ Any
parse string values as json, return string if that fails

ckan.logic.converters.json_list_or_string(value: Any)→ Any
parse string values as json or comma-separated lists, return string as a one-element list if that fails

ckan.logic.converters.remove_whitespace(value: Any, context: ckan.types.Context)→ Any
Trim whitespaces from the value.

5.10 Internationalizing strings in extensions

See also:

In order to internationalize your extension you must mark its strings for internationalization. See also Translating
CKAN .

This tutorial assumes that you have read the Writing extensions tutorial.

We will create a simple extension to demonstrate the translation of strings inside extensions. After running:

ckan -c |ckan.ini| create -t ckanext ckanext-itranslation

Change the plugin.py file to:

# encoding: utf-8

from ckan.common import CKANConfig
from ckan import plugins
from ckan.plugins import toolkit

class ExampleITranslationPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IConfigurer)

def update_config(self, config: CKANConfig):
toolkit.add_template_directory(config, 'templates')

Add a template file ckanext-itranslation/templates/home/index.html containing:

5.10. Internationalizing strings in extensions 303



CKAN documentation, Release 2.10.0a0

{% ckan_extends %}

{% block primary_content %}
{% trans %}This is an untranslated string{% endtrans %}
{% endblock %}

This template provides a sample string that we will internationalize in this tutorial.

Note: While this tutorial only covers Python/Jinja templates it is also possible (since CKAN 2.7) to translate strings
in an extension’s JavaScript modules.

5.10.1 Extract strings

Tip: If you have generated a new extension whilst following this tutorial the default template will have generated these
files for you and you can simply run the extract_messages command immediately.

Check your setup.py file in your extension for the following lines

setup(
entry_points='''

[ckan.plugins]
itranslation=ckanext.itranslation.plugin:ExampleITranslationPlugin
[babel.extractors]
ckan = ckan.lib.extract:extract_ckan

'''

message_extractors={
'ckanext': [

('**.py', 'python', None),
('**.js', 'javascript', None),
('**/templates/**.html', 'ckan', None),

],
}

These lines will already be present in our example, but if you are adding internationalization to an older extension,
you may need to add them. If you have your templates in a directory differing from the default location (ckanext/
yourplugin/i18n), you may need to change the message_extractors stanza. You can read more about message
extractors in the babel documentation.

Add a directory to store your translations:

mkdir ckanext-itranslations/ckanext/itranslations/i18n

Next you will need a babel config file. Add a setup.cfg file containing the following (make sure you replace
itranslations with the name of your extension):

[extract_messages]
keywords = translate isPlural
add_comments = TRANSLATORS:
output_file = ckanext/itranslation/i18n/ckanext-itranslation.pot

(continues on next page)

304 Chapter 5. Extending guide

http://babel.pocoo.org/docs/messages/#extraction-method-mapping-and-configuration


CKAN documentation, Release 2.10.0a0

(continued from previous page)

width = 80

[init_catalog]
domain = ckanext-itranslation
input_file = ckanext/itranslation/i18n/ckanext-itranslation.pot
output_dir = ckanext/itranslation/i18n

[update_catalog]
domain = ckanext-itranslation
input_file = ckanext/itranslation/i18n/ckanext-itranslation.pot
output_dir = ckanext/itranslation/i18n

[compile_catalog]
domain = ckanext-itranslation
directory = ckanext/itranslation/i18n
statistics = true

This file tells babel where the translation files are stored. You can then run the extract_messages command to extract
the strings from your extension:

python setup.py extract_messages

This will create a template PO file named ckanext/itranslations/i18n/ckanext-itranslation.pot.

At this point, you can either upload and manage your translations using Transifex or manually edit your translations.

5.10.2 Manually create translations

We will create translation files for the fr locale. Create the translation PO files for the locale that you are translating
for by running init_catalog:

python setup.py init_catalog -l fr

This will generate a file called i18n/fr/LC_MESSAGES/ckanext-itranslation.po. This file should contain the
untranslated string on our template. You can manually add a translation for it by editing the msgstr section:

msgid "This is an untranslated string"
msgstr "This is a itranslated string"

5.10.3 Translations with Transifex

Once you have created your translations, you can manage them using Transifex. This is out side of the scope of this
tutorial, but the Transifex documentation provides tutorials on how to upload translations and how to manage them
using the command line client.

5.10. Internationalizing strings in extensions 305

http://babel.pocoo.org/en/latest/setup.html#init-catalog
http://docs.transifex.com/tutorials/content/#upload-files-and-download-the-translations
http://docs.transifex.com/tutorials/client/


CKAN documentation, Release 2.10.0a0

5.10.4 Compiling the catalog

Once the translation files (po) have been updated, either manually or via Transifex, compile them by running:

python setup.py compile_catalog

This will generate a mo file containing your translations that can be used by CKAN.

5.10.5 The ITranslation interface

Once you have created the translated strings, you will need to inform CKAN that your extension is translated by im-
plementing the ITranslation interface in your extension. Edit your plugin.py to contain the following.

# encoding: utf-8

from ckan.common import CKANConfig
from ckan import plugins
from ckan.plugins import toolkit
from ckan.lib.plugins import DefaultTranslation

class ExampleITranslationPlugin(plugins.SingletonPlugin, DefaultTranslation):
plugins.implements(plugins.ITranslation)
plugins.implements(plugins.IConfigurer)

def update_config(self, config: CKANConfig):
toolkit.add_template_directory(config, 'templates')

You’re done! To test your translated extension, make sure you add the extension to your /etc/ckan/default/ckan.ini, run
a ckan run command and browse to http://localhost:5000. You should find that switching to the fr locale in the web
interface will change the home page string to this is an itranslated string.

Advanced ITranslation usage

If you are translating a CKAN extension that already exists, or you have structured your extension differently from the
default layout. You may have to tell CKAN where to locate your translated files, you can do this by not having your
plugin inherit from the DefaultTranslation class and instead implement the ITranslation interface yourself.

i18n_directory() Change the directory of the .mo translation files
i18n_locales() Change the list of locales that this plugin handles
i18n_domain() Change the gettext domain handled by this plugin

306 Chapter 5. Extending guide

http://localhost:5000


CKAN documentation, Release 2.10.0a0

5.11 Migration from Pylons to Flask

On CKAN 2.6, work started to migrate from the Pylons web framework to a more modern alternative, Flask. This will
be a gradual process spanning multiple CKAN versions, where both the Pylons app and the Flask app will live side by
side with their own controllers or blueprints which handle the incoming requests. The idea is that any other lower level
code, like templates, logic actions and authorization are shared between them as much as possible. You can learn more
about the approach followed and the work already done on this page in the CKAN wiki:

https://github.com/ckan/ckan/wiki/Migration-from-Pylons-to-Flask

This page lists changes and deprecations that both core and extensions developers should be aware of going forward,
as well as common exceptions and how to fix them.

5.11.1 Always import methods and objects from the plugins toolkit if available

This is a good practice in general when writing extensions but in the context of the Flask migration it becomes specially
important with these methods and objects:

from ckan.plugins.toolkit import url_for, redirect_to, request, config

url_for()
redirect_to()
request
config

The reason is that these are actually wrappers provided by CKAN that will proxy the call to the relevant Pylons or Flask
underlying object or method depending on who is handling the request. For instance in the config case, if you use
pylons.config directly from your extension changes in configuration will only be applied to the Pylons application,
and the Flask application will be misconfigured.

Note: config was added to the plugins toolkit on CKAN 2.6. If your extension needs to target CKAN versions lower
and greater than CKAN 2.6 you can use ckantoolkit <https://github.com/ckan/ckantoolkit>, a separate package that
provides wrappers for cross-version CKAN compatibility:

from ckantoolkit import config

5.12 Signals

CKAN provides built-in signal support, powered by blinker.

The same library is used by Flask and anything written in the Flask documentation also applies to CKAN. Probably,
the most important point:

Flask comes with a couple of signals and other extensions might provide more. Also keep in mind that
signals are intended to notify subscribers and should not encourage subscribers to modify data. You will
notice that there are signals that appear to do the same thing like some of the builtin decorators do (eg:
request_started is very similar to before_request()). However, there are differences in how they work. The
core before_request() handler, for example, is executed in a specific order and is able to abort the request
early by returning a response. In contrast all signal handlers are executed in undefined order and do not
modify any data.

5.11. Migration from Pylons to Flask 307

http://flask.pocoo.org/
https://github.com/ckan/ckan/wiki/Migration-from-Pylons-to-Flask
https://pythonhosted.org/blinker/
https://flask.palletsprojects.com/en/1.1.x/signals/


CKAN documentation, Release 2.10.0a0

ckan.lib.signals provides two namespaces for signals: ckan and ckanext. All core signals reside in ckan, while
signals from extensions (datastore, datapusher, third-party extensions) are registered under ckanext. This is a
recommended pattern and nothing prevents developers from creating and using their own namespaces.

Signal subscribers MUST always be defined as callable accepting one mandatory argument sender and arbitary number
of keyword arguments:

def subscriber(sender, **kwargs):
...

CKAN core doesn’t make any guarantees as for the concrete named arguments that will be passed to subscriber. For
particular CKAN version one can use signlal-listing below as a reference, but in future versions signature may change.
In additon, any event can be fired by a third-party plugin, so it is always safer to check whether a particular argument
is available inisde the provided kwargs.

Even though it is possible to register subscribers using decorators:

@p.toolkit.signals.before_action.connect
def action_subscriber(sender, **kwargs):

pass

the recommended approach is to use the ckan.plugins.interfaces.ISignal interface, in order to give CKAN
more control over the subscriptions available depending on the enabled plugins:

class ExampleISignalPlugin(p.SingletonPlugin):
p.implements(p.ISignal)

def get_signal_subscriptions(self):
return {

p.toolkit.signals.before_action: [
# when subscribing to every signal of type
action_subscriber,

# when subscribing to signals from particular sender
{u'receiver': action_subscriber, u'sender': 'sender_name'}

]
}

Warning: Arguments passed to subscribers should never be modified. Use subscribers only to trigger side effects
and not to change existing CKAN behavior. If one needs to alter CKAN behavior use ckan.plugins.interfaces
instead.

There are a number of built-in signals in CKAN (check the list at the bottom of the page). All of them are created
inside one of the available namespaces: ckan and ckanext. For simplicity sake, all built in signals have aliases inside
ckan.lib.signals (or ckan.plugins.toolkit.signals, or ckantoolkit.signals), but you can always get
signals directly from corresponding the namespace (you shouldn’t use this directly unless you are familiar with the
blinker library):

from ckan.lib.signals import (
ckan as ckan_namespace,
register_blueprint, request_started

)
assert register_blueprint is ckan_namespace.signal('register_blueprint')
assert request_started is ckan_namespace.signal('request_started')

308 Chapter 5. Extending guide



CKAN documentation, Release 2.10.0a0

This information may be quite handy, if you want to define custom signals inside your extension. Just use ckanext
namespace and call its method signal in order to create a new signal (or get an existing one). In order to avoid name
collisions and unexpected behavior, always use your plugin’s name as prefix for the signal.:

# ckanext-custom/ckanext/custom/signals.py
import ckan.plugins.toolkit as tk

# create signal and use it somewhere inside your extension
custom_something_happened = tk.signals.ckanext.signal('custom_something_happened)

# after this, you can notify subscribers using following code:
custom_signal_happened.send(SENDER, ARG1=VALUE1, ARG2=VALUE2, ...)

From now on, everyone who is using your extension can subscribe to your signal from another extension:

# ckanext-ext/ckanext/ext/plugin.py
import ckan.plugins as p
from ckanext.custom.signals import custom_something_happened
from ckanext.ext import listeners # here you'll define listeners

class ExtPlugin(p.SingletonPlugin):
p.implements(p.ISignal)

def get_signal_subscriptions(self):
return {

custom_something_happened: [
listeners.custom_listener

]
}

There is a small problem in snippet above. If ckanext-custom is not installed, you’ll get ImportError. This is
perfectly fine if you are sure that you are using ckanext-custom, but may be a problem for some general-use plugin.
To avoid this, import signals from the ckanext namespace instead:

# ckanext-ext/ckanext/ext/plugin.py
import ckan.plugins as p
from ckanext.ext import listeners

class ExtPlugin(p.SingletonPlugin):
p.implements(p.ISignal)

def get_signal_subscriptions(self):
custom_something_happened = p.toolkit.signals.ckanext.signal(

'custom_something_happened'
)

return {
custom_something_happened: [

listeners.custom_listener
]

}

All signals are singletons inside their namespace. If ckanext-custom is installed, you’ll get its existing signal, oth-
erwise you’ll create a new signal that is never sent. So your subscription will work only when ckanext-custom is
available and do nothing otherwise.

5.12. Signals 309



CKAN documentation, Release 2.10.0a0

ckan.lib.signals contains a few core signals for plugins to subscribe:

ckan.lib.signals.request_started (app)

This signal is sent when the request context is set up, before any request processing happens.

ckan.lib.signals.request_finished (app, response)

This signal is sent right before the response is sent to the client.

ckan.lib.signals.register_blueprint (blueprint_type, blueprint)

This signal is sent when a blueprint for dataset/resource/group/organization is going to be registered inside the
application.

ckan.lib.signals.resource_download (resource_id)

This signal is sent just before a file from an uploaded resource is sent to the user.

ckan.lib.signals.successful_login (username)

This signal is sent after successful login attempt.

ckan.lib.signals.failed_login (username)

This signal is sent after failed login attempt.

ckan.lib.signals.user_created (username, user)

This signal is sent when new user created.

ckan.lib.signals.request_password_reset (username, user)

This signal is sent just after mail with password reset link sent to user.

ckan.lib.signals.perform_password_reset (username, user)

This signal is sent when user submitted password reset form providing new password.

ckan.lib.signals.action_succeeded (action, context, data_dict, result)

This signal is sent when an action finished without an exception.

ckan.lib.signals.datastore_upsert (resource_id, records)

This signal is sent after datasetore records inserted/updated via datastore_upsert.

ckan.lib.signals.datastore_delete (resource_id, result, data_dict)

This signal is sent after successful call to datastore_delete.

310 Chapter 5. Extending guide



CHAPTER

SIX

THEMING GUIDE

Changed in version 2.0: The CKAN frontend was completely rewritten for CKAN 2.0, so most of the tutorials below
don’t apply to earlier versions of CKAN.

The following sections will teach you how to customize the content and appearance of CKAN pages by developing
your own CKAN themes.

See also:

Getting started If you just want to do some simple customizations such as changing the title of your CKAN site, or
making some small CSS customizations, Getting started documents some simple configuration settings you can
use.

Note: Before you can start developing a CKAN theme, you’ll need a working source install of CKAN on your system. If
you don’t have a CKAN source install already, follow the instructions in Installing CKAN from source before continuing.

Note: CKAN theme development is a technical topic, for web developers. The tutorials below assume basic knowledge
of:

• The Python programming language

• HTML

• CSS

• JavaScript

We also recommend familiarizing yourself with:

• Jinja2 templates

• Bootstrap

• jQuery

Note: Starting from CKAN version 2.8 the Bootstrap version used in the default CKAN theme is Bootstrap 3. For
backwards compatibility, Bootstrap 2 templates will be included in CKAN core for a few versions, but they will be
eventually removed so you are encouraged to update your custom theme to use Bootstrap 3. You can select which set of
templates to use (Bootstrap 3 or 2) by using the ckan.base_public_folder and ckan.base_templates_folder configuration
options.

311

http://www.python.org/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://jinja.pocoo.org/docs/templates/
https://getbootstrap.com/docs/3.4/
http://jquery.com/


CKAN documentation, Release 2.10.0a0

6.1 Customizing CKAN’s templates

CKAN pages are generated from Jinja2 template files. This tutorial will walk you through the process of writing your
own template files to modify and replace the default ones, and change the layout and content of CKAN pages.

See also:

String internationalization How to mark strings for translation in your template files.

6.1.1 Creating a CKAN extension

A CKAN theme is simply a CKAN plugin that contains some custom templates and static files, so before getting started
on our CKAN theme we’ll have to create an extension and plugin. For a detailed explanation of the steps below, see
Writing extensions tutorial.

1. Use the ckan generate extension command as per the Writing extensions tutorial.

2. Create the file ckanext-example_theme/ckanext/example_theme/plugin.py with the following con-
tents:

# encoding: utf-8

import ckan.plugins as plugins

class ExampleThemePlugin(plugins.SingletonPlugin):
'''An example theme plugin.

'''
pass

3. Edit the entry_points in ckanext-example_theme/setup.py to look like this:

entry_points='''
[ckan.plugins]
example_theme=ckanext.example_theme.plugin:ExampleThemePlugin

''',

4. Run python setup.py develop:

cd ckanext-example_theme
python setup.py develop

5. Add the plugin to the ckan.plugins setting in your /etc/ckan/default/ckan.ini file:

ckan.plugins = stats text_view recline_view example_theme

6. Start CKAN in the development web server:

$ ckan -c /etc/ckan/default/ckan.ini run
Starting server in PID 13961.
serving on 0.0.0.0:5000 view at http://127.0.0.1:5000

Open the CKAN front page in your web browser. If your plugin is in the ckan.plugins setting and CKAN starts
without crashing, then your plugin is installed and CKAN can find it. Of course, your plugin doesn’t do anything
yet.

312 Chapter 6. Theming guide

http://jinja.pocoo.org/
http://127.0.0.1:5000
http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

6.1.2 Replacing a default template file

Every CKAN page is generated by rendering a particular template. For each page of a CKAN site there’s a corre-
sponding template file. For example the front page is generated from the ckan/templates/home/index.html file, the
/about page is generated from ckan/templates/home/about.html, the datasets page at /dataset is generated from
ckan/templates/package/search.html, etc.

To customize pages, our plugin needs to register its own custom template directory containing template files that over-
ride the default ones. Edit the ckanext-example_theme/ckanext/example_theme/plugin.py file that we created
earlier, so that it looks like this:

# encoding: utf-8

'''plugin.py

'''
from ckan.common import CKANConfig
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit

class ExampleThemePlugin(plugins.SingletonPlugin):
'''An example theme plugin.

'''
# Declare that this class implements IConfigurer.
plugins.implements(plugins.IConfigurer)

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
# 'templates' is the path to the templates dir, relative to this
# plugin.py file.
toolkit.add_template_directory(config, 'templates')

This new code does a few things:

1. It imports CKAN’s plugins toolkit module:

import ckan.plugins.toolkit as toolkit

The plugins toolkit is a Python module containing core functions, classes and exceptions for CKAN plugins to
use. For more about the plugins toolkit, see Writing extensions tutorial.

2. It calls implements() to declare that it implements the IConfigurer plugin interface:

plugins.implements(plugins.IConfigurer)

This tells CKAN that our ExampleThemePlugin class implements the methods declared in the IConfigurer
interface. CKAN will call these methods of our plugin class at the appropriate times.

3. It implements the update_config()method, which is the only method declared in the IConfigurer interface:

6.1. Customizing CKAN’s templates 313

https://github.com/ckan/ckan/blob/master/ckan/templates/home/index.html
https://github.com/ckan/ckan/blob/master/ckan/templates/home/about.html
https://github.com/ckan/ckan/blob/master/ckan/templates/package/search.html


CKAN documentation, Release 2.10.0a0

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
# 'templates' is the path to the templates dir, relative to this
# plugin.py file.
toolkit.add_template_directory(config, 'templates')

CKAN will call this method when it starts up, to give our plugin a chance to modify CKAN’s configuration
settings. Our update_config() method calls add_template_directory() to register its custom template
directory with CKAN. This tells CKAN to look for template files in ckanext-example_theme/ckanext/
example_theme/templates whenever it renders a page. Any template file in this directory that has the same
name as one of CKAN’s default template files, will be used instead of the default file.

Now, let’s customize the CKAN front page. We first need to discover which template file CKAN uses to render the
front page, so we can replace it. Set debug to true in your /etc/ckan/default/ckan.ini file:

[DEFAULT]

# WARNING: *THIS SETTING MUST BE SET TO FALSE ON A PRODUCTION ENVIRONMENT*
debug = true

Reload the CKAN front page in your browser, and you should see a Debug link in the footer at the bottom of the page.
Click on this link to open the debug footer. The debug footer displays various information useful for CKAN frontend
development and debugging, including the names of the template files that were used to render the current page:

The first template file listed is the one we’re interested in:

314 Chapter 6. Theming guide

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

Template name: home/index.html
Template path: /usr/lib/ckan/default/src/ckan/ckan/templates/home/index.html

This tells us that home/index.html is the root template file used to render the front page. The debug footer appears at
the bottom of every CKAN page, and can always be used to find the page’s template files, and other information about
the page.

Note: Most CKAN pages are rendered from multiple template files. The first file listed in the debug footer is the root
template file of the page. All other template files used to render the page (listed further down in the debug footer) are
either included by the root file, or included by another file that is included by the root file.

To figure out which template file renders a particular part of the page you have to inspect the source code of the template
files, starting with the root file.

Now let’s override home/index.html using our plugins’ custom templates directory. Create the
ckanext-example_theme/ckanext/example_theme/templates directory, create a home directory inside
the templates directory, and create an empty index.html file inside the home directory:

ckanext-example_theme/
ckanext/
example_theme/
templates/
home/
index.html <-- An empty file.

If you now restart the development web server (kill the server using Ctrl-c, then run the ckan run command again) and
reload the CKAN front page in your web browser, you should see an empty page, because we’ve replaced the template
file for the front page with an empty file.

Note: If you run ckan run without the -r(--disable-reloader) option, then it isn’t usually necessary to restart
the server after editing a Python file, a template file, your CKAN config file, or any other CKAN file. If you’ve added
a new file or directory, however, you need to restart the server manually.

6.1.3 Jinja2

CKAN template files are written in the Jinja2 templating language. Jinja template files, such as our index.html file,
are simply text files that, when processed, generate any text-based output format such as HTML, XML, CSV, etc. Most of
the template files in CKAN generate HTML.

We’ll introduce some Jinja2 basics below. Jinja2 templates have many more features than these, for full details see the
Jinja2 docs.

6.1. Customizing CKAN’s templates 315

https://github.com/ckan/ckan/tree/master/ckan/templates
https://github.com/ckan/ckan/tree/master/ckan/templates
http://127.0.0.1:5000
http://jinja.pocoo.org/
http://jinja.pocoo.org/docs/templates


CKAN documentation, Release 2.10.0a0

Expressions and variables

Jinja2 expressions are snippets of code between {{ ... }} delimiters, when a template is rendered any expressions
are evaluated and replaced with the resulting value.

The simplest use of an expression is to display the value of a variable, for example {{ foo }} in a template file will
be replaced with the value of the variable foo when the template is rendered.

CKAN makes a number of global variables available to all templates. One such variable is app_globals, which can
be used to access certain global attributes including some of the settings from your CKAN config file. For example, to
display the value of the ckan.site_title setting from your config file you would put this code in any template file:

<p>The title of this site is: {{ app_globals.site_title }}.</p>

Note: The app_globals variable is also sometimes called g (an alias), you may see g in some CKAN templates. See
Variables and functions available to templates.

Note: Not all config settings are available to templates via app_globals. The sqlalchemy.url setting, for example,
contains your database password, so making that variable available to templates might be a security risk.

If you’ve added your own custom options to your config file, these will not be available in app_globals automatically.
See Accessing custom config settings from templates.

Note: If a template tries to render a variable or attribute that doesn’t exist, rather than crashing or giving an error
message, the Jinja2 expression simply evaluates to nothing (an empty string). For example, these Jinja2 expressions
will output nothing:

{{ app_globals.an_attribute_that_does_not_exist }}

{{ a_variable_that_does_not_exist }}

If, on the other hand, you try to render an attribute of a variable that doesn’t exist, then Jinja2 will crash. For ex-
ample, this Jinja2 expression will crash with an UndefinedError: 'a_variable_that_does_not_exist' is
undefined:

{{ a_variable_that_does_not_exist.an_attribute_that_does_not_exist }}

See the Jinja2 variables docs for details.

Note: Jinja2 expressions can do much more than print out the values of variables, for example they can call Jinja2’s
global functions, CKAN’s template helper functions and any custom template helper functions provided by your exten-
sion, and use any of the literals and operators that Jinja provides.

See Variables and functions available to templates for a list of variables and functions available to templates.

316 Chapter 6. Theming guide

http://jinja.pocoo.org/docs/templates/#variables
http://jinja.pocoo.org/docs/templates/#list-of-global-functions
http://jinja.pocoo.org/docs/templates/#expressions


CKAN documentation, Release 2.10.0a0

Tags

ckan.site_title is an example of a simple string variable. Some variables, such as ckan.plugins, are lists, and can be
looped over using Jinja’s {% for %} tag.

Jinja tags are snippets of code between {% ... %} delimiters that control the logic of the template. For example, we
can output a list of the currently enabled plugins with this code in any template file:

<p>The currently enabled plugins are:</p>
<ul>
{% for plugin in app_globals.plugins %}
<li>{{ plugin }}</li>

{% endfor %}
</ul>

Other variables, such as ckan.tracking_enabled, are booleans, and can be tested using Jinja’s {% if %} tag:

{% if g.tracking_enabled %}
<p>CKAN's page-view tracking feature is enabled.</p>

{% else %}
<p>CKAN's page-view tracking feature is <i>not</i> enabled.</p>

{% endif %}

Comments

Finally, any text between {# ... #} delimiters in a Jinja2 template is a comment, and will not be output when the
template is rendered:

{# This text will not appear in the output when this template is rendered. #}

6.1.4 Extending templates with {% ckan_extends %}

CKAN provides a custom Jinja tag {% ckan_extends %} that we can use to declare that our home/index.html
template extends the default home/index.html template, instead of completely replacing it. Edit the empty index.
html file you just created, and add one line:

{% ckan_extends %}

If you now reload the CKAN front page in your browser, you should see the normal front page appear again. When
CKAN processes our index.html file, the {% ckan_extends %} tag tells it to process the default home/index.
html file first.

6.1.5 Replacing template blocks with {% block %}

Jinja templates can contain blocks that child templates can override. For example, CKAN’s default home/layout1.
html template (one of the files used to render the CKAN front page) has a block that contains the Jinja and HTML
code for the “featured group” that appears on the front page:

{% block featured_group %}
{% snippet 'home/snippets/featured_group.html' %}

{% endblock %}

6.1. Customizing CKAN’s templates 317

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

Note: This code calls a template snippet that contains the actual Jinja and HTML code for the featured group, more
on snippets later.

Note: The CKAN front page supports a number of different layouts: layout1, layout2, layout3, etc. The layout can be
chosen by a sysadmin using the admin page. This tutorial assumes your CKAN is set to use the first (default) layout.

When a custom template file extends one of CKAN’s default template files using {% ckan_extends %}, it can
replace any of the blocks from the default template with its own code by using {% block %}. Create the file
ckanext-example_theme/ckanext/example_theme/templates/home/layout1.html with these contents:

{% ckan_extends %}

{% block featured_group %}
Hello block world!

{% endblock %}

This file extends the default layout1.html template, and overrides the featured_group block. Restart the develop-
ment web server and reload the CKAN front page in your browser. You should see that the featured groups section of
the page has been replaced, but the rest of the page remains intact.

Note: Most template files in CKAN contain multiple blocks. To find out what blocks a template has, and which block
renders a particular part of the page, you have to look at the source code of the default template files.

6.1.6 Extending parent blocks with Jinja’s {{ super() }}

If you want to add some code to a block but don’t want to replace the entire block, you can use Jinja’s {{ super() }}
tag:

{% ckan_extends %}

{% block featured_group %}

<p>This paragraph will be added to the top of the
<code>featured_group</code> block.</p>

{# Insert the contents of the original featured_group block: #}
{{ super() }}

<p>This paragraph will be added to the bottom of the
<code>featured_group</code> block.</p>

{% endblock %}

When the child block above is rendered, Jinja will replace the {{ super() }} tag with the contents of the parent
block. The {{ super() }} tag can be placed anywhere in the block.

318 Chapter 6. Theming guide

http://127.0.0.1:5000
https://github.com/ckan/ckan/tree/master/ckan/templates


CKAN documentation, Release 2.10.0a0

6.1.7 Template helper functions

Now let’s put some interesting content into our custom template block. One way for templates to get content out of
CKAN is by calling CKAN’s template helper functions.

For example, let’s replace the featured group on the front page with an activity stream of the site’s recently created, up-
dated and deleted datasets. Change the code in ckanext-example_theme/ckanext/example_theme/templates/
home/layout1.html to this:

{% ckan_extends %}

{% block featured_group %}
{{ h.recently_changed_packages_activity_stream(limit=4) }}

{% endblock %}

Reload the CKAN front page in your browser and you should see a new activity stream:

To call a template helper function we use a Jinja2 expression (code wrapped in {{ ... }} brackets), and we use the
global variable h (available to all templates) to access the helper:

{{ h.recently_changed_packages_activity_stream(limit=4) }}

To see what other template helper functions are available, look at the template helper functions reference docs.

6.1.8 Adding your own template helper functions

Plugins can add their own template helper functions by implementing CKAN’s ITemplateHelpers plugin interface.
(see Writing extensions tutorial for a detailed explanation of CKAN plugins and plugin interfaces).

Let’s add another item to our custom front page: a list of the most “popular” groups on the site (the groups with the
most datasets). We’ll add a custom template helper function to select the groups to be shown. First, in our plugin.py
file we need to implement ITemplateHelpers and provide our helper function. Change the contents of plugin.py
to look like this:

6.1. Customizing CKAN’s templates 319

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

# encoding: utf-8

from ckan.common import CKANConfig
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit

def most_popular_groups():
'''Return a sorted list of the groups with the most datasets.'''

# Get a list of all the site's groups from CKAN, sorted by number of
# datasets.
groups = toolkit.get_action('group_list')(

{}, {'sort': 'package_count desc', 'all_fields': True})

# Truncate the list to the 10 most popular groups only.
groups = groups[:10]

return groups

class ExampleThemePlugin(plugins.SingletonPlugin):
'''An example theme plugin.

'''
plugins.implements(plugins.IConfigurer)

# Declare that this plugin will implement ITemplateHelpers.
plugins.implements(plugins.ITemplateHelpers)

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
toolkit.add_template_directory(config, 'templates')

def get_helpers(self):
'''Register the most_popular_groups() function above as a template
helper function.

'''
# Template helper function names should begin with the name of the
# extension they belong to, to avoid clashing with functions from
# other extensions.
return {'example_theme_most_popular_groups': most_popular_groups}

We’ve added a number of new features to plugin.py. First, we defined a function to get the most popular groups from
CKAN:

def most_popular_groups():
'''Return a sorted list of the groups with the most datasets.'''

# Get a list of all the site's groups from CKAN, sorted by number of
(continues on next page)

320 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# datasets.
groups = toolkit.get_action('group_list')(

{}, {'sort': 'package_count desc', 'all_fields': True})

# Truncate the list to the 10 most popular groups only.
groups = groups[:10]

return groups

This function calls one of CKAN’s action functions to get the groups from CKAN. See Writing extensions tutorial for
more about action functions.

Next, we called implements() to declare that our class now implements ITemplateHelpers:

plugins.implements(plugins.ITemplateHelpers)

Finally, we implemented the get_helpers()method from ITemplateHelpers to register our function as a template
helper:

def get_helpers(self):
'''Register the most_popular_groups() function above as a template
helper function.

'''
# Template helper function names should begin with the name of the
# extension they belong to, to avoid clashing with functions from
# other extensions.
return {'example_theme_most_popular_groups': most_popular_groups}

Now that we’ve registered our helper function, we need to call it from our template. As with CKAN’s default tem-
plate helpers, templates access custom helpers via the global variable h . Edit ckanext-example_theme/ckanext/
example_theme/templates/home/layout1.html to look like this:

{% ckan_extends %}

{% block featured_group %}
{{ h.recently_changed_packages_activity_stream(limit=4) }}

{% endblock %}

{% block featured_organization %}

{# Show a list of the site's most popular groups. #}
<h3>Most popular groups</h3>
<ul>
{% for group in h.example_theme_most_popular_groups() %}
<li>{{ group.display_name }}</li>

{% endfor %}
</ul>

{% endblock %}

Now reload your CKAN front page in your browser. You should see the featured organization section replaced with a
list of the most popular groups:

6.1. Customizing CKAN’s templates 321

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

Simply displaying a list of group titles isn’t very good. We want the groups to be hyperlinked to their pages, and also
to show some other information about the group such as its description and logo image. To display our groups nicely,
we’ll use CKAN’s template snippets. . .

6.1.9 Template snippets

Template snippets are small snippets of template code that, just like helper functions, can be called from any template
file. To call a snippet, you use another of CKAN’s custom Jinja2 tags: {% snippet %}. CKAN comes with a selection
of snippets, which you can find in the various snippets directories in ckan/templates/, such as ckan/templates/snippets/
and ckan/templates/package/snippets/. For a complete list of the default snippets available to templates, see Template
snippets reference.

ckan/templates/group/snippets/group_list.html is a snippet that renders a list of groups nicely (it’s used to
render the groups on CKAN’s /group page and on user dashboard pages, for example):

{#
Display a grid of group items.

groups - A list of groups.

Example:

{% snippet "group/snippets/group_list.html" %}

#}
{% block group_list %}
<ul class="media-grid" data-module="media-grid">

{% block group_list_inner %}
{% for group in groups %}
{% snippet "group/snippets/group_item.html", group=group, position=loop.index %}

{% endfor %}
{% endblock %}

</ul>
{% endblock %}

(As you can see, this snippet calls another snippet, group_item.html, to render each individual group.)

Let’s change our ckanext-example_theme/ckanext/example_theme/templates/home/layout1.html file to
call this snippet:

{% ckan_extends %}

{% block featured_group %}

{{ h.recently_changed_packages_activity_stream(limit=4) }}
(continues on next page)

322 Chapter 6. Theming guide

https://github.com/ckan/ckan/tree/master/ckan/templates
https://github.com/ckan/ckan/tree/master/ckan/templates/snippets
https://github.com/ckan/ckan/tree/master/ckan/templates/package/snippets


CKAN documentation, Release 2.10.0a0

(continued from previous page)

{% endblock %}

{% block featured_organization %}

<h3>Most popular groups</h3>

{# Call the group_list.html snippet. #}
{% snippet 'group/snippets/group_list.html',

groups=h.example_theme_most_popular_groups() %}

{% endblock %}

Here we pass two arguments to the {% snippet %} tag:

{% snippet 'group/snippets/group_list.html',
groups=h.example_theme_most_popular_groups() %}

the first argument is the name of the snippet file to call. The second argument, separated by a comma, is the list of
groups to pass into the snippet. After the filename you can pass any number of variables into a snippet, and these will
all be available to the snippet code as top-level global variables. As in the group_list.html docstring above, each
snippet’s docstring should document the parameters it requires.

If you reload your CKAN front page in your web browser now, you should see the most popular groups rendered in the
same style as the list of groups on the /groups page:

This style isn’t really what we want for our front page, each group is too big. To render the groups in a custom style,

6.1. Customizing CKAN’s templates 323

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

we can define a custom snippet. . .

6.1.10 Adding your own template snippets

Just as plugins can add their own template helper functions, they can also add their own snippets. To add template
snippets, all a plugin needs to do is add a snippets directory in its templates directory, and start adding files. The
snippets will be callable from other templates immediately.

Note: For CKAN to find your plugins’ snippets directories, you should already have added your plugin’s custom
template directory to CKAN, see Replacing a default template file.

Let’s create a custom snippet to display our most popular groups, we’ll put the <h3>Most popular groups</h3>
heading into the snippet and make it nice and modular, so that we can reuse the whole thing on different parts of the
site if we want to.

Create a new directory ckanext-example_theme/ckanext/example_theme/templates/snippets containing a
file named example_theme_most_popular_groups.html with these contents:

{#

Renders a list of the site's most popular groups.

groups - the list of groups to render

#}
<h3>Most popular groups</h3>
<ul>
{% for group in groups %}
<li>
<a href="{{ h.url_for('group_read', action='read', id=group.name) }}">
<h3>{{ group.display_name }}</h3>

</a>
{% if group.description %}

<p>
{{ h.markdown_extract(group.description, extract_length=80) }}

</p>
{% else %}
<p>{{ _('This group has no description') }}</p>

{% endif %}
{% if group.package_count %}

<strong>{{ ungettext('{num} Dataset', '{num} Datasets', group.package_count).
→˓format(num=group.package_count) }}</strong>

{% else %}
<span>{{ _('0 Datasets') }}</span>

{% endif %}
</li>

{% endfor %}
</ul>

Note: As in the example above, a snippet should have a docstring at the top of the file that briefly documents what the
snippet does and what parameters it requires. See Snippets should have docstrings.

324 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

This code uses a Jinja2 for loop to render each of the groups, and calls a number of CKAN’s template helper functions:

• To hyperlink each group’s name to the group’s page, it calls url_for().

• If the group has a description, it calls markdown_extract() to render the description nicely.

• If the group doesn’t have a description, it uses the _() function to mark the 'This group has no
description' message for translation. When the page is rendered in a user’s web browser, this string will
be shown in the user’s language (if there’s a translation of the string into that language).

• When rendering the group’s number of datasets, it uses the ungettext() function to mark the message for
translation with localized handling of plural forms.

The code also accesses the attributes of each group: {{ group.name }}`, ``{{ group.display_name }}, {{
group.description }}, {{ group.package_count }}, etc. To see what attributes a group or any other CKAN
object (packages/datasets, organizations, users. . . ) has, you can use CKAN’s API to inspect the object. For example to
find out what attributes a group has, call the group_show() function.

Now edit your ckanext-example_theme/ckanext/example_theme/templates/home/layout1.html file and
change it to use our new snippet instead of the default one:

{% ckan_extends %}

{% block featured_group %}
{{ h.recently_changed_packages_activity_stream(limit=4) }}

{% endblock %}

{% block featured_organization %}
{% snippet 'snippets/example_theme_most_popular_groups.html',

groups=h.example_theme_most_popular_groups() %}
{% endblock %}

Restart the development web server and reload the CKAN front page and you should see the most popular groups
rendered differently:

6.1. Customizing CKAN’s templates 325

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

Warning: Default snippets can be overridden. If a plugin adds a snippet with the same name as one of CKAN’s
default snippets, the plugin’s snippet will override the default snippet wherever the default snippet is used.

Also if two plugins both have snippets with the same name, one of the snippets will override the other.

To avoid unintended conflicts, we recommend that snippet filenames begin with the name of the extension they
belong to, e.g. snippets/example_theme_*.html. See Avoid name clashes.

Note: Snippets don’t have access to the global template context variable, c (see Variables and functions available to
templates). Snippets can access other global variables such as h , app_globals and request, as well as any variables
explicitly passed into the snippet by the parent template when it calls the snippet with a {% snippet %} tag.

6.1.11 HTML tags and CSS classes

Our additions to the front page so far don’t look very good or fit in very well with the CKAN theme. Let’s make them
look better by tweaking our template to use the right HTML tags and CSS classes.

There are two places to look for CSS classes available in CKAN:

1. The Bootstrap 3.3.7 docs. All of the HTML, CSS and JavaScript provided by Bootstrap is available to use in
CKAN.

2. CKAN’s development primer page, which can be found on any CKAN site at /testing/primer, for example
demo.ckan.org/testing/primer.

The primer page demonstrates many of the HTML and CSS elements available in CKAN, and by viewing the
source of the page you can see what HTML tags and CSS classes they use.

326 Chapter 6. Theming guide

https://getbootstrap.com/docs/3.3/components/
http://demo.ckan.org/testing/primer


CKAN documentation, Release 2.10.0a0

Edit your example_theme_most_popular_groups.html file to look like this:

{# Renders a list of the site's most popular groups. #}

<div class="box">
<header class="module-heading">
<h3>Most popular groups</h3>

</header>
<section class="module-content">
<ul class="unstyled">
{% for group in h.example_theme_most_popular_groups() %}
<li>
<a href="{{ h.url_for('group_read', action='read', id=group.name) }}">
<h3>{{ group.display_name }}</h3>

</a>
{% if group.description %}
<p>
{{ h.markdown_extract(group.description, extract_length=80) }}

</p>
{% else %}
<p>{{ _('This group has no description') }}</p>

{% endif %}
{% if group.packages %}
<strong>{{ ungettext('{num} Dataset', '{num} Datasets', group.packages).

→˓format(num=group.packages) }}</strong>
{% else %}

<span>{{ _('0 Datasets') }}</span>
{% endif %}

</li>
{% endfor %}

</ul>
<section>

</div>

This simply wraps the code in a <div class="box">, a <header class="module-heading">, and a <section
class="module-content">. We also added Bootstrap’s class="unstyled" to the <ul> tag to get rid of the bullet
points. If you reload the CKAN front page, the most popular groups should look much better.

To wrap your activity stream in a similar box, edit layout1.html to look like this:

{% ckan_extends %}

{% block featured_group %}
<div class="box">
<header class="module-heading">
<h3>Recent activity</h3>

</header>
<div class="module-content">
<ul>
<li>Activity 01</li>
<li>Activity 02</li>
<li>Activity 03</li>

</ul>
</div>

(continues on next page)

6.1. Customizing CKAN’s templates 327

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

(continued from previous page)

</div>
{% endblock %}

{% block featured_organization %}
{% snippet 'snippets/example_theme_most_popular_groups.html' %}

{% endblock %}

Reload the CKAN front page, and you should see your activity stream and most popular groups looking much better:

6.1.12 Accessing custom config settings from templates

Not all CKAN config settings are available to templates via app_globals. In particular, if an extension wants to use
its own custom config setting, this setting will not be available. If you need to access a custom config setting from a
template, you can do so by wrapping the config setting in a helper function.

See also:

For more on custom config settings, see Using custom config settings in extensions.

Todo: I’m not sure if making config settings available to templates like this is a very good idea. Is there an alternative
best practice?

Let’s add a config setting, show_most_popular_groups, to enable or disable the most popular groups on the front
page. First, add a new helper function to plugin.py to wrap the config setting.

# encoding: utf-8
from __future__ import annotations

from typing import Any, Callable
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
from ckan.common import CKANConfig, config
from ckan.config.declaration import Declaration, Key

(continues on next page)

328 Chapter 6. Theming guide

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

(continued from previous page)

def show_most_popular_groups():
'''Return the value of the most_popular_groups config setting.

To enable showing the most popular groups, add this line to the
[app:main] section of your CKAN config file::

ckan.example_theme.show_most_popular_groups = True

Returns ``False`` by default, if the setting is not in the config file.

:rtype: bool

'''
value = config.get_value('ckan.example_theme.show_most_popular_groups')
return value

def most_popular_groups():
'''Return a sorted list of the groups with the most datasets.'''

# Get a list of all the site's groups from CKAN, sorted by number of
# datasets.
groups = toolkit.get_action('group_list')(

{}, {'sort': 'package_count desc', 'all_fields': True})

# Truncate the list to the 10 most popular groups only.
groups = groups[:10]

return groups

class ExampleThemePlugin(plugins.SingletonPlugin):
'''An example theme plugin.

'''
plugins.implements(plugins.IConfigurer)
plugins.implements(plugins.IConfigDeclaration)

# Declare that this plugin will implement ITemplateHelpers.
plugins.implements(plugins.ITemplateHelpers)

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
toolkit.add_template_directory(config, 'templates')

def get_helpers(self) -> dict[str, Callable[..., Any]]:
'''Register the most_popular_groups() function above as a template
helper function.

'''
(continues on next page)

6.1. Customizing CKAN’s templates 329



CKAN documentation, Release 2.10.0a0

(continued from previous page)

# Template helper function names should begin with the name of the
# extension they belong to, to avoid clashing with functions from
# other extensions.
return {'example_theme_most_popular_groups': most_popular_groups,

'example_theme_show_most_popular_groups':
show_most_popular_groups,
}

# IConfigDeclaration

def declare_config_options(self, declaration: Declaration, key: Key):
declaration.declare_bool(

key.ckan.example_theme.show_most_popular_groups)

def show_most_popular_groups():
'''Return the value of the most_popular_groups config setting.

To enable showing the most popular groups, add this line to the
[app:main] section of your CKAN config file::

ckan.example_theme.show_most_popular_groups = True

Returns ``False`` by default, if the setting is not in the config file.

:rtype: bool

'''
value = config.get_value('ckan.example_theme.show_most_popular_groups')
return value

Note: Names of config settings provided by extensions should include the name of the extension, to avoid conflicting
with core config settings or with config settings from other extensions. See Avoid name clashes.

Now we can call this helper function from our layout1.html template:

{% block featured_organization %}
{% if h.example_theme_show_most_popular_groups() %}
{% snippet 'snippets/example_theme_most_popular_groups.html' %}

{% else %}
{{ super() }}

{% endif %}
{% endblock %}

If the user sets this config setting to True in their CKAN config file, then the most popular groups will be displayed on
the front page, otherwise the block will fall back to its default contents.

330 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

6.2 Adding static files

You may need to add some custom static files to your CKAN site and use them from your templates, for example image
files, PDF files, or any other static files that should be returned as-is by the webserver (as opposed to Jinja template
files, which CKAN renders before returning them to the user).

By adding a directory to CKAN’s extra_public_paths config setting, a plugin can make a directory of static files
available to be used or linked to by templates. Let’s add a static image file, and change the home page template to
use our file as the promoted image on the front page.

See also:

Adding CSS and JavaScript files using Webassets

If you’re adding CSS files consider using Webassets instead of extra_public_paths, to take advantage of
extra features. See Adding CSS and JavaScript files using Webassets. If you’re adding JavaScript modules
you have to use Webassets, see Customizing CKAN’s JavaScript.

First, create a public directory in your extension with a promoted-image.jpg file in it:

ckanext-example_theme/
ckanext/

example_theme/
public/

promoted-image.jpg

promoted-image.jpg should be a 420x220px JPEG image file. You could use this image file for example:

Then in plugin.py, register your public directory with CKAN by calling the add_public_directory() function.
Add this line to the update_config() function:

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
toolkit.add_template_directory(config, 'templates')

# Add this plugin's public dir to CKAN's extra_public_paths, so
# that CKAN will use this plugin's custom static files.
toolkit.add_public_directory(config, 'public')

If you now browse to 127.0.0.1:5000/promoted-image.jpg, you should see your image file.

6.2. Adding static files 331

http://127.0.0.1:5000/promoted-image.jpg


CKAN documentation, Release 2.10.0a0

To replace the image on the front page with your custom image, we need to override the promoted.html template
snippet. Create the following directory and file:

ckanext-example_theme/
ckanext/
example_theme/
templates/
home/
snippets/
promoted.html

Edit your new promoted.html snippet, and insert these contents:

{% ckan_extends %}

{% block home_image_caption %}
{{ _("CKAN's data previewing tool has many powerful features") }}

{% endblock %}

{# Replace the promoted image. #}
{% block home_image_content %}

<a class="media-image" href="#">
<img src="/promoted-image.jpg" alt="Featured image"

width="420" height="220" />
</a>

{% endblock %}

After calling {% ckan_extends %} to declare that it extends (rather than completely replaces) the default promoted.
html snippet, this custom snippet overrides two of promoted.html’s template blocks. The first block replaces the
caption text of the promoted image. The second block replaces the <img> tag itself, pointing it at our custom static
image file:

{% block home_image_content %}
<a class="media-image" href="#">
<img src="/promoted-image.jpg" alt="Featured image"

width="420" height="220" />
</a>

{% endblock %}

If you now restart the development web server and reload the CKAN front page in your browser, you should see the
promoted image replaced with our custom one:

332 Chapter 6. Theming guide

http://127.0.0.1:5000


CKAN documentation, Release 2.10.0a0

6.3 Customizing CKAN’s CSS

See also:

There’s nothing special about CSS in CKAN, once you’ve got started with editing CSS in CKAN (by following the
tutorial below), then you just use the usual tools and techniques to explore and hack the CSS. We recommend using
your browser’s web development tools to explore and experiment with the CSS, then using any good text editor to edit
your extension’s CSS files as needed. For example:

Firefox developer tools These include a Page Inspector and a Style Editor

Firebug Another web development toolkit for Firefox

Chrome developer tools Tools for inspecting and editing CSS in Google Chrome

Mozilla Developer Network’s CSS section A good collection of CSS documentation and tutorials

Extensions can add their own CSS files to modify or extend CKAN’s default CSS. Create an example_theme.css
file in your extension’s public directory:

ckanext-example_theme/
ckanext/
example_theme/
public/
example_theme.css

6.3. Customizing CKAN’s CSS 333

https://developer.mozilla.org/en-US/docs/Tools
https://www.getfirebug.com/
https://developers.google.com/chrome-developer-tools/
https://developer.mozilla.org/en-US/docs/Web/CSS


CKAN documentation, Release 2.10.0a0

Add this CSS into the example_theme.css file, to change the color of CKAN’s “account masthead” (the bar across
the top of the site that shows the logged-in user’s account info):

.account-masthead {
background-color: rgb(40, 40, 40);

}

If you restart the development web server you should be able to open this file at http://127.0.0.1:5000/example_theme.
css in a web browser.

To make CKAN use our custom CSS we need to override the base.html template, this is the base template which the
templates for all CKAN pages extend, so if we include a CSS file in this base template then the file will be included in
every page of your CKAN site. Create the file:

ckanext-example_theme/
ckanext/
example_theme/
templates/
base.html

and put this Jinja code in it:

{% ckan_extends %}

{% block styles %}
{{ super() }}
<link rel="stylesheet" href="/example_theme.css" />

{% endblock %}

The default base.html template defines a styles block which can be extended to link to custom CSS files (any code
in the styles block will appear in the <head> of the HTML page).

Restart the development web server and reload the CKAN page in your browser, and you should see the background
color of the account masthead change:

This custom color should appear on all pages of your CKAN site.

Now that we have CKAN using our CSS file, we can add more CSS rules to the file and customize CKAN’s CSS as
much as we want. Let’s add a bit more code to our example_theme.css file. This CSS implements a partial imitation
of the datahub.io theme (circa 2013):

334 Chapter 6. Theming guide

http://127.0.0.1:5000/example_theme.css
http://127.0.0.1:5000/example_theme.css
http://datahub.io/


CKAN documentation, Release 2.10.0a0

/* =====================================================
The "account masthead" bar across the top of the site
===================================================== */

.account-masthead {
background-color: rgb(40, 40, 40);

}
/* The "bubble" containing the number of new notifications. */
.account-masthead .account .notifications a span {
background-color: black;

}
/* The text and icons in the user account info. */

(continues on next page)

6.3. Customizing CKAN’s CSS 335



CKAN documentation, Release 2.10.0a0

(continued from previous page)

.account-masthead .account ul li a {
color: rgba(255, 255, 255, 0.6);

}
/* The user account info text and icons, when the user's pointer is hovering
over them. */

.account-masthead .account ul li a:hover {
color: rgba(255, 255, 255, 0.7);
background-color: black;

}

/* ========================================================================
The main masthead bar that contains the site logo, nav links, and search
======================================================================== */

.masthead {
background-color: #3d3d3d;

}
/* The "navigation pills" in the masthead (the links to Datasets,
Organizations, etc) when the user's pointer hovers over them. */

.masthead .navigation .nav-pills li a:hover {
background-color: rgb(48, 48, 48);
color: white;

}
/* The "active" navigation pill (for example, when you're on the /dataset page
the "Datasets" link is active). */

.masthead .navigation .nav-pills li.active a {
background-color: rgb(74, 74, 74);

}
/* The "box shadow" effect that appears around the search box when it
has the keyboard cursor's focus. */

.masthead input[type="text"]:focus {
-webkit-box-shadow: inset 0px 0px 2px 0px rgba(0, 0, 0, 0.7);
box-shadow: inset 0px 0px 2px 0px rgba(0, 0, 0, 0.7);

}

/* ===========================================
The content in the middle of the front page
=========================================== */

/* Remove the "box shadow" effect around various boxes on the page. */
.box {
box-shadow: none;

}
/* Remove the borders around the "Welcome to CKAN" and "Search Your Data"
boxes. */

.hero .box {
border: none;

}
/* Change the colors of the "Search Your Data" box. */
.homepage .module-search .module-content {

(continues on next page)

336 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

color: rgb(68, 68, 68);
background-color: white;

}
/* Change the background color of the "Popular Tags" box. */
.homepage .module-search .tags {
background-color: rgb(61, 61, 61);

}
/* Remove some padding. This makes the bottom edges of the "Welcome to CKAN"
and "Search Your Data" boxes line up. */

.module-content:last-child {
padding-bottom: 0px;

}
.homepage .module-search {
padding: 0px;

}
/* Add a border line between the top and bottom halves of the front page. */
.homepage [role="main"] {
border-top: 1px solid rgb(204, 204, 204);

}

/* ====================================
The footer at the bottom of the site
==================================== */

.site-footer,
body {
background-color: rgb(40, 40, 40);

}
/* The text in the footer. */
.site-footer,
.site-footer label,
.site-footer small {
color: rgba(255, 255, 255, 0.6);

}
/* The link texts in the footer. */
.site-footer a {
color: rgba(255, 255, 255, 0.6);

}

6.4 Adding CSS and JavaScript files using Webassets

If you’re adding CSS files to your theme, you can add them using Webassets rather than the simple extra_public_paths
method described in Adding static files. If you’re adding a JavaScript module, you must use Webassets.

Using Webassets to add JavaScript and CSS files takes advantage of Webassets’ features, such as automatically serving
minified files in production, caching and bundling files together to reduce page load times, specifying dependencies
between files so that the files a page needs (and only the files it needs) are always loaded, and other tricks to optimize
page load times.

Note: CKAN will only serve *.js and *.css files as Webassets resources, other types of static files (eg. image files,

6.4. Adding CSS and JavaScript files using Webassets 337

https://webassets.readthedocs.io/en/latest/


CKAN documentation, Release 2.10.0a0

PDF files) must be added using the extra_public_paths method described in Adding static files.

Adding a custom JavaScript or CSS file to CKAN using Webassets is simple. We’ll demonstrate by changing our
previous custom CSS example (see Customizing CKAN’s CSS) to serve the CSS file with Webassets.

1. First, create an assets directory in your extension and move the CSS file from public into assets:

ckanext-example_theme/
ckanext/
example_theme/

public/
promoted-image.jpg

assets/
example_theme.css

2. Use CKAN’s add_resource() function to register your assets directory with CKAN. Edit the
update_config() method in your plugin.py file:

def update_config(self, config: CKANConfig):

# Add this plugin's templates dir to CKAN's extra_template_paths, so
# that CKAN will use this plugin's custom templates.
toolkit.add_template_directory(config, 'templates')

# Add this plugin's public dir to CKAN's extra_public_paths, so
# that CKAN will use this plugin's custom static files.
toolkit.add_public_directory(config, 'public')

# Register this plugin's assets directory with CKAN.
# Here, 'assets' is the path to the webassets directory
# (relative to this plugin.py file), and 'example_theme' is the name
# that we'll use to refer to this assets directory from CKAN
# templates.
toolkit.add_resource('assets', 'example_theme')

3. Finally, edit your extension’s templates/base.html file and use CKAN’s custom Jinja2 tag {% asset %}
instead of the normal <link> tag to import the file:

{% ckan_extends %}

{% block styles %}
{{ super() }}

{# Import example_theme.css using Webassets. 'example_theme/' is
the name that the example_theme/webassets directory was registered
with when the toolkit.add_resource() function was called.
'example_theme' is the name to the Webassets bundle file,
registered inside webassets.yml file. #}

{% asset 'example_theme/example_theme' %}

{% endblock %}

Note: You can put {% asset %} tags anywhere in any template, and Webassets will insert the necessary <style>
and <script> tags to include your CSS and JavaScript files. But the best place for related asset types is corresponding

338 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

styles and scripts Jinja2’s block.

Assets will not be included on the line where the {% asset %} tag is.

Note: A config file must be used to configure how Webassets should serve each asset file (whether or not to bundle
files, what order to include files in, whether to include files at the top or bottom of the page, dependencies between
files, etc.) See Assets for details.

6.4.1 X-Sendfile

For web servers which support the X-Sendfile feature, you can set ckan.webassets.use_x_sendfile config option
to true and configure the web server (eg Nginx) in order to serve static files in a more efficient way. Static files
served under the URI /webassets/<PATH_TO_STATIC_FILE> are stored in the file system under the path specified
by ckan.webassets.path the config option. If ckan.webassets.path is not specified, static files are stored inside a
webassests folder defined by the ckan.storage_path config option.

6.5 Customizing CKAN’s JavaScript

JavaScript code in CKAN is broken down into modules: small, independent units of JavaScript code. CKAN themes
can add JavaScript features by providing their own modules. This tutorial will explain the main concepts involved in
CKAN JavaScript modules and walk you through the process of adding custom modules to themes.

See also:

This tutorial assumes a basic understanding of CKAN plugins and templating, see:

• Extending guide

• Customizing CKAN’s templates

See also:

This tutorial assumes a basic understanding of JavaScript and jQuery, see:

• JavaScript on the Mozilla Developer Network

• jQuery.com, including the jQuery Learning Center

See also:

String internationalization How to mark strings for translation in your JavaScript code.

6.5.1 Overview

The idea behind CKAN’s JavaScript modules is to keep the code simple and easy to test, debug and maintain, by
breaking it down into small, independent modules. JavaScript modules in CKAN don’t share global variables, and
don’t call each other’s code.

These JavaScript modules are attached to HTML elements in the page, and enhance the functionality of those elements.
The idea is that an HTML element with a JavaScript module attached should still be fully functional even if JavaScript
is completely disabled (e.g. because the user’s web browser doesn’t support JavaScript). The user experience may not
be quite as nice without JavaScript, but the functionality should still be there. This is a programming technique known
as graceful degradation, and is a basic tenet of web accessibility.

6.5. Customizing CKAN’s JavaScript 339

https://www.nginx.com/resources/wiki/start/topics/examples/xsendfile/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://jquery.com/
http://learn.jquery.com/


CKAN documentation, Release 2.10.0a0

In the sections below, we’ll walk you through the steps to add a new JavaScript feature to CKAN - dataset info popovers.
We’ll add an info button to each dataset on the datasets page which, when clicked, opens a popover containing some
extra information and user actions related to the dataset:

6.5.2 Initializing a JavaScript module

To get CKAN to call some custom JavaScript code, we need to:

1. Implement a JavaScript module, and register it with CKAN. Create the file ckanext-example_theme/
ckanext/example_theme_docs/assets/example_theme_popover.js, with these contents:

// Enable JavaScript's strict mode. Strict mode catches some common
// programming errors and throws exceptions, prevents some unsafe actions from
// being taken, and disables some confusing and bad JavaScript features.
"use strict";

ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {
console.log("I've been initialized for element: ", this.el);

}
};

});

This bit of JavaScript calls the ckan.module() function to register a new JavaScript module with CKAN. ckan.
module() takes two arguments: the name of the module being registered ('example_theme_popover' in this
example) and a function that returns the module itself. The function takes two arguments, which we’ll look at
later. The module is just a JavaScript object with a single attribute, initialize, whose value is a function that
CKAN will call to initialize the module. In this example, the initialize function just prints out a confirmation
message - this JavaScript module doesn’t do anything interesting yet.

Note: JavaScript module names should begin with the name of the extension, to avoid conflicting with other
modules. See Avoid name clashes.

Note: Each JavaScript module’s initialize() function is called on DOM ready.

340 Chapter 6. Theming guide

http://api.jquery.com/ready/


CKAN documentation, Release 2.10.0a0

2. Include the JavaScript module in a page, using Assets, and apply it to one or more HTML ele-
ments on that page. We’ll override CKAN’s package_item.html template snippet to insert our mod-
ule whenever a package is rendered as part of a list of packages (for example, on the dataset search
page). Create the file ckanext-example_theme/ckanext/example_theme_docs/templates/snippets/
package_item.html with these contents:

{% ckan_extends %}

{% block content %}
{{ super() }}

{# Use Webassets to include our custom JavaScript module.
A <script> tag for the module will be inserted in the right place at the
bottom of the page. #}

{% asset 'example_theme/example_theme' %}

{# Apply our JavaScript module to an HTML element. The data-module attribute,
which can be applied to any HTML element, tells CKAN to initialize an
instance of the named JavaScript module for the element.
The initialize() method of our module will be called with this HTML
element as its this.el object. #}

<button data-module="example_theme_popover"
class="btn"
href="#">

<i class="fa fa-info-circle"></i>
</button>

{% endblock %}

See also:

Using data-* attributes on the Mozilla Developer Network.

If you now restart the development server and open http://127.0.0.1:5000/dataset in your web browser, you should
see an extra info button next to each dataset shown. If you open a JavaScript console in your browser, you should
see the message that your module has printed out.

See also:

Most web browsers come with built-in developer tools including a JavaScript console that lets you see text printed
by JavaScript code to console.log(), a JavaScript debugger, and more. For example:

• Firefox Developer Tools

• Firebug

• Chrome DevTools

If you have more than one dataset on your page, you’ll see the module’s message printed once for each dataset.
The package_item.html template snippet is rendered once for each dataset that’s shown in the list, so your
<button> element with the data-module="example_theme_popover" attribute is rendered once for each
dataset, and CKAN creates a new instance of your JavaScript module for each of these <button> elements. If
you view the source of your page, however, you’ll see that example_theme_popover.js is only included with
a <script> tag once. Assets is smart enough to deduplicate resources.

Note: JavaScript modules must be included as Assets resources, you can’t add them to a public directory and
include them using your own <script> tags.

6.5. Customizing CKAN’s JavaScript 341

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using_data_attributes
http://127.0.0.1:5000/dataset
https://developer.mozilla.org/en-US/docs/Tools
https://www.getfirebug.com/
https://developers.google.com/chrome-developer-tools/


CKAN documentation, Release 2.10.0a0

6.5.3 this.options and this.el

Now let’s start to make our JavaScript module do something useful: show a Bootstrap popover with some extra info
about the dataset when the user clicks on the info button.

First, we need our Jinja template to pass some of the dataset’s fields to our JavaScript module as options. Change
package_item.html to look like this:

{% ckan_extends %}

{% block content %}
{{ super() }}
{% asset 'example_theme/example_theme' %}

{# Apply our JavaScript module to an HTML <button> element.
The additional data-module-* attributes are options that will be passed
to the JavaScript module. #}

<button data-module="example_theme_popover"
data-module-title="{{ package.title }}"
data-module-license="{{ package.license_title }}"
data-module-num_resources="{{ package.num_resources }}">

<i class="fa fa-info-circle"></i>
</button>

{% endblock %}

This adds some data-module-* attributes to our <button> element, e.g. data-module-title="{{ package.
title }}" ({{ package.title }} is a Jinja2 expression that evaluates to the title of the dataset, CKAN passes the
Jinja2 variable package to our template).

Warning: Although HTML 5 treats any attribute named data-* as a data attribute, only attributes named
data-module-* will be passed as options to a CKAN JavaScript module. So we have to named our parameters
data-module-title etc., not just data-title.

Now let’s make use of these options in our JavaScript module. Change example_theme_popover.js to look like
this:

"use strict";

/* example_theme_popover
*
* This JavaScript module adds a Bootstrap popover with some extra info about a
* dataset to the HTML element that the module is applied to. Users can click
* on the HTML element to show the popover.
*
* title - the title of the dataset
* license - the title of the dataset's copyright license
* num_resources - the number of resources that the dataset has.
*
*/
ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {

(continues on next page)

342 Chapter 6. Theming guide

http://getbootstrap.com/2.3.2/javascript.html#popovers


CKAN documentation, Release 2.10.0a0

(continued from previous page)

// Access some options passed to this JavaScript module by the calling
// template.
var num_resources = this.options.num_resources;
var license = this.options.license;

// Format a simple string with the number of resources and the license,
// e.g. "3 resources, Open Data Commons Attribution License".
var content = 'NUM resources, LICENSE'

.replace('NUM', this.options.num_resources)

.replace('LICENSE', this.options.license)

// Add a Bootstrap popover to the HTML element (this.el) that this
// JavaScript module was initialized on.
this.el.popover({title: this.options.title,

content: content,
placement: 'left'});

}
};

});

Note: It’s best practice to add a docstring to the top of a JavaScript module, as in the example above, briefly docu-
menting what the module does and what options it takes. See JavaScript modules should have docstrings.

Any data-module-* attributes on the HTML element are passed into the JavaScript module in the object this.
options:

var num_resources = this.options.num_resources;
var license = this.options.license;

A JavaScript module can access the HTML element that it was applied to through the this.el variable. To add a
popover to our info button, we call Bootstap’s popover() function on the element, passing in an options object with
some of the options that Bootstrap’s popovers accept:

// Add a Bootstrap popover to the HTML element (this.el) that this
// JavaScript module was initialized on.
this.el.popover({title: this.options.title,

content: content,
placement: 'left'});

See also:

For other objects and functions available to JavaScript modules, see Objects and methods available to JavaScript
modules.

6.5. Customizing CKAN’s JavaScript 343



CKAN documentation, Release 2.10.0a0

6.5.4 Default values for options

Default values for JavaScript module options can be provided by adding an options object to the module. If the HTML
element doesn’t have a data-module-* attribute for an option, then the default will be used instead. For example. . .

Todo: Think of an example to do using default values.

6.5.5 Ajax, event handling and CKAN’s JavaScript sandbox

So far, we’ve used simple JavaScript string formatting to put together the contents of our popover. If we want the
popover to contain much more complex HTML we really need to render a template for it, using the full power of Jinja2
templates and CKAN’s template helper functions. Let’s edit our plugin to use a Jinja2 template to render the contents
of the popups nicely.

First, edit package_item.html to make it pass a few more parameters to the JavaScript module using data-module-*
attributes:

{% ckan_extends %}

{% block content %}
{{ super() }}

{% asset 'example_theme/example_theme' %}

<button data-module="example_theme_popover"
data-module-id="{{ package.id }}"
data-module-title="{{ package.title }}"
data-module-license_title="{{ package.license_title }}"
data-module-num_resources="{{ package.num_resources }}">

<i class="fa fa-info-circle"></i>
</button>

{% endblock %}

We’ve also added a second {% asset %} tag to the snippet above, to include a custom CSS file. We’ll see the contents
of that CSS file later.

Next, we need to add a new template snippet to our extension that will be used to render the contents of the popovers.
Create this example_theme_popover.html file:

ckanext-example_theme/
ckanext/
example_theme/
templates/
ajax_snippets/
example_theme_popover.html

and put these contents in it:

{# The contents for a dataset popover.

id - the id of the dataset
num_resources - the dataset's number of resources

(continues on next page)

344 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

license_title - the dataset's license title

#}
<div class="context-info">
<div class="nums">
<dl>

<dt>{{ _('Followers') }}</dt>
<dd>{{ h.follow_count('dataset', id) }}</dd>

<dt>{{ _('Resources') }}</dt>
<dd>{{ num_resources }}</dd>

</dl>
</div>

<div class="license">
<dl>
<dt>License</dt>
<dd>{{ license_title }}</dd>

</dl>
</div>

<div class="clearfix"></div>

{{ h.follow_button('dataset', id) }}

<a class="btn go-to-dataset"
href="{{ h.url_for('dataset.read', id=id) }}">
<i class="fa fa-arrow-circle-right"></i>
Go to dataset

</a>

</div>

This is a Jinja2 template that renders some nice looking contents for a popover, containing a few bits of information
about a dataset. It uses a number of CKAN’s Jinja2 templating features, including marking user-visible strings for
translation and calling template helper functions. See Customizing CKAN’s templates for details about Jinja2 templating
in CKAN.

Note: The new template file has to be in a templates/ajax_snippets/ directory so that we can use the template
from our JavaScript code using CKAN’s getTemplate() function. Only templates from ajax_snippets directories
are available from the getTemplate() function.

Next, edit assets/example_theme_popover.js as shown below. There’s a lot going on in this new JavaScript code,
including:

• Using Bootstrap’s popover API to show and hide popovers, and set their contents.

• Using jQuery’s event handling API to get our functions to be called when the user clicks on a button.

• Using a function from CKAN’s JavaScript sandbox.

The sandbox is a JavaScript object, available to all JavaScript modules as this.sandbox, that contains a col-

6.5. Customizing CKAN’s JavaScript 345

http://getbootstrap.com/2.3.2/javascript.html#popovers
http://api.jquery.com/category/events/


CKAN documentation, Release 2.10.0a0

lection of useful functions and variables.

this.sandbox.client is a CKAN API client written in JavaScript, that should be used whenever a JavaScript
module needs to talk to the CKAN API, instead of modules doing their own HTTP requests.

this.sandbox.client.getTemplate() is a function that sends an asynchronous (ajax) HTTP request (i.e.
send an HTTP request from JavaScript and receive the response in JavaScript, without causing the browser to
reload the whole page) to CKAN asking for a template snippet to be rendered.

Hopefully the liberal commenting in the code below makes it clear enough what’s going on:

"use strict";

ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {

// proxyAll() ensures that whenever an _on*() function from this
// JavaScript module is called, the `this` variable in the function will
// be this JavaScript module object.
//
// You probably want to call proxyAll() like this in the initialize()
// function of most modules.
//
// This is a shortcut function provided by CKAN, it wraps jQuery's
// proxy() function: http://api.jquery.com/jQuery.proxy/
$.proxyAll(this, /_on/);

// Add a Bootstrap popover to the button. Since we don't have the HTML
// from the snippet yet, we just set the content to "Loading..."
this.el.popover({title: this.options.title, html: true,

content: this._('Loading...'), placement: 'left'});

// Add an event handler to the button, when the user clicks the button
// our _onClick() function will be called.
this.el.on('click', this._onClick);

},

// Whether or not the rendered snippet has already been received from CKAN.
_snippetReceived: false,

_onClick: function(event) {

// Send an ajax request to CKAN to render the popover.html snippet.
// We wrap this in an if statement because we only want to request
// the snippet from CKAN once, not every time the button is clicked.
if (!this._snippetReceived) {

this.sandbox.client.getTemplate('example_theme_popover.html',
this.options,
this._onReceiveSnippet);

this._snippetReceived = true;
}

},

// CKAN calls this function when it has rendered the snippet, and passes
(continues on next page)

346 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

// it the rendered HTML.
_onReceiveSnippet: function(html) {

// Replace the popover with a new one that has the rendered HTML from the
// snippet as its contents.
this.el.popover('destroy');
this.el.popover({title: this.options.title, html: true,

content: html, placement: 'left'});
this.el.popover('show');

},

};
});

Finally, we need some custom CSS to make the HTML from our new snippet look nice. In package_item.
html above we added a {% asset %} tag to include a custom CSS file. Now we need to create that file,
ckanext-example_theme/ckanext/example_theme/assets/example_theme_popover.css:

.dataset-list .popover .nums {

/* We're reusing the .nums class from the dataset read page,
* but we don't want the border, margin and padding, get rid of them. */
border: none;
margin: 0;
padding: 0;

/* We want the license and numbers to appear side by side, so float the
* numbers list to the left and make it take up just over half of
* the width of the popover. */
float: left;
width: 55%;

}

.dataset-list .popover .license {

/* Prevent the words in the license from being wrapped mid-word. */
word-break: keep-all;

}

.dataset-list .popover .go-to-dataset {

/* Float the "Go to dataset" button to the right side of the popover,
* this puts some space between the two buttons. */
float: right;

}

Restart CKAN, and your dataset popovers should be looking much better.

6.5. Customizing CKAN’s JavaScript 347



CKAN documentation, Release 2.10.0a0

6.5.6 Error handling

What if our JavaScript makes an Ajax request to CKAN, such as our getTemplate() call above, and gets an error in
response? We can simulate this by changing the name of the requested template file to one that doesn’t exist:

this.sandbox.client.getTemplate('foobar.html',
this.options,
this._onReceiveSnippet);

If you reload the datasets page after making this change, you’ll see that when you click on a popover its contents remain
Loading. . . . If you have a development console open in your browser, you’ll see the error response from CKAN each
time you click to open a popover.

Our JavaScript module’s _onReceiveSnippet() function is only called if the request gets a successful response from
CKAN. getTemplate() also accepts a second callback function parameter that will be called when CKAN sends an
error response. Add this parameter to the getTemplate() call:

this.sandbox.client.getTemplate('foobar.html',
this.options,
this._onReceiveSnippet,
this._onReceiveSnippetError);

}
},

Now add the new error function to the JavaScript module:

_onReceiveSnippetError: function(error) {
this.el.popover('destroy');

var content = error.status + ' ' + error.statusText + ' :(';
this.el.popover({title: this.options.title, html: true,

content: content, placement: 'left'});

this.el.popover('show');
this._snippetReceived = true;

},

After making these changes, you should see that if CKAN responds with an error, the contents of the popover are
replaced with the error message from CKAN.

348 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

6.5.7 Pubsub

You may have noticed that, with our example code so far, if you click on the info button of one dataset on the page
then click on the info button of another dataset, both dataset’s popovers are shown. The first popover doesn’t disappear
when the second appears, and the popovers may overlap. If you click on all the info buttons on the page, popovers for
all of them will be shown at once:

To make one popover disappear when another appears, we can use CKAN’s publish() and subscribe() functions.
These pair of functions allow different instances of a JavaScript module (or instances of different JavaScript modules)
on the same page to talk to each other. The way it works is:

1. Modules can subscribe to events by calling this.sandbox.client.subscribe(), passing the ‘topic’ (a string
that identifies the type of event to subscribe to) and a callback function.

2. Modules can call this.sandbox.client.publish() to publish an event for all subscribed modules to receive,
passing the topic string and one or more further parameters that will be passed on as parameters to the receiver
functions.

3. When a module calls publish(), any callback functions registered by previous calls to subscribe() with the
same topic string will be called, and passed the parameters that were passed to publish.

4. If a module no longer wants to receive events for a topic, it calls unsubscribe().

All modules that subscribe to events should have a teardown() function that unsubscribes from the event, to
prevent memory leaks. CKAN calls the teardown() functions of modules when those modules are removed
from the page. See JavaScript modules should unsubscribe from events in teardown().

Warning: Don’t tightly couple your JavaScript modules by overusing pubsub. See Don’t overuse pubsub.

Remember that because we attach our example_theme_popover.js module to a <button> element that is rendered

6.5. Customizing CKAN’s JavaScript 349



CKAN documentation, Release 2.10.0a0

once for each dataset on the page, CKAN creates one instance of our module for each dataset. The only way these objects
can communicate with each other so that one object can hide its popover when another object shows its popover, is by
using pubsub.

Here’s a modified version of our example_theme_popover.js file that uses pubsub to make the dataset popovers
disappear whenever a new popover appears:

"use strict";

ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {
$.proxyAll(this, /_on/);
this.el.popover({title: this.options.title, html: true,

content: this._('Loading...'), placement: 'left'});
this.el.on('click', this._onClick);

// Subscribe to 'dataset_popover_clicked' events.
// Whenever any line of code publishes an event with this topic,
// our _onPopoverClicked function will be called.
this.sandbox.subscribe('dataset_popover_clicked',

this._onPopoverClicked);
},

teardown: function() {
this.sandbox.unsubscribe('dataset_popover_clicked',

this._onPopoverClicked);
},

_snippetReceived: false,

_onClick: function(event) {
if (!this._snippetReceived) {

this.sandbox.client.getTemplate('example_theme_popover.html',
this.options,
this._onReceiveSnippet);

this._snippetReceived = true;
}

// Publish a 'dataset_popover_clicked' event for other interested
// JavaScript modules to receive. Pass the button that was clicked as a
// parameter to the receiver functions.
this.sandbox.publish('dataset_popover_clicked', this.el);

},

// This callback function is called whenever a 'dataset_popover_clicked'
// event is published.
_onPopoverClicked: function(button) {

// Wrap this in an if, because we don't want this object to respond to
// its own 'dataset_popover_clicked' event.
if (button != this.el) {

// Hide this button's popover.
(continues on next page)

350 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

// (If the popover is not currently shown anyway, this does nothing).
this.el.popover('hide');

}
},

_onReceiveSnippet: function(html) {
this.el.popover('destroy');
this.el.popover({title: this.options.title, html: true,

content: html, placement: 'left'});
this.el.popover('show');

},

};
});

6.5.8 jQuery plugins

CKAN provides a number of custom jQuery plugins for JavaScript modules to use by default, see CKAN jQuery plugins
reference. Extensions can also add their own jQuery plugins, and the plugins will then be available to all JavaScript
code via the this.$ object.

See also:

How to Create a Basic Plugin jQuery’s own documentation on writing jQuery plugins. Read this for all the details on
writing jQuery plugins, here we’ll only provide a simple example and show you how to integrate it with CKAN.

It’s a good idea to implement any JavaScript functionality not directly related to CKAN as a jQuery plugin. That
way your CKAN JavaScript modules will be smaller as they’ll contain only the CKAN-specific code, and your jQuery
plugins will also be reusable on non-CKAN sites. CKAN core uses jQuery plugins to implement features including
date formatting, warning users about unsaved changes when leaving a page containing a form without submitting the
form, restricting the set of characters that can be typed into an input field, etc.

Let’s add a jQuery plugin to our CKAN extension that makes our info buttons turn green when clicked.

Todo: Replace this with a more realistic example.

First we need to write the jQuery plugin itself. Create the file ckanext-example_theme/ckanext/example_theme/
assets/jquery.greenify.js with the following contents:

"use strict";

(function (jQuery) {

jQuery.fn.greenify = function() {
this.css( "color", "green" );
return this;

};

})(this.jQuery);

If this JavaScript code looks a little confusing at first, it’s probably because it’s using the Immediately-Invoked Function
Expression (IIFE) pattern. This is a common JavaScript code pattern in which an anonymous function is created and
then immediately called once, in a single expression. In the example above, we create an unnamed function that takes

6.5. Customizing CKAN’s JavaScript 351

http://learn.jquery.com/plugins/basic-plugin-creation/
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression


CKAN documentation, Release 2.10.0a0

a single parameter, jQuery, and then we call the function passing this.jQuery to its jQuery parameter. The code
inside the body of the function is the important part. Writing jQuery plugins in this way ensures that any variables
defined inside the plugin are private to the plugin, and don’t pollute the global namespace.

In the body of our jQuery plugin, we add a new function called greenify() to the jQuery object:

jQuery.fn.greenify = function() {
this.css( "color", "green" );
return this;

};

jquery.fn is the jQuery prototype object, the object that normal jQuery objects get all their methods from. By adding
a method to this object, we enable any code that has a jQuery object to call our method on any HTML element or set
of elements. For example, to turn all <a> elements on the page green you could do: jQuery('a').greenify().

The code inside the greenify() function just calls jQuery’s standard css() method to set the CSS color attribute of
the element to green. This is just standard jQuery code, except that within a custom jQuery function you use this to
refer to the jQuery object, instead of using $ or jquery (as you would normally do when calling jQuery methods from
code external to jQuery).

Our method then returns this to allow jQuery method chaining to be used with our method. For example, a user can
set an element’s CSS color attribute to green and add the CSS class greenified to the element in a single expression
by chaining our jQuery method with another method: $('a').greenify().addClass('greenified');

Before we can use our greenify() method in CKAN, we need to import the jquery.greenify.js file into the
CKAN page. To do this, add a {% asset %} tag to a template file, just as you would do to include any other JavaScript
or CSS file in CKAN. Edit the package_item.html file:

{% ckan_extends %}

{% block content %}
{{ super() }}

{% asset 'example_theme/example_theme' %}

<button data-module="example_theme_popover"
data-module-id="{{ package.id }}"
data-module-title="{{ package.title }}"
data-module-license_title="{{ package.license_title }}"
data-module-num_resources="{{ package.num_resources }}">

<i class="fa fa-info-circle"></i>
</button>

{% endblock %}

Now we can call the greenify() method from our example_theme_popover JavaScript module. For example, we
could add a line to the _onClick() method in example_theme_popover.js so that when a dataset info button is
clicked it turns green:

_onClick: function(event) {

// Make all the links on the page turn green.
this.$('i').greenify();

if (!this._snippetReceived) {
this.sandbox.client.getTemplate('example_theme_popover.html',

(continues on next page)

352 Chapter 6. Theming guide

http://api.jquery.com/css/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

this.options,
this._onReceiveSnippet);

this._snippetReceived = true;
}
this.sandbox.publish('dataset_popover_clicked', this.el);

},

6.5.9 Internationalization

See Internationalizing strings in JavaScript code.

6.5.10 Testing JavaScript modules

Todo: Show how to write tests for the example module.

6.6 Best practices for writing CKAN themes

6.6.1 Don’t use c

As much as possible, avoid accessing the Pylons template context c (or tmpl_context). c is a thread-global variable,
which encourages spaghetti code that’s difficult to understand and to debug.

Instead, have controller methods add variables to the extra_vars parameter of render(), or have the templates call
template helper functions instead.

extra_vars has the advantage that it allows templates, which are difficult to debug, to be simpler and shifts logic into
the easier-to-test and easier-to-debug Python code. On the other hand, template helper functions are easier to reuse as
they’re available to all templates and they avoid inconsistencies between the namespaces of templates that are rendered
by different controllers (e.g. one controller method passes the package dict as an extra var named package, another
controller method passes the same thing but calls it pkg, a third calls it pkg_dict).

You can use the ITemplateHelpers plugin interface to add custom helper functions, see Adding your own template
helper functions.

6.6.2 Use url_for()

Always use url_for() (available to templates as h.url_for()) when linking to other CKAN pages, instead of hard-
coding URLs like <a href="/dataset">. Links created with url_for() will update themselves if the URL routing
changes in a new version of CKAN, or if a plugin changes the URL routing.

6.6. Best practices for writing CKAN themes 353



CKAN documentation, Release 2.10.0a0

6.6.3 Use {% trans %}, {% pluralize %}, _() and ungettext()

All user-visible strings should be internationalized, see String internationalization.

6.6.4 Avoid name clashes

See Avoid name clashes.

6.6.5 JavaScript modules should have docstrings

A JavaScript module should have a docstring at the top of the file, briefly documentating what the module does and
what options it takes. For example:

"use strict";

/* example_theme_popover
*
* This JavaScript module adds a Bootstrap popover with some extra info about a
* dataset to the HTML element that the module is applied to. Users can click
* on the HTML element to show the popover.
*
* title - the title of the dataset
* license - the title of the dataset's copyright license
* num_resources - the number of resources that the dataset has.
*
*/
ckan.module('example_theme_popover', function ($) {
return {
initialize: function () {

// Access some options passed to this JavaScript module by the calling
// template.
var num_resources = this.options.num_resources;
var license = this.options.license;

// Format a simple string with the number of resources and the license,
// e.g. "3 resources, Open Data Commons Attribution License".
var content = 'NUM resources, LICENSE'

.replace('NUM', this.options.num_resources)

.replace('LICENSE', this.options.license)

// Add a Bootstrap popover to the HTML element (this.el) that this
// JavaScript module was initialized on.
this.el.popover({title: this.options.title,

content: content,
placement: 'left'});

}
};

});

354 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

6.6.6 JavaScript modules should unsubscribe from events in teardown()

Any JavaScript module that calls this.sandbox.client.subscribe() should have a teardown() function that
calls unsubscribe(), to prevent memory leaks. CKAN calls the teardown() functions of modules when those
modules are removed from the page.

6.6.7 Don’t overuse pubsub

There shouldn’t be very many cases where a JavaScript module really needs to use Pubsub, try to only use it when you
really need to.

JavaScript modules in CKAN are designed to be small and loosely-coupled, for example modules don’t share any global
variables and don’t call each other’s functions. But pubsub offers a way to tightly couple JavaScript modules together,
by making modules depend on multiple events published by other modules. This can make the code buggy and difficult
to understand.

6.6.8 Use {% snippet %}, not {% include %}

Always use CKAN’s custom {% snippet %} tag instead of Jinja’s default {% include %} tag. Snippets can only
access certain global variables, and any variables explicitly passed to them by the calling template. They don’t have
access to the full context of the calling template, as included files do. This makes snippets more reusable, and much
easier to debug.

6.6.9 Snippets should have docstrings

A snippet should have a docstring comment at the top of the file that briefly documents what the snippet does and what
parameters it requires. For example:

{#

Renders a list of the site's most popular groups.

groups - the list of groups to render

#}
<h3>Most popular groups</h3>
<ul>
{% for group in groups %}
<li>
<a href="{{ h.url_for('group_read', action='read', id=group.name) }}">
<h3>{{ group.display_name }}</h3>

</a>
{% if group.description %}

<p>
{{ h.markdown_extract(group.description, extract_length=80) }}

</p>
{% else %}
<p>{{ _('This group has no description') }}</p>

{% endif %}
{% if group.package_count %}

<strong>{{ ungettext('{num} Dataset', '{num} Datasets', group.package_count).
→˓format(num=group.package_count) }}</strong>

(continues on next page)

6.6. Best practices for writing CKAN themes 355



CKAN documentation, Release 2.10.0a0

(continued from previous page)

{% else %}
<span>{{ _('0 Datasets') }}</span>

{% endif %}
</li>

{% endfor %}
</ul>

6.7 Custom Jinja2 tags reference

Todo: TODO

6.8 Variables and functions available to templates

The following global variables and functions are available to all CKAN templates in their top-level namespace:

Note: In addition to the global variables listed below, each template also has access to variables from a few other
sources:

• Any extra variables explicitly passed into a template by the controller that rendered the template will also be
available to that template, in its top-level namespace. Any variables explicitly added to the template context
variable c will also be available to the template as attributes of c.

To see which additional global variables and context attributes are available to a given template, use CKAN’s
debug footer.

• Any variables explicitly passed into a template snippet in the calling {% snippet %} tag will be available to the
snippet in its top-level namespace. To see these variables, use the debug footer.

• Jinja2 also makes a number of filters, tests and functions available in each template’s global namespace. For a
list of these, see the Jinja2 docs.

tmpl_context

The Pylons template context object, a thread-safe object that the application can store request-specific variables
against without the variables associated with one HTTP request getting confused with variables from another
request.

tmpl_context is usually abbreviated to c (an alias).

Using c in CKAN is discouraged, use template helper functions instead. See Don’t use c.

c is not available to snippets.

c

An alias for tmpl_context.

app_globals

The Pylons App Globals object, an instance of the ckan.lib.app_globals.Globals class. The application
can store request-independent variables against the app_globals object. Variables stored against app_globals
are shared between all HTTP requests.

356 Chapter 6. Theming guide

http://jinja.pocoo.org/docs/templates
https://thejimmyg.github.io/pylonsbook/en/1.0/exploring-pylons.html?highlight=template%20context#context-object
https://thejimmyg.github.io/pylonsbook/en/1.0/exploring-pylons.html?highlight=template%20context#app-globals-object


CKAN documentation, Release 2.10.0a0

g

An alias for app_globals.

h

CKAN’s template helper functions, plus any custom template helper functions provided by any extensions.

request

The Pylons Request object, contains information about the HTTP request that is currently being responded to,
including the request headers and body, URL parameters, the requested URL, etc.

response

The Pylons Response object, contains information about the HTTP response that is currently being prepared to
be sent back to the user, including the HTTP status code, headers, cookies, etc.

session

The Beaker session object, which contains information stored in the user’s currently active session cookie.

_()

The pylons.i18n.translation.ugettext(value) function:

Mark a string for translation. Returns the localized unicode string of value.

Mark a string to be localized as follows:

_('This should be in lots of languages')

N_()

The pylons.i18n.translation.gettext_noop(value) function:

Mark a string for translation without translating it. Returns value.

Used for global strings, e.g.:

foo = N_('Hello')

class Bar:
def __init__(self):

self.local_foo = _(foo)

h.set_lang('fr')
assert Bar().local_foo == 'Bonjour'
h.set_lang('es')
assert Bar().local_foo == 'Hola'
assert foo == 'Hello'

ungettext()

The pylons.i18n.translation.ungettext(singular, plural, n) function:

Mark a string for translation. Returns the localized unicode string of the pluralized value.

This does a plural-forms lookup of a message id. singular is used as the message id for purposes of
lookup in the catalog, while n is used to determine which plural form to use. The returned message
is a Unicode string.

Mark a string to be localized as follows:

ungettext('There is %(num)d file here', 'There are %(num)d files here',
n) % {'num': n}

6.8. Variables and functions available to templates 357

https://thejimmyg.github.io/pylonsbook/en/1.0/exploring-pylons.html?highlight=request#request
https://thejimmyg.github.io/pylonsbook/en/1.0/exploring-pylons.html?highlight=request#response
http://beaker.readthedocs.org/en/latest/
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/modules/i18n_translation.html?highlight=ugettext#pylons.i18n.translation.ugettext
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/modules/i18n_translation.html?highlight=gettext_noop#pylons.i18n.translation.gettext_noop
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/modules/i18n_translation.html?highlight=ungettext#pylons.i18n.translation.ungettext


CKAN documentation, Release 2.10.0a0

translator

An instance of the gettext.NullTranslations class. This is for internal use only, templates shouldn’t need to use
this.

class actions

The ckan.model.authz.Action class.

Todo: Remove this? Doesn’t appear to be used and doesn’t look like something we want.

6.9 Objects and methods available to JavaScript modules

CKAN makes a few helpful objects and methods available for every JavaScript module to use, including:

• this.el, the HTML element that this instance of the object was initialized for. A jQuery element. See
this.options and this.el.

• this.options, an object containing any options that were passed to the module via data-module-* attributes
in the template. See this.options and this.el.

• this.$(), a jQuery find function that is scoped to the HTML element that the JavaScript module was applied
to. For example, this.$('a') will return all of the <a> elements inside the module’s HTML element, not all
of the <a> elements on the entire page.

This is a shortcut for this.el.find().

jQuery provides many useful features in an easy-to-use API, including document traversal and manipulation,
event handling, and animation. See jQuery’s own docs for details.

• this.sandbox, an object containing useful functions for all modules to use, including:

– this.sandbox.client, an API client for calling the API

– this.sandbox.jQuery, a jQuery find function that is not bound to the module’s HTML element. this.
sandbox.jQuery('a') will return all the <a> elements on the entire page. Using this.sandbox.
jQuery is discouraged, try to stick to this.$ because it keeps JavaScript modules more independent.

See JavaScript sandbox reference.

• A collection of jQuery plugins.

• Pubsub functions that modules can use to communicate with each other, if they really need to.

• Bootstrap’s JavaScript features, see the Bootstrap docs for details.

• The standard JavaScript window object. Using window in CKAN JavaScript modules is discouraged, because it
goes against the idea of a module being independent of global context. However, there are some circumstances
where a module may need to use window (for example if a vendor plugin that the module uses needs it).

• this._ and this.ngettext for string internationalization. See Internationalization.

• this.remove(), a method that tears down the module and removes it from the page (this usually called by
CKAN, not by the module itself).

358 Chapter 6. Theming guide

http://docs.python.org/2/library/gettext.html#the-nulltranslations-class
http://jquery.com/
https://getbootstrap.com/docs/3.4/javascript/


CKAN documentation, Release 2.10.0a0

6.10 Template helper functions reference

Helper functions

Consists of functions to typically be used within templates, but also available to Controllers. This module is available
to templates as ‘h’.

class ckan.lib.helpers.HelperAttributeDict

Collection of CKAN native and extension-provided helpers.

class ckan.lib.helpers.literal(base: Any = '', encoding: Optional[str] = None, errors: str = 'strict')
Represents an HTML literal.

classmethod escape(s: Optional[str])→ markupsafe.Markup
Escape a string. Calls escape() and ensures that for subclasses the correct type is returned.

ckan.lib.helpers.core_helper(f: ckan.lib.helpers.Helper, name: Optional[str] = None)→
ckan.lib.helpers.Helper

Register a function as a builtin helper method.

ckan.lib.helpers.chained_helper(func: ckan.lib.helpers.Helper)→ ckan.lib.helpers.Helper
Decorator function allowing helper functions to be chained.

This chain starts with the first chained helper to be registered and ends with the original helper (or a non-chained
plugin override version). Chained helpers must accept an extra parameter, specifically the next helper in the
chain, for example:

helper(next_helper, *args, **kwargs).

The chained helper function may call the next_helper function, optionally passing different values, handling
exceptions, returning different values and/or raising different exceptions to the caller.

Usage:

from ckan.plugins.toolkit import chained_helper

@chained_helper
def ckan_version(next_func, **kw):

return next_func(**kw)

Parameters func (callable) – chained helper function

Returns chained helper function

Return type callable

ckan.lib.helpers.redirect_to(*args: Any, **kw: Any)→ flask.wrappers.Response
Issue a redirect: return an HTTP response with a 302 Moved header.

This is a wrapper for flask.redirect() that maintains the user’s selected language when redirecting.

The arguments to this function identify the route to redirect to, they’re the same arguments as ckan.plugins.
toolkit.url_for() accepts, for example:

6.10. Template helper functions reference 359



CKAN documentation, Release 2.10.0a0

import ckan.plugins.toolkit as toolkit

# Redirect to /dataset/my_dataset.
return toolkit.redirect_to('dataset.read',

id='my_dataset')

Or, using a named route:

return toolkit.redirect_to('dataset.read', id='changed')

If given a single string as argument, this redirects without url parsing

return toolkit.redirect_to(’http://example.com’) return toolkit.redirect_to(‘/dataset’) return
toolkit.redirect_to(‘/some/other/path’)

ckan.lib.helpers.get_site_protocol_and_host()→ Union[tuple[str, str], tuple[None, None]]
Return the protocol and host of the configured ckan.site_url. This is needed to generate valid, full-qualified
URLs.

If ckan.site_url is set like this:

ckan.site_url = http://example.com

Then this function would return a tuple (‘http’, ‘example.com’) If the setting is missing, (None, None) is returned
instead.

ckan.lib.helpers.url_for(*args: Any, **kw: Any)→ str
Return the URL for an endpoint given some parameters.

This is a wrapper for flask.url_for() and routes.url_for() that adds some extra features that CKAN
needs.

To build a URL for a Flask view, pass the name of the blueprint and the view function separated by a period .,
plus any URL parameters:

url_for('api.action', ver=3, logic_function='status_show')
# Returns /api/3/action/status_show

For a fully qualified URL pass the _external=True parameter. This takes the ckan.site_url and ckan.
root_path settings into account:

url_for('api.action', ver=3, logic_function='status_show',
_external=True)

# Returns http://example.com/api/3/action/status_show

URLs built by Pylons use the Routes syntax:

url_for(controller='my_ctrl', action='my_action', id='my_dataset')
# Returns '/dataset/my_dataset'

Or, using a named route:

url_for('dataset.read', id='changed')
# Returns '/dataset/changed'

Use qualified=True for a fully qualified URL when targeting a Pylons endpoint.

360 Chapter 6. Theming guide

http://example.com


CKAN documentation, Release 2.10.0a0

For backwards compatibility, an effort is made to support the Pylons syntax when building a Flask URL, but this
support might be dropped in the future, so calls should be updated.

ckan.lib.helpers.url_for_static(*args: Any, **kw: Any)→ str
Returns the URL for static content that doesn’t get translated (eg CSS)

It’ll raise CkanUrlException if called with an external URL

This is a wrapper for routes.url_for()

ckan.lib.helpers.url_for_static_or_external(*args: Any, **kw: Any)→ str
Returns the URL for static content that doesn’t get translated (eg CSS), or external URLs

ckan.lib.helpers.is_url(*args: Any, **kw: Any)→ bool
Returns True if argument parses as a http, https or ftp URL

ckan.lib.helpers.url_is_local(url: str)→ bool
Returns True if url is local

ckan.lib.helpers.full_current_url()→ str
Returns the fully qualified current url (eg http://. . . ) useful for sharing etc

ckan.lib.helpers.current_url()→ str
Returns current url unquoted

ckan.lib.helpers.lang()→ Optional[str]
Return the language code for the current locale eg en

ckan.lib.helpers.ckan_version()→ str
Return CKAN version

ckan.lib.helpers.lang_native_name(lang_: Optional[str] = None)→ Optional[str]
Return the language name currently used in it’s localised form either from parameter or current environ setting

ckan.lib.helpers.is_rtl_language()→ bool

ckan.lib.helpers.get_rtl_css()→ str

ckan.lib.helpers.flash_notice(message: Any, allow_html: bool = False)→ None
Show a flash message of type notice

ckan.lib.helpers.flash_error(message: Any, allow_html: bool = False)→ None
Show a flash message of type error

ckan.lib.helpers.flash_success(message: Any, allow_html: bool = False)→ None
Show a flash message of type success

ckan.lib.helpers.get_flashed_messages(**kwargs: Any)
Call Flask’s built in get_flashed_messages

ckan.lib.helpers.link_to(label: str, url: str, **attrs: Any)→ markupsafe.Markup

ckan.lib.helpers.nav_link(text: str, *args: Any, **kwargs: Any)→ Union[markupsafe.Markup, str]

Parameters

• class – pass extra class(es) to add to the <a> tag

• icon – name of ckan icon to use within the link

• condition – if False then no link is returned

6.10. Template helper functions reference 361

http://


CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.build_nav_main(*args: Union[tuple[str, str], tuple[str, str, list[str]], tuple[str, str, list[str],
str]])→ Markup

Build a set of menu items.

Outputs <li><a href="...">title</a></li>

Parameters args (tuple[str, str, Optional[list], Optional[str]]) – tuples of (menu
type, title) eg (‘login’, _(‘Login’)). Third item specifies controllers which should be used to mark
link as active. Fourth item specifies auth function to check permissions against.

Return type str

ckan.lib.helpers.build_nav_icon(menu_item: str, title: str, **kw: Any)→ markupsafe.Markup
Build a navigation item used for example in user/read_base.html.

Outputs <li><a href="..."><i class="icon.."></i> title</a></li>.

Parameters

• menu_item (string) – the name of the defined menu item defined in config/routing as the
named route of the same name

• title (string) – text used for the link

• kw – additional keywords needed for creating url eg id=...

Return type HTML literal

ckan.lib.helpers.build_nav(menu_item: str, title: str, **kw: Any)→ markupsafe.Markup
Build a navigation item used for example breadcrumbs.

Outputs <li><a href="...">title</a></li>.

Parameters

• menu_item (string) – the name of the defined menu item defined in config/routing as the
named route of the same name

• title (string) – text used for the link

• kw – additional keywords needed for creating url eg id=...

Return type HTML literal

ckan.lib.helpers.map_pylons_to_flask_route_name(menu_item: str)
returns flask routes for old fashioned route names

ckan.lib.helpers.build_extra_admin_nav()→ markupsafe.Markup
Build extra navigation items used in admin/base.html for values defined in the config option ckan.
admin_tabs. Typically this is populated by extensions.

Return type HTML literal

ckan.lib.helpers.default_group_type(type_: str)→ str
Get default group/organization type for using site-wide.

ckan.lib.helpers.default_package_type()→ str
Get default package type for using site-wide.

ckan.lib.helpers.humanize_entity_type(entity_type: str, object_type: str, purpose: str)→ Optional[str]
Convert machine-readable representation of package/group type into human-readable form.

Returns capitalized entity_type with all underscores converted into spaces.

Example:

362 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

>>> humanize_entity_type('group', 'custom_group', 'add link')
'Add Custom Group'
>>> humanize_entity_type('group', 'custom_group', 'breadcrumb')
'Custom Groups'
>>> humanize_entity_type('group', 'custom_group', 'not real purpuse')
'Custom Group'

Possible purposes(depends on entity_type and change over time): add link: “Add [object]” button on search
pages breadcrumb: “Home / [object]s / New” section in breadcrums content tab: “[object]s | Groups |
Activity” tab on details page create label: “Home / . . . / Create [object]” part of breadcrumb create title:
“Create [object] - CKAN” section of page title delete confirmation: Confirmation popup when object is
deleted description placeholder: Placeholder for description field on form edit label: “Edit [object]” la-
bel/breadcrumb/title facet label: “[object]s” label in sidebar(facets/follower counters) form label: “[object]
Form” heading on object form page main nav: “[object]s” link in the header view label: “View [object]s”
button on edit form my label: “My [object]s” tab in dashboard name placeholder: “<[object]>” section
of URL preview on object form no any objects: No objects created yet no associated label: no gorups for
dataset no description: object has no description no label: package with no organization page title: “Title
- [objec]s - CKAN” section of page title save label: “Save [object]” button search placeholder: “Search
[object]s. . . ” placeholder update label: “Update [object]” button you not member: Dashboard with no
groups

ckan.lib.helpers.get_facet_items_dict(facet: str, search_facets: Union[dict[str, dict[str, Any]], Any] =
None, limit: Optional[int] = None, exclude_active: bool = False)
→ list[dict[str, Any]]

Return the list of unselected facet items for the given facet, sorted by count.

Returns the list of unselected facet contraints or facet items (e.g. tag names like “russian” or “tolstoy”) for the
given search facet (e.g. “tags”), sorted by facet item count (i.e. the number of search results that match each
facet item).

Reads the complete list of facet items for the given facet from search_facets, and filters out the facet items that
the user has already selected.

Arguments: facet – the name of the facet to filter. search_facets – dict with search facets limit – the max. number
of facet items to return. exclude_active – only return unselected facets.

ckan.lib.helpers.has_more_facets(facet: str, search_facets: dict[str, dict[str, Any]], limit: Optional[int] =
None, exclude_active: bool = False)→ bool

Returns True if there are more facet items for the given facet than the limit.

Reads the complete list of facet items for the given facet from search_facets, and filters out the facet items that
the user has already selected.

Arguments: facet – the name of the facet to filter. search_facets – dict with search facets limit – the max. number
of facet items. exclude_active – only return unselected facets.

ckan.lib.helpers.get_param_int(name: str, default: int = 10)→ int

ckan.lib.helpers.sorted_extras(package_extras: list[dict[str, Any]], auto_clean: bool = False, subs:
Optional[dict[str, str]] = None, exclude: Optional[list[str]] = None)→
list[tuple[str, Any]]

Used for outputting package extras

Parameters

• package_extras (dict) – the package extras

6.10. Template helper functions reference 363



CKAN documentation, Release 2.10.0a0

• auto_clean (bool) – If true capitalize and replace -_ with spaces

• subs (dict {'key': 'replacement'}) – substitutes to use instead of given keys

• exclude (list of strings) – keys to exclude

ckan.lib.helpers.check_access(action: str, data_dict: Optional[dict[str, Any]] = None)→ bool

ckan.lib.helpers.linked_user(user: Union[str, ckan.model.user.User], maxlength: int = 0, avatar: int = 20)
→ Optional[Union[markupsafe.Markup, str]]

ckan.lib.helpers.group_name_to_title(name: str)→ str

ckan.lib.helpers.markdown_extract(text: str, extract_length: int = 190)→ Union[str, markupsafe.Markup]
return the plain text representation of markdown encoded text. That is the texted without any html tags. If
extract_length is 0 then it will not be truncated.

ckan.lib.helpers.dict_list_reduce(list_: list[dict[str, T]], key: str, unique: bool = True)→ list[T]
Take a list of dicts and create a new one containing just the values for the key with unique values if requested.

ckan.lib.helpers.gravatar(email_hash: str, size: int = 100, default: Optional[str] = None)→
markupsafe.Markup

ckan.lib.helpers.sanitize_url(url: str)
Return a sanitized version of a user-provided url for use in an <a href> or <img src> attribute, e.g.:

<a href=”{{ h.sanitize_url(user_link) }}”>

Sanitizing urls is tricky. This is a best-effort to produce something valid from the sort of text users might paste
into a web form, not intended to cover all possible valid edge-case urls.

On parsing errors an empty string will be returned.

ckan.lib.helpers.user_image(user_id: str, size: int = 100)→ Union[markupsafe.Markup, str]

ckan.lib.helpers.pager_url(page: int, partial: Optional[str] = None, **kwargs: Any)→ str

ckan.lib.helpers.get_page_number(params: dict[str, Any], key: str = 'page', default: int = 1)→ int
Return the page number from the provided params after verifying that it is an positive integer.

If it fails it will abort the request with a 400 error.

ckan.lib.helpers.get_display_timezone()→ datetime.tzinfo
Returns a pytz timezone for the display_timezone setting in the configuration file or UTC if not specified. :rtype:
timezone

ckan.lib.helpers.render_datetime(datetime_: Optional[datetime.datetime], date_format: Optional[str] =
None, with_hours: bool = False, with_seconds: bool = False)→ str

Render a datetime object or timestamp string as a localised date or in the requested format. If timestamp is badly
formatted, then a blank string is returned.

Parameters

• datetime (datetime or ISO string format) – the date

• date_format (string) – a date format

• with_hours (bool) – should the hours:mins be shown

• with_seconds (bool) – should the hours:mins:seconds be shown

Return type string

364 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.date_str_to_datetime(date_str: str)→ datetime.datetime
Convert ISO-like formatted datestring to datetime object.

This function converts ISO format date- and datetime-strings into datetime objects. Times may be specified down
to the microsecond. UTC offset or timezone information may not be included in the string.

Note - Although originally documented as parsing ISO date(-times), this function doesn’t fully adhere to
the format. This function will throw a ValueError if the string contains UTC offset information. So in
that sense, it is less liberal than ISO format. On the other hand, it is more liberal of the accepted delimiters
between the values in the string. Also, it allows microsecond precision, despite that not being part of the
ISO format.

ckan.lib.helpers.parse_rfc_2822_date(date_str: str, assume_utc: bool = True)→
Optional[datetime.datetime]

Parse a date string of the form specified in RFC 2822, and return a datetime.

RFC 2822 is the date format used in HTTP headers. It should contain timezone information, but that cannot be
relied upon.

If date_str doesn’t contain timezone information, then the ‘assume_utc’ flag determines whether we assume this
string is local (with respect to the server running this code), or UTC. In practice, what this means is that if
assume_utc is True, then the returned datetime is ‘aware’, with an associated tzinfo of offset zero. Otherwise,
the returned datetime is ‘naive’.

If timezone information is available in date_str, then the returned datetime is ‘aware’, ie - it has an associated
tz_info object.

Returns None if the string cannot be parsed as a valid datetime.

Note: in Python3, email.utils always assume UTC if there is no timezone, so assume_utc has no sense in this
version.

ckan.lib.helpers.time_ago_from_timestamp(timestamp: int)→ str
Returns a string like 5 months ago for a datetime relative to now :param timestamp: the timestamp or datetime
:type timestamp: string or datetime

Return type string

ckan.lib.helpers.dataset_display_name(package_or_package_dict: Union[dict[str, Any], model.Package])
→ str

ckan.lib.helpers.dataset_link(package_or_package_dict: Union[dict[str, Any], model.Package])→ Markup

ckan.lib.helpers.resource_display_name(resource_dict: dict[str, Any])→ str

ckan.lib.helpers.resource_link(resource_dict: dict[str, Any], package_id: str, package_type: str =
'dataset')→ Markup

ckan.lib.helpers.tag_link(tag: dict[str, Any], package_type: str = 'dataset')→ Markup

ckan.lib.helpers.group_link(group: dict[str, Any])→ Markup

ckan.lib.helpers.organization_link(organization: dict[str, Any])→ Markup

ckan.lib.helpers.dump_json(obj: Any, **kw: Any)→ str

ckan.lib.helpers.snippet(template_name: str, **kw: Any)→ str
This function is used to load html snippets into pages. keywords can be used to pass parameters into the snippet
rendering

6.10. Template helper functions reference 365



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.convert_to_dict(object_type: str, objs: list[Any])→ list[dict[str, Any]]
This is a helper function for converting lists of objects into lists of dicts. It is for backwards compatability only.

ckan.lib.helpers.follow_button(obj_type: str, obj_id: str)→ str
Return a follow button for the given object type and id.

If the user is not logged in return an empty string instead.

Parameters

• obj_type (string) – the type of the object to be followed when the follow button is clicked,
e.g. ‘user’ or ‘dataset’

• obj_id (string) – the id of the object to be followed when the follow button is clicked

Returns a follow button as an HTML snippet

Return type string

ckan.lib.helpers.follow_count(obj_type: str, obj_id: str)→ int
Return the number of followers of an object.

Parameters

• obj_type (string) – the type of the object, e.g. ‘user’ or ‘dataset’

• obj_id (string) – the id of the object

Returns the number of followers of the object

Return type int

ckan.lib.helpers.add_url_param(alternative_url: Optional[str] = None, controller: Optional[str] = None,
action: Optional[str] = None, extras: Optional[dict[str, Any]] = None,
new_params: Optional[dict[str, Any]] = None)→ str

Adds extra parameters to existing ones

controller action & extras (dict) are used to create the base url via url_for() controller & action default to the
current ones

This can be overriden providing an alternative_url, which will be used instead.

ckan.lib.helpers.remove_url_param(key: Union[list[str], str], value: Optional[str] = None, replace:
Optional[str] = None, controller: Optional[str] = None, action:
Optional[str] = None, extras: Optional[dict[str, Any]] = None,
alternative_url: Optional[str] = None)→ str

Remove one or multiple keys from the current parameters. The first parameter can be either a string with the
name of the key to remove or a list of keys to remove. A specific key/value pair can be removed by passing a
second value argument otherwise all pairs matching the key will be removed. If replace is given then a new
param key=replace will be added. Note that the value and replace parameters only apply to the first key provided
(or the only one provided if key is a string).

controller action & extras (dict) are used to create the base url via url_for() controller & action default to the
current ones

This can be overriden providing an alternative_url, which will be used instead.

ckan.lib.helpers.debug_inspect(arg: Any)→ markupsafe.Markup
Output pprint.pformat view of supplied arg

ckan.lib.helpers.popular(type_: str, number: int, min: int = 1, title: Optional[str] = None)→ str
display a popular icon.

366 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.groups_available(am_member: bool = False)→ list[dict[str, Any]]
Return a list of the groups that the user is authorized to edit.

Parameters am_member – if True return only the groups the logged-in user is a member of, otherwise
return all groups that the user is authorized to edit (for example, sysadmin users are authorized
to edit all groups) (optional, default: False)

ckan.lib.helpers.organizations_available(permission: str = 'manage_group', include_dataset_count:
bool = False)→ list[dict[str, Any]]

Return a list of organizations that the current user has the specified permission for.

ckan.lib.helpers.roles_translated()→ dict[str, str]
Return a dict of available roles with their translations

ckan.lib.helpers.user_in_org_or_group(group_id: str)→ bool
Check if user is in a group or organization

ckan.lib.helpers.escape_js(str_to_escape: str)→ str
Escapes special characters from a JS string.

Useful e.g. when you need to pass JSON to the templates

Parameters str_to_escape – string to be escaped

Return type string

ckan.lib.helpers.get_pkg_dict_extra(pkg_dict: dict[str, Any], key: str, default: Optional[Any] = None)→
Any

Returns the value for the dataset extra with the provided key.

If the key is not found, it returns a default value, which is None by default.

Parameters pkg_dict – dictized dataset

Key extra key to lookup

Default default value returned if not found

ckan.lib.helpers.get_request_param(parameter_name: str, default: Optional[Any] = None)→ Any
This function allows templates to access query string parameters from the request. This is useful for things like
sort order in searches.

ckan.lib.helpers.html_auto_link(data: str)→ str
Linkifies HTML

tag converted to a tag link

dataset converted to a dataset link

group converted to a group link

http:// converted to a link

ckan.lib.helpers.render_markdown(data: str, auto_link: bool = True, allow_html: bool = False)→
Union[str, markupsafe.Markup]

Returns the data as rendered markdown

Parameters

• auto_link (bool) – Should ckan specific links be created e.g. group:xxx

• allow_html (bool) – If True then html entities in the markdown data. This is dangerous if
users have added malicious content. If False all html tags are removed.

6.10. Template helper functions reference 367



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.format_resource_items(items: list[tuple[str, Any]])→ list[tuple[str, Any]]
Take a resource item list and format nicely with blacklisting etc.

ckan.lib.helpers.get_allowed_view_types(resource: dict[str, Any], package: dict[str, Any])→
list[tuple[str, str, str]]

ckan.lib.helpers.rendered_resource_view(resource_view: dict[str, Any], resource: dict[str, Any], package:
dict[str, Any], embed: bool = False)→ Markup

Returns a rendered resource view snippet.

ckan.lib.helpers.view_resource_url(resource_view: dict[str, Any], resource: dict[str, Any], package:
dict[str, Any], **kw: Any)→ str

Returns url for resource. made to be overridden by extensions. i.e by resource proxy.

ckan.lib.helpers.resource_view_is_filterable(resource_view: dict[str, Any])→ bool
Returns True if the given resource view support filters.

ckan.lib.helpers.resource_view_get_fields(resource: dict[str, Any])→ list['str']
Returns sorted list of text and time fields of a datastore resource.

ckan.lib.helpers.resource_view_is_iframed(resource_view: dict[str, Any])→ bool
Returns true if the given resource view should be displayed in an iframe.

ckan.lib.helpers.resource_view_icon(resource_view: dict[str, Any])→ str
Returns the icon for a particular view type.

ckan.lib.helpers.resource_view_display_preview(resource_view: dict[str, Any])→ bool
Returns if the view should display a preview.

ckan.lib.helpers.resource_view_full_page(resource_view: dict[str, Any])→ bool
Returns if the edit view page should be full page.

ckan.lib.helpers.remove_linebreaks(string: str)→ str
Remove linebreaks from string to make it usable in JavaScript

ckan.lib.helpers.list_dict_filter(list_: list[dict[str, Any]], search_field: str, output_field: str, value: Any)
→ Any

Takes a list of dicts and returns the value of a given key if the item has a matching value for a supplied key

Parameters

• list (list of dicts) – the list to search through for matching items

• search_field (string) – the key to use to find matching items

• output_field (string) – the key to use to output the value

• value – the value to search for

ckan.lib.helpers.SI_number_span(number: int)→ markupsafe.Markup
outputs a span with the number in SI unit eg 14700 -> 14.7k

ckan.lib.helpers.uploads_enabled()→ bool

ckan.lib.helpers.get_featured_organizations(count: int = 1)→ list[dict[str, Any]]
Returns a list of favourite organization in the form of organization_list action function

ckan.lib.helpers.get_featured_groups(count: int = 1)→ list[dict[str, Any]]
Returns a list of favourite group the form of organization_list action function

368 Chapter 6. Theming guide



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.featured_group_org(items: list[str], get_action: str, list_action: str, count: int)→
list[dict[str, Any]]

ckan.lib.helpers.get_site_statistics()→ dict[str, int]

ckan.lib.helpers.resource_formats_default_file()

ckan.lib.helpers.resource_formats()→ dict[str, list[str]]
Returns the resource formats as a dict, sourced from the resource format JSON file.

Parameters

• key – potential user input value

• value – [canonical mimetype lowercased, canonical format (lowercase), human readable
form]

Fuller description of the fields are described in ckan/config/resource_formats.json.

ckan.lib.helpers.unified_resource_format(format: str)→ str

ckan.lib.helpers.check_config_permission(permission: str)→ Union[list[str], bool]

ckan.lib.helpers.get_organization(org: Optional[str] = None, include_datasets: bool = False)→ dict[str,
Any]

ckan.lib.helpers.license_options(existing_license_id: Optional[tuple[str, str]] = None)→ list[tuple[str,
str]]

Returns [(l.title, l.id), . . . ] for the licenses configured to be offered. Always includes the existing_license_id, if
supplied.

ckan.lib.helpers.get_translated(data_dict: dict[str, Any], field: str)→ Union[str, Any]

ckan.lib.helpers.facets()→ list[str]
Returns a list of the current facet names

ckan.lib.helpers.mail_to(email_address: str, name: str)→ markupsafe.Markup

ckan.lib.helpers.clean_html(html: Any)→ str

ckan.lib.helpers.load_plugin_helpers()→ None
(Re)loads the list of helpers provided by plugins.

ckan.lib.helpers.sanitize_id(id_: str)→ str
Given an id (uuid4), if it has any invalid characters it raises ValueError.

ckan.lib.helpers.get_collaborators(package_id: str)→ list[tuple[str, str]]
Return the collaborators list for a dataset

Returns a list of tuples with the user id and the capacity

ckan.lib.helpers.can_update_owner_org(package_dict: dict[str, Any], user_orgs: Optional[list[dict[str,
Any]]] = None)→ bool

ckan.lib.helpers.decode_view_request_filters()→ dict[str, Any] | None

6.10. Template helper functions reference 369



CKAN documentation, Release 2.10.0a0

ckan.lib.helpers.check_ckan_version(min_version: Optional[str] = None, max_version: Optional[str] =
None)

Return True if the CKAN version is greater than or equal to min_version and less than or equal to
max_version, return False otherwise.

If no min_version is given, just check whether the CKAN version is less than or equal to max_version.

If no max_version is given, just check whether the CKAN version is greater than or equal to min_version.

Parameters

• min_version (string) – the minimum acceptable CKAN version, eg. '2.1'

• max_version (string) – the maximum acceptable CKAN version, eg. '2.3'

6.11 Template snippets reference

Todo: Autodoc all the default template snippets here. This probably means writing a Sphinx plugin.

6.12 JavaScript sandbox reference

Todo: Autodoc the JavaScript sandbox. This will probably require writing a custom Sphinx plugin.

6.13 JavaScript API client reference

Todo: Autodoc the JavaScript client. This will probably require writing a custom Sphinx plugin.

6.14 CKAN jQuery plugins reference

CKAN adds a number of custom plugins that can be accessed by JavaScript modules via this.sandbox.jQuery.

370 Chapter 6. Theming guide



CHAPTER

SEVEN

CONTRIBUTING GUIDE

CKAN is free open source software and contributions are welcome, whether they’re bug reports, source code, docu-
mentation or translations. The following sections will walk you through our processes for making different kinds of
contributions to CKAN:

7.1 Reporting issues

If you’ve found a bug in CKAN, open a new issue on CKAN’s GitHub Issues (try searching first to see if there’s already
an issue for your bug).

If you can fix the bug yourself, please send a pull request!

Do not use an issue to ask how to do something - for that use StackOverflow with the ‘ckan’ tag.

Do not use an issue to suggest an significant change to CKAN - instead create an issue at https://github.com/ckan/
ideas-and-roadmap.

7.1.1 Writing a good issue

• Describe what went wrong

• Say what you were doing when it went wrong

• If in doubt, provide detailed steps for someone else to recreate the problem.

• A screenshot is often helpful

• If it is a 500 error / ServerError / exception then it’s essential to supply the full stack trace provided in the CKAN
log.

7.1.2 Issues process

The CKAN Technical Team reviews new issues twice a week. They aim to assign someone on the Team to take
responsibility for it. These are the sorts of actions to expect:

• If it is a serious bug and the person who raised it won’t fix it then the Technical Team will aim to create a fix.

• A feature that you plan to code shortly will be happily discussed. It’s often good to get the team’s support
for a feature before writing lots of code. You can then quote the issue number in the commit messages and
branch name. (Larger changes or suggestions by non-contributers are better discussed on https://github.com/
ckan/ideas-and-roadmap instead)

• Features may be marked “Good for Contribution” which means the Team is happy to see this happen, but the
Team are not offering to do it.

371

https://github.com/ckan/ckan/issues
https://stackoverflow.com/questions/tagged/ckan
https://github.com/ckan/ideas-and-roadmap
https://github.com/ckan/ideas-and-roadmap
https://github.com/ckan/ideas-and-roadmap
https://github.com/ckan/ideas-and-roadmap


CKAN documentation, Release 2.10.0a0

7.1.3 Old issues

If an issue has little activity for 12 months then it should be closed. If someone is still keen for it to happen then they
should comment, re-open it and push it forward.

7.2 Translating CKAN

CKAN is used in many countries, and adding a new language to the web interface is a simple process.

CKAN uses the url to determine which language is used. An example would be /fr/dataset would be shown in
french. If CKAN is running under a directory then an example would be /root/fr/dataset. For custom paths check
the ckan.root_path config option.

See also:

Developers, see String internationalization for how to mark strings for translation in CKAN code.

7.2.1 Supported languages

CKAN already supports numerous languages. To check whether your language is supported, look in the source at
ckan/i18n for translation files. Languages are named using two-letter ISO language codes (e.g. es, de).

If your language is present, you can switch the default language simply by setting the ckan.locale_default option
in your CKAN config file, as described in Internationalisation Settings. For example, to switch to German:

ckan.locale_default=de

See also:

Internationalisation Settings

If your language is not supported yet, the remainder of this section section provides instructions on how to prepare a
translation file and add it to CKAN.

7.2.2 Adding a new language or improving an existing translation

If you want to add an entirely new language to CKAN or update an existing translation, you have two options.

• Transifex setup. Creating or updating translation files using Transifex, the open source translation software.
To add a language you need to request it from the Transifex dashboard: https://www.transifex.com/okfn/ckan/
dashboard/ Alternatively to update an existing language you need to request to join the appropriate CKAN lan-
guage team. If you don’t hear back from the CKAN administrators, contact them via the ckan-dev list.

• Manual setup. Creating translation files manually in your own branch.

Note: If you choose not to contribute your translation back via Transifex then you must ensure you make it public in
another way, as per the requirements of CKAN’s AGPL license.

372 Chapter 7. Contributing guide

https://www.transifex.com/okfn/ckan/dashboard/
https://www.transifex.com/okfn/ckan/dashboard/


CKAN documentation, Release 2.10.0a0

Transifex setup

Transifex, the open translation platform, provides a simple web interface for writing translations and is widely used for
CKAN internationalization.

Using Transifex makes it easier to handle collaboration, with an online editor that makes the process more accessible.

Existing CKAN translation projects can be found at: https://www.transifex.com/okfn/ckan/content/

When leading up to a CKAN release, the strings are loaded onto Transifex and ckan-dev list is emailed to encourage
translation work. When the release is done, the latest translations on Transifex are checked back into CKAN.

Transifex administration

The Transifex workflow is described in the Doing a CKAN release

Manual setup

Note: Please keep the CKAN core developers aware of new languages created in this way.

All the English strings in CKAN are extracted into the ckan.pot file, which can be found in ckan/i18n.

Note: For information, the pot file was created with the babel command python setup.py extract_messages.

1. Preparation

This tutorial assumes you’ve got ckan installed as source in a virtualenv. Activate the virtualenv and cd to the ckan
directory:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

2. Install Babel

You need Python’s babel library (Debian package python-pybabel). Install it as follows with pip:

pip install --upgrade Babel

3. Create a ‘po’ file for your language

Then create a translation file for your language (a po file) using the pot file (containing all the English strings):

python setup.py init_catalog --locale YOUR_LANGUAGE

Replace YOUR_LANGUAGE with the two-letter ISO language code (e.g. es, de).

In future, when the pot file is updated, you can update the strings in your po file, while preserving your po edits, by
doing:

7.2. Translating CKAN 373

https://www.transifex.com/okfn/ckan/content/


CKAN documentation, Release 2.10.0a0

python setup.py update_catalog --locale YOUR-LANGUAGE

2. Do the translation

Edit the po file and translate the strings. For more information on how to do this, see the Pylons book.

We recommend using a translation tool, such as poedit, to check the syntax is correct. There are also extensions for
editors such as emacs.

3. Commit the translation

When the po is complete, create a branch in your source, then commit it to your own fork of the CKAN repo:

git add ckan/i18n/YOUR_LANGUAGE/LC_MESSAGES/ckan.po
git commit -m '[i18n]: New language po added: YOUR_LANGUAGE' ckan/i18n/YOUR_LANGUAGE/LC_
→˓MESSAGES/ckan.po

NB it is not appropriate to do a Pull Request to the main ckan repo, since that takes its translations from Transifex.

4. Compile a translation

Once you have created a translation (either with Transifex or manually) you can build the po file into a mo file, ready
for deployment.

With either method of creating the po file, it should be found in the CKAN i18n repository: ckan/i18n/
YOUR_LANGUAGE/LC_MESSAGES/ckan.po

In this repo, compile the po file like this:

python setup.py compile_catalog --locale YOUR_LANGUAGE

As before, replace YOUR_LANGUAGE with your language short code, e.g. es, de.

This will result in a binary ‘mo’ file of your translation at ckan/i18n/YOUR_LANGUAGE/LC_MESSAGES/ckan.mo.

5. (optional) Deploy the translation

This section explains how to deploy your translation to your CKAN server.

Once you have a compiled translation file, copy it to your host:

scp ckan.mo /usr/lib/ckan/default/src/ckan/ckan/i18n/hu/LC_MESSAGES/ckan.mo

Adjust the path if you did not use the default location. This example is for language hu.

374 Chapter 7. Contributing guide

https://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#back-to-work
http://www.poedit.net/


CKAN documentation, Release 2.10.0a0

6. Configure the language

Finally, once the mo file is in place, you can switch between the installed languages using the ckan.locale option in
the CKAN config file, as described in Internationalisation Settings.

7.2.3 Translations management policy

One of the aims of CKAN is to be accessible to the greatest number of users. Translating the user interface to as many
languages as possible plays a huge part in this, and users are encouraged to contribute to the existing translations or
submit a new one. At the same time we need to ensure the stability between CKAN releases, so the following guidelines
apply when managing translations:

• About 3 weeks before a CKAN release, CKAN is branched, and the English strings are frozen, and an announce-
ment is made on ckan-dev to call for translation work. They are given 2 weeks to translate any new strings in
this release.

• During this period, translation is done on a ‘resource’ on Transifex which is named to match the new CKAN
version. It has been created as a copy of the next most recent resource, so any new languages create or other
updates done on Transifex since the last release automatically go into the new release.

7.3 Testing CKAN

If you’re a CKAN developer, if you’re developing an extension for CKAN, or if you’re just installing CKAN from source,
you should make sure that CKAN’s tests pass for your copy of CKAN. This section explains how to run CKAN’s tests.

CKAN’s testsuite contains automated tests for both the back-end (Python) and the front-end (JavaScript). In addition,
the correct functionality of the complete front-end (HTML, CSS, JavaScript) on all supported browsers should be tested
manually.

See also:

CKAN coding standards for tests Conventions for writing tests for CKAN

7.3.1 Back-end tests

Most of CKAN’s testsuite is for the backend Python code.

Install additional dependencies

Some additional dependencies are needed to run the tests. Make sure you’ve created a config file at
/etc/ckan/default/ckan.ini, then activate your virtual environment:

. /usr/lib/ckan/default/bin/activate

Install pytest and other test-specific CKAN dependencies into your virtual environment:

pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt

7.3. Testing CKAN 375



CKAN documentation, Release 2.10.0a0

Set up the test databases

Create test databases:

sudo -u postgres createdb -O ckan_default ckan_test -E utf-8
sudo -u postgres createdb -O ckan_default datastore_test -E utf-8

Set the permissions:

ckan -c test-core.ini datastore set-permissions | sudo -u postgres psql

When the tests run they will use these databases, because in test-core.ini they are specified in the sqlalchemy.
url and ckan.datastore.write_url connection strings.

You should also make sure that the Redis database configured in test-core.ini is different from your production
database.

Configure Solr Multi-core

The tests assume that Solr is configured ‘multi-core’, whereas the default Solr set-up is often ‘single-core’. You can
ask Solr for its cores status:

curl -s 'http://127.0.0.1:8983/solr/admin/cores?action=STATUS' |python -c 'import sys;
→˓import xml.dom.minidom;s=sys.stdin.read();print(xml.dom.minidom.parseString(s).
→˓toprettyxml())'

Each core will be within a child from the <lst name="status" element, and contain a <str
name="instanceDir"> element.

You can also tell from your ckan config (assuming ckan is working):

grep solr_url |ckan.ini|
# single-core: solr_url = http://127.0.0.1:8983/solr
# multi-core: solr_url = http://127.0.0.1:8983/solr/ckan

To enable multi-core:

1. Find the instanceDir of the existing Solr core. It is found in the output of the curl command above.

e.g. /usr/share/solr/ or /opt/solr/example/solr/collection1

2. Make a copy of that core’s directory e.g.:

sudo cp -r /usr/share/solr/ /etc/solr/ckan

3. Find your solr.xml. It is in the Solr Home directory given by this command:

curl -s 'http://127.0.0.1:8983/solr/admin/' | grep SolrHome

4. Configure Solr with the new core by editing solr.xml. The ‘cores’ section will have one ‘core’ in it already and
needs the second one ‘ckan’ added so it looks like this:

<cores adminPath="/admin/cores" defaultCoreName="collection1">
<core name="collection1" instanceDir="." />
<core name="ckan" instanceDir="/etc/solr/ckan" />

</cores>

5. Restart Solr by restarting Jetty (or Tomcat):

376 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

sudo service jetty restart

6. Edit your main ckan config (e.g. /etc/ckan/default/ckan.ini) and adjust the solr_url to match:

solr_url = http://127.0.0.1:8983/solr/ckan

Run the tests

To run CKAN’s tests using PostgreSQL as the database, you have to give the --ckan-ini=test-core.ini option
on the command line. This command will run the tests for CKAN core and for the core extensions:

pytest --ckan-ini=test-core.ini ckan/ ckanext/

The speed of the PostgreSQL tests can be improved by running PostgreSQL in memory and turning off durability, as
described in the PostgreSQL documentation.

Common error messages

OperationalError

OperationalError: (OperationalError) no such function: plainto_tsquery ... This error usu-
ally results from running a test which involves search functionality, which requires using a PostgreSQL database,
but another (such as SQLite) is configured. The particular test is either missing a @search_related decorator or
there is a mixup with the test configuration files leading to the wrong database being used.

SolrError

SolrError: Solr responded with an error (HTTP 404): [Reason: None]
<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type" />
→˓<title>Error 404 NOT_FOUND</title></head><body><h2>HTTP ERROR 404</h2><p>Problem␣
→˓accessing /solr/ckan/select/. Reason:<pre> NOT_FOUND</pre></p><hr /><i><small>
→˓Powered by Jetty://</small></i>``

This means your solr_url is not corresponding with your SOLR. When running tests, it is usually easiest to change
your set-up to match the default solr_url in test-core.ini. Often this means switching to multi-core - see Configure Solr
Multi-core.

7.3.2 Front-end tests

Front-end testing consists of both automated tests (for the JavaScript code) and manual tests (for the complete front-end
consisting of HTML, CSS and JavaScript).

7.3. Testing CKAN 377

http://www.postgresql.org/docs/9.0/static/non-durability.html


CKAN documentation, Release 2.10.0a0

Automated JavaScript tests

The JS tests are written using the Cypress test framework. First you need to install the necessary packages:

sudo apt-get install npm nodejs-legacy
sudo npm install

To run the tests, make sure that a test server is running:

. /usr/lib/ckan/default/bin/activate
ckan -c |ckan.ini| run

Once the test server is running switch to another terminal and execute the tests:

npx cypress run

Manual tests

All new CKAN features should be coded so that they work in the following browsers:

• Internet Explorer: 11, 10, 9 & 8

• Firefox: Latest + previous version

• Chrome: Latest + previous version

Install browser virtual machines

In order to test in all the needed browsers you’ll need access to all the above browser versions. Firefox and Chrome
should be easy whatever platform you are on. Internet Explorer is a little trickier. You’ll need Virtual Machines.

We suggest you use https://github.com/xdissent/ievms to get your Internet Explorer virtual machines.

Testing methodology

Firstly we have a primer page. If you’ve touched any of the core front-end code you’ll need to check if the primer is
rendering correctly. The primer is located at: http://localhost:5000/testing/primer

Secondly whilst writing a new feature you should endeavour to test in at least in your core browser and an alternative
browser as often as you can.

Thirdly you should fully test all new features that have a front-end element in all browsers before making your pull
request into CKAN master.

Common front-end pitfalls & their fixes

Here’s a few of the most common front end bugs and a list of their fixes.

378 Chapter 7. Contributing guide

https://www.cypress.io/
https://github.com/xdissent/ievms
http://localhost:5000/testing/primer


CKAN documentation, Release 2.10.0a0

Reserved JS keywords

Since IE has a stricter language definition in JS it really doesn’t like you using JS reserved keywords method names,
variables, etc. . . This is a good list of keywords not to use in your JavaScript:

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Reserved_Words

/* These are bad */
var a = {
default: 1,
delete: function() {}

};

/* These are good */
var a = {
default_value: 1,
remove: function() {}

};

Unclosed JS arrays / objects

Internet Explorer doesn’t like it’s JS to have unclosed JS objects and arrays. For example:

/* These are bad */
var a = {
b: 'c',

};
var a = ['b', 'c', ];

/* These are good */
var a = {
c: 'c'

};
var a = ['b', 'c'];

7.4 Writing commit messages

We use the version control system git for our code and documentation, so when contributing code or docs you’ll have
to commit your changes to git and write a git commit message. Generally, follow the commit guidelines from the Pro
Git book:

• Try to make each commit a logically separate, digestible changeset.

• The first line of the commit message should concisely summarise the changeset.

• Optionally, follow with a blank line and then a more detailed explanation of the changeset.

• Use the imperative present tense as if you were giving commands to the codebase to change its behaviour, e.g.
Add tests for. . . , make xyzzy do frotz. . . , this helps to make the commit message easy to read.

If your commit has an issue in the CKAN issue tracker put the issue number at the start of the first line of the commit
message like this: [#123]. This makes the CKAN release manager’s job much easier!

Here’s an example of a good CKAN commit message:

7.4. Writing commit messages 379

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Reserved_Words
http://git-scm.com/
http://git-scm.com/book/en/Distributed-Git-Contributing-to-a-Project#Commit-Guidelines
http://git-scm.com/book/en/Distributed-Git-Contributing-to-a-Project#Commit-Guidelines
https://github.com/ckan/ckan/issues


CKAN documentation, Release 2.10.0a0

[#607] Allow reactivating deleted datasets

Currently if a dataset is deleted and users navigate to the edit form,
there is no state field and the delete button is still shown.

After this change, the state dropdown is shown if the dataset state is
not active, and the delete button is not shown.

If your PR provides change that should be mentioned in changelog(generally, any PR is good to mention), consider
creating “changelog fragment”. It’s a file inside changes folder in the root of the repository, which will be used for
generating changelog when preparing new CKAN release. This file must follow naming convention {issue number}.
{change type}, where issue number is a identified of issue or PR in the CKAN issue tracker and type is one of the
following, depending on change type:

• migration - fragment intorduces migration guide for existing CKAN instances

• bugfix - some issue was fixed.

• removal - function/class/module was removed or deprecated

• misc - another small changes, like additional logging or code-style fixes

The same PR can provide multiple fragments with different type. For example, removing some code for issue with
number 1234 in tracker, following files can be added to changes folder:

# changes/1234.removal
Module ``xxx`` marked as deprecated.

# changes/1234.migration
Replace all import from ``xxx`` with corresponding imports from ``yyy``.

7.5 Making a pull request

Once you’ve written some CKAN code or documentation, you can submit it for review and merge into the central
CKAN git repository by making a pull request. This section will walk you through the steps for making a pull request.

1. Create a git branch

Each logically separate piece of work (e.g. a new feature, a bug fix, a new docs page, or a set of improvements
to a docs page) should be developed on its own branch forked from the master branch.

The name of the branch should include the issue number (if this work has an issue in the CKAN issue tracker),
and a brief one-line synopsis of the work, for example:

2298-add-sort-by-controls-to-search-page

2. Fork CKAN on GitHub

Sign up for a free account on GitHub and fork CKAN, so that you have somewhere to publish your work.

Add your CKAN fork to your local CKAN git repo as a git remote. Replace USERNAME with your GitHub
username:

git remote add my_fork https://github.com/USERNAME/ckan

3. Commit and push your changes

380 Chapter 7. Contributing guide

https://github.com/ckan/ckan/issues
https://github.com/ckan/ckan/issues
https://help.github.com/articles/fork-a-repo


CKAN documentation, Release 2.10.0a0

Commit your changes on your feature branch, and push your branch to GitHub. For example, make sure you’re
currently on your feature branch then run these commands:

git add doc/my_new_feature.rst
git commit -m "Add docs for my new feature"
git push my_fork my_branch

When writing your git commit messages, try to follow the Writing commit messages guidelines.

4. Send a pull request

Once your work on a branch is complete and is ready to be merged into the master branch, create a pull request
on GitHub. A member of the CKAN team will review your work and provide feedback on the pull request page.
The reviewer may ask you to make some changes. Once your pull request has passed the review, the reviewer
will merge your code into the master branch and it will become part of CKAN!

When submitting a pull request:

• Your branch should contain one logically separate piece of work, and not any unrelated changes.

• You should have good commit messages, see Writing commit messages.

• Your branch should contain new or changed tests for any new or changed code, and all the CKAN tests
should pass on your branch, see Testing CKAN .

• Your pull request shouldn’t lower our test coverage. You can check it at our coveralls page
<https://coveralls.io/r/ckan/ckan>. If for some reason you can’t avoid lowering it, explain why on the
pull request.

• Your branch should contain new or updated documentation for any new or updated code, see Writing doc-
umentation.

• Your branch should be up to date with the master branch of the central CKAN repo, so pull the central
master branch into your feature branch before submitting your pull request.

For long-running feature branches, it’s a good idea to pull master into the feature branch periodically so
that the two branches don’t diverge too much.

7.6 Reviewing and merging a pull request

Of course it’s not possible to give an exact recipe for reviewing a pull request, you simply have to assess the code and
decide whether you’re happy with it. Nonetheless, here is an incomplete list of things to look for:

• Does the pull request contain one logically separate piece of work (e.g. one new feature, bug fix, etc. per pull
request)?

• Does the pull request follow the guidelines for writing commit messages?

• Is the branch up to date - have the latest commits from master been pulled into the branch?

• Does the pull request contain new or updated tests for any new or updated code, and do the tests follow CKAN’s
testing coding standards?

• Do all the CKAN tests pass, on the new branch?

• Does the pull request contain new or updated docs for any new or updated features, and do the docs follow
CKAN’s documentation guidelines?

• Does the new code follow CKAN’s code architecture and the various coding standards for Python, JavaScript,
etc.?

7.6. Reviewing and merging a pull request 381

https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/creating-a-pull-request


CKAN documentation, Release 2.10.0a0

• If the new code contains changes to the database schema, does it have a database migration?

• Does the code contain any changes that break backwards-incompatibility? If so, is the breakage necessary or do
the benefits of the change justify the breakage? Have the breaking changes been added to the changelog?

Backwards-compability needs to be considered when making changes that break the interfaces that CKAN pro-
vides to third-party code, including API clients, plugins and themes.

In general, any code that’s documented in the reference sections of the API , extensions or theming needs to be
considered. For example this includes changes to the API actions, the plugin interfaces or plugins toolkit, the
converter and validator functions (which are used by plugins), the custom Jinja2 tags and variables available to
Jinja templates, the template helper functions, the core template files and their blocks, the sandbox available to
JavaScript modules (including custom jQuery plugins and the JavaScript CKAN API client), etc.

• Does the new code add any dependencies to CKAN (e.g. new third-party Python modules imported)? If so,
is the new dependency justified and has it been added following the right process? See Upgrading CKAN’s
dependencies.

7.6.1 Merging a pull request

Once you’ve reviewed a pull request and you’re happy with it, you need to merge it into the master branch. You should
do this using the --no-ff option in the git merge command. For example:

git checkout feature-branch
git pull origin feature-branch
git checkout master
git pull origin master
git merge --no-ff feature-branch
git push origin master

Before doing the git push, it’s a good idea to check that all the tests are passing on your master branch (if the latest
commits from master have already been pulled into the feature branch on github, then it may be enough to check that
all tests passed for the latest commit on this branch on Circle CI).

Also before doing the git push, it’s a good idea to use git log and/or git diff to check the difference between
your local master branch and the remote master branch, to make sure you only push the changes you intend to push:

git log ...origin/master
git diff ..origin/master

7.7 Writing documentation

This section gives some guidelines to help us to write consistent and good quality documentation for CKAN.

Documentation isn’t source code, and documentation standards don’t need to be followed as rigidly as coding standards
do. In the end, some documentation is better than no documentation, it can always be improved later. So the guidelines
below are soft rules.

Having said that, we suggest just one hard rule: no new feature (or change to an existing feature) should be missing
from the docs (but see todo).

See also:

Jacob Kaplan-Moss’s Writing Great Documentation A series of blog posts about writing technical docs, a lot of
our guidelines were based on this.

382 Chapter 7. Contributing guide

https://circleci.com/gh/ckan/ckan
http://jacobian.org/writing/great-documentation/


CKAN documentation, Release 2.10.0a0

See also:

The quickest and easiest way to contribute documentation to CKAN is to sign up for a free GitHub account and simply
edit the CKAN Wiki. Docs started on the wiki can make it onto docs.ckan.org later. If you do want to contribute to
docs.ckan.org directly, follow the instructions on this page.

Tip: Use the reStructuredText markup format when creating a wiki page, since reStructuredText is the format that
docs.ckan.org uses, this will make moving the documentation from the wiki into docs.ckan.org later easier.

7.7.1 Getting started

This section will walk you through downloading the source files for CKAN’s docs, editing them, and submitting your
work to the CKAN project.

CKAN’s documentation is created using Sphinx, which in turn uses Docutils (reStructuredText is part of Docutils).
Some useful links to bookmark:

• Sphinx’s reStructuredText Primer

• reStructuredText cheat sheet

• reStructuredText quick reference

• Sphinx Markup Constructs is a full list of the markup that Sphinx adds on top of Docutils.

The source files for the docs are in the doc directory of the CKAN git repo. The following sections will walk you
through the process of making changes to these source files, and submitting your work to the CKAN project.

Install CKAN into a virtualenv

Create a Python virtual environment (virtualenv), activate it, install CKAN into the virtual environment, and install the
dependencies necessary for building CKAN. In this example we’ll create a virtualenv in a folder called pyenv. Run
these commands in a terminal:

virtualenv --no-site-packages pyenv
. pyenv/bin/activate
pip install -e 'git+https://github.com/ckan/ckan.git#egg=ckan'
cd pyenv/src/ckan/
pip install -r dev-requirements.txt
pip install -r requirements.txt

Build the docs

You should now be able to build the CKAN documentation locally. Make sure your virtual environment is activated,
and then run this command:

python setup.py build_sphinx

Now you can open the built HTML files in build/sphinx/html, e.g.:

firefox build/sphinx/html/index.html

7.7. Writing documentation 383

https://github.com/ckan/ckan/wiki
http://docs.ckan.org
http://docs.ckan.org
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://sphinx-doc.org/rest.html
http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/markup/index.html
https://github.com/ckan/ckan/tree/master/doc
http://pypi.python.org/pypi/virtualenv


CKAN documentation, Release 2.10.0a0

Edit the reStructuredText files

To make changes to the documentation, use a text editor to edit the .rst files in doc/. Save your changes and then
build the docs again (python setup.py build_sphinx) and open the HTML files in a web browser to preview your
changes.

Once your docs are ready to submit to the CKAN project, follow the steps in Making a pull request.

7.7.2 How the docs are organized

It’s important that the docs have a clear, simple and extendable structure (and that we keep it that way as we add to
them), so that both readers and writers can easily answer the questions: If you need to find the docs for a particular
feature, where do you look? If you need to add a new page to the docs, where should it go?

As /index explains, the documentation is organized into several guides, each for a different audience: a user guide for
web interface users, an extending guide for extension developers, a contributing guide for core contributors, etc. These
guides are ordered with the simplest guides first, and the most advanced last.

In the source, each one of these guides is a subdirectory with its own index.rst containing its own .. toctree::
directive that lists all of the other files in that subdirectory. The root toctree just lists each of these */index.rst files.

When adding a new page to the docs, the first question to ask yourself is: who is this page for? That should tell you
which subdirectory to put your page in. You then need to add your page to that subdirectory’s index.rst file.

Within each guide, the docs are broken up by topic. For example, the extending guide has a page for the writing
extensions tutorial, a page about testing extensions, a page for the plugins toolkit reference, etc. Again, the topics are
ordered with the simplest first and the most advanced last, and reference pages generally at the very end.

The changelog is one page that doesn’t fit into any of the guides, because it’s relevant to all of the different audiences
and not only to one particular guide. So the changelog is simply a top-level page on its own. Hopefully we won’t need
to add many more of these top-level pages. If you’re thinking about adding a page that serves two or more audiences
at once, ask yourself whether you can break that up into separate pages and put each into one of the guides, then link
them together using seealso boxes.

Within a particular page, for example a new page documenting a new feature, our suggestion for what sections the page
might have is:

1. Overview: a conceptual overview of or introduction to the feature. Explain what the feature provides, why
someone might want to use it, and introduce any key concepts users need to understand. This is the why of the
feature.

If it’s developer documentation (extension writing, theming, API, or core developer docs), maybe put an archi-
tecture guide here.

2. Tutorials: tutorials and examples for how to setup the feature, and how to use the feature. This is the how.

3. Reference: any reference docs such as config options or API functions.

4. Troubleshooting: common error messages and problems, FAQs, how to diagnose problems.

384 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Subdirectories

Some of the guides have subdirectories within them. For example Maintainer’s guide contains a subdirectory Installing
CKAN that collects together the various pages about installing CKAN with its own doc/maintaining/installing/
index.rst file.

While subdirectories are useful, we recommend that you don’t put further subdirectories inside the subdirectories,
try to keep it to at most two levels of subdirectories inside the doc directory. Keep it simple, otherwise the structure
becomes confusing, difficult to get an overview of and difficult to navigate.

Linear ordering

Keep in mind that Sphinx requires the docs to have a simple, linear ordering. With HTML pages it’s possible to design
structure where, for example, someone reads half of a page, then clicks on a link in the middle of the page to go and
read another page, then goes back to the middle of the first page and continues reading where they left off. While
technically you can do this in Sphinx as well, it isn’t a good idea, things like the navigation links, table of contents, and
PDF version will break, users will end up going in circles, and the structure becomes confusing.

So the pages of our Sphinx docs need to have a simple linear ordering - one page follows another, like in a book.

7.7.3 Sphinx

This section gives some useful tips about using Sphinx.

Don’t introduce any new Sphinx warnings

When you build the docs, Sphinx prints out warnings about any broken cross-references, syntax errors, etc. We aim
not to have any of these warnings, so when adding to or editing the docs make sure your changes don’t introduce any
new ones.

It’s best to delete the build directory and completely rebuild the docs, to check for any warnings:

rm -rf build; python setup.py build_sphinx

Maximum line length

As with Python code, try to limit all lines to a maximum of 79 characters.

versionadded and versionchanged

Use Sphinx’s versionadded and versionchanged directives to mark new or changed features. For example:

================
Tag vocabularies
================

.. versionadded:: 1.7

CKAN sites can have *tag vocabularies*, which are a way of grouping related
tags together into custom fields.

(continues on next page)

7.7. Writing documentation 385



CKAN documentation, Release 2.10.0a0

(continued from previous page)

...

With versionchanged you usually need to add a sentence explaining what changed (you can also do this with
versionadded if you want):

=============
Authorization
=============

.. versionchanged:: 2.0
Previous versions of CKAN used a different authorization system.

CKAN's authorization system controls which users are allowed to carry out
which...

Cross-references and links

Whenever mentioning another page or section in the docs, an external website, a configuration setting, or a class,
exception or function, etc. try to cross-reference it. Using proper Sphinx cross-references is better than just typing
things like “see above/below” or “see section foo” because Sphinx cross-refs are hyperlinked, and because if the thing
you’re referencing to gets moved or deleted Sphinx will update the cross-reference or print a warning.

Cross-referencing to another file

Use :doc: to cross-reference to other files by filename:

See :doc:`configuration`

If the file you’re editing is in a subdir within the doc dir, you may need to use an absolute reference (starting with a /):

See :doc:`/configuration`

See Cross-referencing documents for details.

Cross-referencing a section within a file

Use :ref: to cross-reference to particular sections within the same or another file. First you have to add a label before
the section you want to cross-reference to:

.. _getting-started:

---------------
Getting started
---------------

then from elsewhere cross-reference to the section like this:

See :ref:`getting-started`.

see Cross-referencing arbitrary locations.

386 Chapter 7. Contributing guide

http://sphinx-doc.org/markup/inline.html#cross-referencing-documents
http://sphinx-doc.org/markup/inline.html#cross-referencing-arbitrary-locations


CKAN documentation, Release 2.10.0a0

Cross-referencing to CKAN config settings

Whenever you mention a CKAN config setting, make it link to the docs for that setting in Configuration Options by
using :ref: and the name of the config setting:

:ref:`ckan.site_title`

This works because all CKAN config settings are documented in Configuration Options, and every setting has a Sphinx
label that is exactly the same as the name of the setting, for example:

.. _ckan.site_title:

ckan.site_title
^^^^^^^^^^^^^^^

Example::

ckan.site_title = Open Data Scotland

Default value: ``CKAN``

This sets the name of the site, as displayed in the CKAN web interface.

If you add a new config setting to CKAN, make sure to document like this it in Configuration Options.

Cross-referencing to a Python object

Whenever you mention a Python function, method, object, class, exception, etc. cross-reference it using a Sphinx
domain object cross-reference. See Referencing other code objects with :py:.

Changing the link text of a cross-reference

With :doc: :ref: and other kinds of link, if you want the link text to be different from the title of the thing you’re
referencing, do this:

:doc:`the theming document </theming>`

:ref:`the getting started section <getting-started>`

Cross-referencing to an external page

The syntax for linking to external URLs is slightly different from cross-referencing, you have to add a trailing under-
score:

`Link text <http://example.com/>`_

or to define a URL once and then link to it in multiple places, do:

This is `a link`_ and this is `a link`_ and this is
`another link <a link>`_.

(continues on next page)

7.7. Writing documentation 387



CKAN documentation, Release 2.10.0a0

(continued from previous page)

.. _a link: http://example.com/

see Hyperlinks for details.

Substitutions

Substitutions are a useful way to define a value that’s needed in many places (eg. a command, the location of a file,
etc.) in one place and then reuse it many times.

You define the value once like this:

.. |ckan.ini| replace:: /etc/ckan/default/ckan.ini

and then reuse it like this:

Now open your |ckan.ini| file.

|ckan.ini| will be replaced with the full value /etc/ckan/default/ckan.ini.

Substitutions can also be useful for achieving consistent spelling and capitalization of names like reStructuredText,
PostgreSQL, Nginx, etc.

The rst_epilog setting in doc/conf.py contains a list of global substitutions that can be used from any file.

Substitutions can’t immediately follow certain characters (with no space in-between) or the substitution won’t work. If
this is a problem, you can insert an escaped space, the space won’t show up in the generated output and the substitution
will work:

pip install -e 'git+\ |git_url|'

Similarly, certain characters are not allowed to immediately follow a substitution (without a space) or the substitution
won’t work. In this case you can just escape the following characters, the escaped character will show up in the output
and the substitution will work:

pip install -e 'git+\ |git_url|\#egg=ckan'

Also see Parsed literals below for using substitutions in code blocks.

Parsed literals

Normally things like links and substitutions don’t work within a literal code block. You can make them work by using
a parsed-literal block, for example:

Copy your development.ini file to create a new production.ini file::

.. parsed-literal::

cp |development.ini| |production.ini|

388 Chapter 7. Contributing guide

http://sphinx-doc.org/rest.html#hyperlinks
http://sphinx-doc.org/rest.html#substitutions


CKAN documentation, Release 2.10.0a0

autodoc

We try to use autodoc to pull documentation from source code docstrings into our Sphinx docs, wherever appropriate.
This helps to avoid duplicating documentation and also to keep the documentation closer to the code and therefore
more likely to be kept up to date.

Whenever you’re writing reference documentation for modules, classes, functions or methods, exceptions, attributes,
etc. you should probably be using autodoc. For example, we use autodoc for the Action API reference, the Plugin
interfaces reference, etc.

For how to write docstrings, see Docstrings.

todo

No new feature (or change to an existing feature) should be missing from the docs. It’s best to document new features
or changes as you implement them, but if you really need to merge something without docs then at least add a todo
directive to mark where docs need to be added or updated (if it’s a new feature, make a new page or section just to
contain the todo):

=====================================
CKAN's builtin social network feature
=====================================

.. todo::

Add docs for CKAN's builtin social network for data hackers.

deprecated

Use Sphinx’s deprecated directive to mark things as deprecated in the docs:

.. deprecated:: 3.1
Use :func:`spam` instead.

seealso

Often one page of the docs is related to other pages of the docs or to external pages. A seealso block is a nice way to
include a list of related links:

.. seealso::

:doc:`The DataStore extension <datastore>`
A CKAN extension for storing data.

CKAN's `demo site <https://demo.ckan.org/>`_
A demo site running the latest CKAN beta version.

Seealso boxes are particularly useful when two pages are related, but don’t belong next to each other in the same section
of the docs. For example, we have docs about how to upgrade CKAN, these belong in the maintainer’s guide because
they’re for maintainers. We also have docs about how to do a new release, these belong in the contributing guide
because they’re for developers. But both sections are about CKAN releases, so we link each to the other using seealso
boxes.

7.7. Writing documentation 389

http://sphinx-doc.org/ext/autodoc.html
http://sphinx-doc.org/ext/todo.html
http://sphinx-doc.org/ext/todo.html
http://sphinx-doc.org/markup/para.html#directive-deprecated
http://sphinx-doc.org/markup/para.html?highlight=seealso#directive-seealso


CKAN documentation, Release 2.10.0a0

7.7.4 Code examples

If you’re going to paste example code into the docs, or add a tutorial about how to do something with code, then:

1. The code should be in standalone Python, HTML, JavaScript etc. files, not pasted directly into the .rst files. You
then pull the code into your .rst file using a Sphinx .. literalinclude:: directive (see example below).

2. The code in the standalone files should be a complete working example, with tests. Note that not all of the code
from the example needs to appear in the docs, you can include just parts of it using .. literalinclude::, but
the example code needs to be complete so it can be tested.

This is so that we don’t end up with a lot of broken, outdated examples and tutorials in the docs because breaking
changes have been made to CKAN since the docs were written. If your example code has tests, then when someone
makes a change in CKAN that breaks your example those tests will fail, and they’ll know they have to fix their code or
update your example.

The plugins tutorial is an example of this technique. ckanext/example_iauthfunctions is a complete and working exam-
ple extension. The tests for the extension are in ckanext/example_iauthfunctions/tests. Different parts of the reStruc-
turedText file for the tutorial pull in different parts of the example code as needed, like this:

.. literalinclude:: ../../ckanext/example_iauthfunctions/plugin_v3.py
:start-after: # We have the logged-in user's user name, get their user id.
:end-before: # Finally, we can test whether the user is a member of the curators␣

→˓group.

literalinclude has a few useful options for pulling out just the part of the code that you want. See the Sphinx docs
for literalinclude for details.

You may notice that ckanext/example_iauthfunctions contains multiple versions of the same example plugin,
plugin_v1.py, plugin_v2.py, etc. This is because the tutorial walks the user through first making a trivial plu-
gin, and then adding more and more advanced features one by one. Each step of the tutorial needs to have its own
complete, standalone example plugin with its own tests.

For more examples, look into the source files for other tutorials in the docs.

7.7.5 Style

This section covers things like what tone to use, how to capitalize section titles, etc. Having a consistent style will make
the docs nice and easy to read and give them a complete, quality feel.

Use American spelling

Use American spellings everywhere: organization, authorization, realize, customize, initialize, color, etc. There’s a
list here: https://wiki.ubuntu.com/EnglishTranslation/WordSubstitution

Spellcheck

Please spellcheck documentation before merging it into master!

390 Chapter 7. Contributing guide

https://github.com/ckan/ckan/tree/master/ckanext/example_iauthfunctions
https://github.com/ckan/ckan/tree/master/ckanext/example_iauthfunctions/tests
http://sphinx-doc.org/markup/code.html?highlight=literalinclude#directive-literalinclude
http://sphinx-doc.org/markup/code.html?highlight=literalinclude#directive-literalinclude
https://github.com/ckan/ckan/tree/master/ckanext/example_iauthfunctions
https://wiki.ubuntu.com/EnglishTranslation/WordSubstitution


CKAN documentation, Release 2.10.0a0

Commonly used terms

CKAN Should be written in ALL-CAPS.

email Use email not e-mail.

PostgreSQL, SQLAlchemy, Nginx, Python, SQLite, JavaScript, etc. These should always be capitalized as shown
above (including capital first letters for Python and Nginx even when they’re not the first word in a sentence).
doc/conf.py defines substitutions for each of these so you don’t have to remember them, see Substitutions.

Web site Two words, with Web always capitalized

frontend Not front-end

command line Two words, not commandline or command-line (this is because we want to be like Neal Stephenson)

CKAN config file or configuration file Not settings file, ini file, etc. Also, the config file contains config options
such as ckan.site_id, and each config option is set to a certain setting or value such as ckan.site_id =
demo.ckan.org.

Section titles

Capitalization in section titles should follow the same rules as in normal sentences: you capitalize the first word and
any proper nouns.

This seems like the easiest way to do consistent capitalization in section titles because it’s a capitalization rule that we
all know already (instead of inventing a new one just for section titles).

Right:

• Installing CKAN from package

• Getting started

• Command line interface

• Writing extensions

• Making an API request

• You’re done!

• Libraries available to extensions

Wrong:

• Installing CKAN from Package

• Getting Started

• Command Line Interface

• Writing Extensions

• Making an API Request

• You’re Done!

• Libraries Available To Extensions

For lots of examples of this done right, see Django’s table of contents.

In Sphinx, use the following section title styles:

7.7. Writing documentation 391

http://www.cryptonomicon.com/beginning.html
http://en.wikipedia.org/wiki/Proper_noun
https://docs.djangoproject.com/en/1.9/contents/


CKAN documentation, Release 2.10.0a0

===============
Top-level title
===============

------------------
Second-level title
------------------

Third-level title
=================

Fourth-level title
------------------

If you need more than four levels of headings, you’re probably doing something wrong, but see: http://docutils.
sourceforge.net/docs/ref/rst/restructuredtext.html#sections

Be conversational

Write in a friendly, conversational and personal tone:

• Use contractions like don’t, doesn’t, it’s etc.

• Use “we”, for example “We’ll publish a call for translations to the ckan-dev and ckan-discuss mailing lists,
announcing that the new version is ready to be translated” instead of “A call for translations will be published”.

• Refer to the reader personally as “you”, as if you’re giving verbal instructions to someone in the room: “First,
you’ll need to do X. Then, when you’ve done Y, you can start working on Z” (instead of stuff like “First X must
be done, and then Y must be done. . . ”).

Write clearly and concretely, not vaguely and abstractly

Politics and the English Language has some good tips about this, including:

1. Never use a metaphor, simile, or other figure of speech which you are used to seeing in print.

2. Never use a long word where a short one will do.

3. If it’s possible to cut out a word, always cut it out.

4. Never use the passive when you can be active.

5. Never use a foreign phrase, scientific word or jargon word if you can think of an everyday English equivalent.

This will make your meaning clearer and easier to understand, especially for people whose first language isn’t English.

392 Chapter 7. Contributing guide

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections
http://www.orwell.ru/library/essays/politics/english/e_polit/


CKAN documentation, Release 2.10.0a0

Facilitate skimming

Readers skim technical documentation trying to quickly find what’s important or what they need, so break walls of text
up into small, visually identifiable pieces:

• Use lots of inline markup:

*italics*
**bold**
``code``

For code samples or filenames with variable parts, uses Sphinx’s :samp: and :file: directives.

• Use lists to break up text.

• Use .. note:: and .. warning::, see Sphinx’s paragraph-level markup.

(reStructuredText actually supports lots more of these: attention, error, tip, important, etc. but most
Sphinx themes only style note and warning.)

• Break text into short paragraphs of 5-6 sentences each max.

• Use section and subsection headers to visualize the structure of a page.

7.8 Projects for beginner CKAN developers

The ‘Good for Contribution’ label on Github lists issues which are feasible for people who aren’t intimately familiar
with CKAN’s internals. Many of them are things which would be extremely helpful if they got done, but the core team
never seems to get around to them. They’re all busy wrestling with the problems that do require familiarity with the
internals. We hope this will make it easier for more people to assist the CKAN project, by giving new developers places
to jump in.

These issues vary from simple text changes to more complicated code changes that require more knowledge of Python
and CKAN. Do not despair if any individual task seems daunting; there’s probably an easier one. If you have no
programming skills, we can still use your help with documentation or translation.

If you wish to take up an issue make sure to keep in touch with the team on the Github issue itself, the ckan-dev mailing
list, or the CKAN chat on Gitter.

7.9 CKAN code architecture

This section documents our CKAN-specific coding standards, which are guidelines for writing code that is consistent
with the intended design and architecture of CKAN.

7.8. Projects for beginner CKAN developers 393

http://sphinx-doc.org/rest.html#inline-markup
http://sphinx-doc.org/markup/inline.html#role-samp
http://sphinx-doc.org/markup/inline.html#role-file
http://sphinx-doc.org/rest.html#lists-and-quote-like-blocks
http://sphinx-doc.org/markup/para.html#paragraph-level-markup
https://github.com/ckan/ckan/issues?labels=Good+for+Contribution&state=open
https://groups.google.com/a/ckan.org/g/ckan-dev
https://groups.google.com/a/ckan.org/g/ckan-dev
https://gitter.im/ckan/chat


CKAN documentation, Release 2.10.0a0

7.9.1 Blueprints

CKAN is based on Flask and built using Blueprints.

Default blueprints are defined along views in ckan.views and extended with the ckan.plugins.interfaces.
IBlueprint plugin interface.

7.9.2 Views

Views process requests by reading and updating data with action function and return a response by rendering Jinja2
templates. CKAN views are defined in ckan.views and templates in ckan.templates.

Views and templates may use logic.check_access or ckan.lib.helpers.check_access() to hide links or ren-
der helpful errors but action functions, not views, are responsible for actually enforcing permissions checking.

Plugins define new views by adding or updating routes. For adding templates or helper functions from a plugin see
Theming guide and Adding your own template helper functions.

394 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Template helper functions

Template helper functions are used for code that is reused frequently or code that is too complicated to be included in
the templates themselves.

Template helpers should never perform expensive queries or update data.

ckan.lib.helpers contains helper functions that can be used from ckan.controllers or from templates. When
developing for ckan core, only use the helper functions found in ckan.lib.helpers.__allowed_functions__.

Always go through the action functions

Whenever some code, for example in ckan.lib or ckan.controllers, wants to get, create, update or delete an
object from CKAN’s model it should do so by calling a function from the ckan.logic.action package, and not by
accessing ckan.model directly.

Use get_action()

Don’t call logic.action functions directly, instead use get_action(). This allows plugins to override action func-
tions using the IActions plugin interface. For example:

ckan.logic.get_action('group_activity_list')(...)

Instead of

ckan.logic.action.get.group_activity_list(...)

Views and templates may check authorization to avoid rendering

Don’t pass ORM objects to templates

Don’t pass SQLAlchemy ORM objects (e.g. ckan.model.User objects) to templates (for example by adding them to
c, passing them to render() in the extra_vars dict, returning them from template helper functions, etc.)

Using ORM objects in the templates often creates SQLAlchemy “detached instance” errors that cause 500 Server Errors
and can be difficult to debug.

7.9.3 Logic

Logic includes action functions, auth functions, background tasks and business logic.

Action functions have a uniform interface accepting a dictionary of simple strings lists, dictionaries or files (wrapped in
a cgi.FieldStorage objects). They return simple dictionaries or raise one of a small number of exceptions including
ckan.logic.NotAuthorized, ckan.logic.NotFound and ckan.logic.ValidationError.

Plugins override action functions with the ckan.plugins.interfaces.IActions interface and auth functions with
the ckan.plugins.interfaces.IAuthFunctions interface.

7.9. CKAN code architecture 395



CKAN documentation, Release 2.10.0a0

Action functions are exposed in the API

The functions in ckan.logic.action are exposed to the world as the API guide. The API URL for an action function is
automatically generated from the function name, for example ckan.logic.action.create.package_create() is
exposed at /api/action/package_create. See Steve Yegge’s Google platforms rant for some interesting discussion
about APIs.

All publicly visible functions in the ckan.logic.action.{create,delete,get,update} namespaces will be ex-
posed through the API guide. This includes functions imported by those modules, as well as any helper functions
defined within those modules. To prevent inadvertent exposure of non-action functions through the action api, care
should be taken to:

1. Import modules correctly (see Imports). For example:

import ckan.lib.search as search

search.query_for(...)

2. Hide any locally defined helper functions:

def _a_useful_helper_function(x, y, z):
'''This function is not exposed because it is marked as private```
return x+y+z

3. Bring imported convenience functions into the module namespace as private members:

_get_or_bust = logic.get_or_bust

Auth functions and check_access()

Each action function defined in ckan.logic.action should use its own corresponding auth function defined in
ckan.logic.auth. Instead of calling its auth function directly, an action function should go through ckan.logic.
check_access (which is aliased _check_access in the action modules) because this allows plugins to override auth
functions using the IAuthFunctions plugin interface. For example:

def package_show(context, data_dict):
_check_access('package_show', context, data_dict)

check_access will raise an exception if the user is not authorized, which the action function should not catch. When
this happens the user will be shown an authorization error in their browser (or will receive one in their response from
the API).

logic.get_or_bust()

The data_dict parameter of logic action functions may be user provided, so required files may be invalid or absent.
Naive Code like:

id = data_dict['id']

may raise a KeyError and cause CKAN to crash with a 500 Server Error and no message to explain what went wrong.
Instead do:

id = _get_or_bust(data_dict, "id")

396 Chapter 7. Contributing guide

https://plus.google.com/112678702228711889851/posts/eVeouesvaVX


CKAN documentation, Release 2.10.0a0

which will raise ValidationError if "id" is not in data_dict. The ValidationError will be caught and the user
will get a 400 Bad Request response and an error message explaining the problem.

Validation and ckan.logic.schema

Logic action functions can use schema defined in ckan.logic.schema to validate the contents of the data_dict
parameters that users pass to them.

An action function should first check for a custom schema provided in the context, and failing that should retrieve its
default schema directly, and then call _validate() to validate and convert the data. For example, here is the validation
code from the user_create() action function:

schema = context.get('schema') or ckan.logic.schema.default_user_schema()
session = context['session']
validated_data_dict, errors = _validate(data_dict, schema, context)
if errors:

session.rollback()
raise ValidationError(errors)

7.9.4 Models

Ideally SQLAlchemy should only be used within ckan.model and not from other packages such as ckan.logic. For
example instead of using an SQLAlchemy query from the logic package to retrieve a particular user from the database,
we add a get() method to ckan.model.user.User:

@classmethod
def get(cls, user_id):

query = ...
.
.
.
return query.first()

Now we can call this method from the logic package.

7.9.5 Deprecation

• Anything that may be used by extensions, themes or API clients needs to maintain backward compatibility at
call-site. For example: action functions, template helper functions and functions defined in the plugins toolkit.

• The length of time of deprecation is evaluated on a function-by-function basis. At minimum, a function should
be marked as deprecated during a point release.

• To deprecate a function use the ckan.lib.maintain.deprecated() decorator and add “deprecated” to the
function’s docstring:

@maintain.deprecated("helpers.get_action() is deprecated and will be removed "
"in a future version of CKAN. Instead, please use the "
"extra_vars param to render() in your controller to pass "
"results from action functions to your templates.")

def get_action(action_name, data_dict=None):
'''Calls an action function from a template. Deprecated in CKAN 2.3.'''

(continues on next page)

7.9. CKAN code architecture 397



CKAN documentation, Release 2.10.0a0

(continued from previous page)

if data_dict is None:
data_dict = {}

return logic.get_action(action_name)({}, data_dict)

• Any deprecated functions should be added to an API changes and deprecations section in the Changelog entry
for the next release (do this before merging the deprecation into master)

• Keep the deprecation messages passed to the decorator short, they appear in logs. Put longer explanations of
why something was deprecated in the changelog.

7.10 CSS coding standards

Note: For CKAN 2.0 we use Sass as a pre-processor for our core CSS. View Front-end Documentation for more
information on this subject.

7.10.1 Formatting

All CSS documents must use two spaces for indentation and files should have no trailing whitespace. Other formatting
rules:

• Use soft-tabs with a two space indent.

• Use double quotes.

• Use shorthand notation where possible.

• Put spaces after : in property declarations.

• Put spaces before { in rule declarations.

• Use hex color codes #000 unless using rgba().

• Always provide fallback properties for older browsers.

• Use one line per property declaration.

• Always follow a rule with one line of whitespace.

• Always quote url() and @import() contents.

• Do not indent blocks.

For example:

.media {
overflow: hidden;
color: #fff;
background-color: #000; /* Fallback value */
background-image: linear-gradient(black, grey);

}

.media .img {
float: left;
border: 1px solid #ccc;

(continues on next page)

398 Chapter 7. Contributing guide

./frontend/index.html#stylesheets


CKAN documentation, Release 2.10.0a0

(continued from previous page)

}

.media .img img {
display: block;

}

.media .content {
background: #fff url("../images/media-background.png") no-repeat;

}

7.10.2 Naming

All ids, classes and attributes must be lowercase with hyphens used for separation.

/* GOOD */
.dataset-list {}

/* BAD */
.datasetlist {}
.datasetList {}
.dataset_list {}

7.10.3 Comments

Comments should be used liberally to explain anything that may be unclear at first glance, especially IE workarounds
or hacks.

.prose p {
font-size: 1.1666em /* 14px / 12px */;

}

.ie7 .search-form {
/*
Force the item to have layout in IE7 by setting display to block.
See: http://reference.sitepoint.com/css/haslayout

*/
display: inline-block;

}

7.10.4 Modularity and specificity

Try keep all selectors loosely grouped into modules where possible and avoid having too many selectors in one decla-
ration to make them easy to override.

/* Avoid */
ul#dataset-list {}
ul#dataset-list li {}
ul#dataset-list li p a.download {}

7.10. CSS coding standards 399



CKAN documentation, Release 2.10.0a0

Instead here we would create a dataset “module” and styling the item outside of the container allows you to use it on
it’s own e.g. on a dataset page:

.dataset-list {}

.dataset-list-item {}

.dataset-list-item .download {}

In the same vein use classes make the styles more robust, especially where the HTML may change. For example when
styling social links:

<ul class="social">
<li><a href="">Twitter</a></li>
<li><a href="">Facebook</a></li>
<li><a href="">LinkedIn</a></li>

</ul>

You may use pseudo selectors to keep the HTML clean:

.social li:nth-child(1) a {
background-image: url(twitter.png);

}

.social li:nth-child(2) a {
background-image: url(facebook.png);

}

.social li:nth-child(3) a {
background-image: url(linked-in.png);

}

However this will break any time the HTML changes for example if an item is added or removed. Instead we can use
class names to ensure the icons always match the elements (Also you’d probably sprite the image :).

.social .twitter {
background-image: url(twitter.png);

}

.social .facebook {
background-image: url(facebook.png);

}

.social .linked-in {
background-image: url(linked-in.png);

}

Avoid using tag names in selectors as this prevents re-use in other contexts.

/* Cannot use this class on an <ol> or <div> element */
ul.dataset-item {}

Also ids should not be used in selectors as it makes it far too difficult to override later in the cascade.

/* Cannot override this button style without including an id */
.btn#download {}

400 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.11 HTML coding standards

See also:

String internationalization How to mark strings for translation.

7.11.1 Formatting

All HTML documents must use two spaces for indentation and there should be no trailing whitespace. HTML5 syntax
must be used and all attributes must use double quotes around attributes.

<video autoplay="autoplay" poster="poster_image.jpg">
<source src="foo.ogg" type="video/ogg">

</video>

HTML5 elements should be used where appropriate reserving <div> and <span> elements for situations where there
is no semantic value (such as wrapping elements to provide styling hooks).

7.11.2 Doctype and layout

All documents must be using the HTML5 doctype and the <html> element should have a "lang" attribute. The
<head> should also at a minimum include "viewport" and "charset" meta tags.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Example Site</title>

</head>
<body></body>

</html>

7.11.3 Forms

Form fields must always include a <label> element with a "for" attribute matching the "id" on the input. This helps
accessibility by focusing the input when the label is clicked, it also helps screen readers match labels to their respective
inputs.

<label for="field-email">email</label>
<input type="email" id="field-email" name="email" value="" />

Each <input> should have an "id" that is unique to the page. It does not have to match the "name" attribute.

Forms should take advantage of the new HTML5 input types where they make sense to do so, placeholder attributes
should also be included where relevant. Including these can provided enhancements in browsers that support them such
as tailored inputs and keyboards.

<div>
<label for="field-email">Email</label>
<input type="email" id="field-email" name="email" value="name@example.com">

(continues on next page)

7.11. HTML coding standards 401



CKAN documentation, Release 2.10.0a0

(continued from previous page)

</div>
<div>
<label for="field-phone">Phone</label>
<input type="phone" id="field-phone" name="phone" value="" placeholder="+44 077 12345␣

→˓678">
</div>
<div>
<label for="field-url">Homepage</label>
<input type="url" id="field-url" name="url" value="" placeholder="http://example.com">

</div>

Wufoo provides an excellent reference for these attributes.

7.11.4 Including meta data

Classes should ideally only be used as styling hooks. If you need to include additional data in the HTML document,
for example to pass data to JavaScript, then the HTML5 data- attributes should be used.

<a class="btn" data-format="csv">Download CSV</a>

These can then be accessed easily via jQuery using the .data() method.

jQuery('.btn').data('format'); //=> "csv"

// Get the contents of all data attributes.
jQuery('.btn').data(); => {format: "csv"}

One thing to note is that the JavaScript API for datasets will convert all attribute names into camelCase. So
"data-file-format" will become fileFormat.

For example:

<a class="btn" data-file-format="csv">Download CSV</a>

Will become:

jQuery('.btn').data('fileFormat'); //=> "csv"
jQuery('.btn').data(); => {fileFormat: "csv"}

Ideally you should be using CKAN’s JavaScript module format for defining how JavaScript is initiated and interacts
with the DOM.

7.11.5 Targeting Internet Explorer

Targeting lower versions of Internet Explorer (IE), those below version 9, should be handled by the stylesheets. Small
fixes should be provided inline using the .ie specific class names. Larger fixes may require a separate stylesheet but
try to avoid this if at all possible.

Adding IE specific classes:

<!DOCTYPE html>
<!--[if lt IE 7]> <html lang="en" class="ie ie6"> <![endif]-->

(continues on next page)

402 Chapter 7. Contributing guide

http://wufoo.com/html5/
./frontend/javascript-module-tutorial.html


CKAN documentation, Release 2.10.0a0

(continued from previous page)

<!--[if IE 7]> <html lang="en" class="ie ie7"> <![endif]-->
<!--[if IE 8]> <html lang="en" class="ie ie8"> <![endif]-->
<!--[if gt IE 8]><!--> <html lang="en"> <!--<![endif]-->

Note: Only add lines for classes that are actually being used.

These can then be used within the CSS:

.clear:before,

.clear:after {
content: "";
display: table;

}

.clear:after {
clear: both;

}

.ie7 .clear {
zoom: 1; /* For IE 6/7 (trigger hasLayout) */

}

7.11.6 i18n

Don’t include line breaks within <p> blocks. ie do this:

<p>Blah foo blah</p>
<p>New paragraph, blah</p>

And not:

<p>Blah foo blah
New paragraph, blah</p>

7.12 JavaScript coding standards

See also:

String internationalization How to mark strings for translation.

7.12. JavaScript coding standards 403



CKAN documentation, Release 2.10.0a0

7.12.1 Formatting

All JavaScript documents must use two spaces for indentation. This is contrary to the OKFN Coding Standards but
matches what’s in use in the current code base.

Coding style must follow the idiomatic.js style but with the following exceptions.

Note: Idiomatic is heavily based upon Douglas Crockford’s style guide which is recommended by the OKFN Coding
Standards.

White space

Two spaces must be used for indentation at all times. Unlike in idiomatic whitespace must not be used _inside_ paren-
theses between the parentheses and their Contents.

// BAD: Too much whitespace.
function getUrl( full ) {
var url = '/styleguide/javascript/';
if ( full ) {
url = 'http://okfn.github.com/ckan' + url;

}
return url;

}

// GOOD:
function getUrl(full) {
var url = '/styleguide/javascript/';
if (full) {
url = 'http://okfn.github.com/ckan' + url;

}
return url;

}

Note: See section 2.D.1.1 of idiomatic for more examples of this syntax.

Quotes

Single quotes should be used everywhere unless writing JSON or the string contains them. This makes it easier to
create strings containing HTML.

jQuery('<div id="my-div" />').appendTo('body');

Object properties need not be quoted unless required by the interpreter.

var object = {
name: 'bill',
'class': 'user-name'

};

404 Chapter 7. Contributing guide

http://wiki.okfn.org/Coding_Standards#Javascript
https://github.com/rwldrn/idiomatic.js/
http://javascript.crockford.com/code.html
http://wiki.okfn.org/Coding_Standards#Javascript
http://wiki.okfn.org/Coding_Standards#Javascript


CKAN documentation, Release 2.10.0a0

Variable declarations

One var statement must be used per variable assignment. These must be declared at the top of the function in which
they are being used.

// GOOD:
var good = 'string';
var alsoGood = 'another';

// GOOD:
var good = 'string';
var okay = [
'hmm', 'a bit', 'better'

];

// BAD:
var good = 'string',

iffy = [
'hmm', 'not', 'great'

];

Declare variables at the top of the function in which they are first used. This avoids issues with variable hoisting. If a
variable is not assigned a value until later in the function then it it okay to define more than one per statement.

// BAD: contrived example.
function lowercaseNames(names) {
var names = [];

for (var index = 0, length = names.length; index < length; index += 1) {
var name = names[index];
names.push(name.toLowerCase());

}

var sorted = names.sort();
return sorted;

}

// GOOD:
function lowercaseNames(names) {
var names = [];
var index, sorted, name;

for (index = 0, length = names.length; index < length; index += 1) {
name = names[index];
names.push(name.toLowerCase());

}

sorted = names.sort();
return sorted;

}

7.12. JavaScript coding standards 405



CKAN documentation, Release 2.10.0a0

7.12.2 Naming

All properties, functions and methods must use lowercase camelCase:

var myUsername = 'bill';
var methods = {
getSomething: function () {}

};

Constructor functions must use uppercase CamelCase:

function DatasetSearchView() {
}

Constants must be uppercase with spaces delimited by underscores:

var env = {
PRODUCTION: 'production',
DEVELOPMENT: 'development',
TESTING: 'testing'

};

Event handlers and callback functions should be prefixed with “on”:

function onDownloadClick(event) {}

jQuery('.download').click(onDownloadClick);

Boolean variables or methods returning boolean functions should prefix the variable name with “is”:

function isAdmin() {}

var canEdit = isUser() && isAdmin();

Note: Alternatives are “has”, “can” and “should” if they make more sense

Private methods should be prefixed with an underscore:

View.extend({
"click": "_onClick",
_onClick: function (event) {
}

});

Functions should be declared as named functions rather than assigning an anonymous function to a variable.

// GOOD:
function getName() {
}

// BAD:
var getName = function () {
};

406 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Named functions are generally easier to debug as they appear named in the debugger.

7.12.3 Comments

Comments should be used to explain anything that may be unclear when you return to it in six months time. Single
line comments should be used for all inline comments that do not form part of the documentation.

// Export the function to either the exports or global object depending
// on the current environment. This can be either an AMD module, CommonJS
// module or a browser.
if (typeof module.define === 'function' && module.define.amd) {

module.define('broadcast', function () {
return Broadcast;

});
} else if (module.exports) {
module.exports = Broadcast;

} else {
module.Broadcast = Broadcast;

}

7.12.4 JSHint

All JavaScript should pass JSHint before being committed. This can be installed using npm (which is bundled with
node) by running:

$ npm -g install jshint

Each project should include a jshint.json file with appropriate configuration options for the tool. Most text editors can
also be configured to read from this file.

7.12.5 Documentation

For documentation we use a simple markup format to document all methods. The documentation should provide
enough information to show the reader what the method does, arguments it accepts and a general example of usage.
Also for API’s and third party libraries, providing links to external documentation is encouraged.

The formatting is as follows:

/* My method description. Should describe what the method does and where
* it should be used.
*
* param1 - The method params, one per line (default: null)
* param2 - A default can be provided in brackets at the end.
*
* Example
*
* // Indented two spaces. Should give a common example of use.
* client.getTemplate('index.html', {limit: 1}, function (html) {
* module.el.html(html);
* });
*

(continues on next page)

7.12. JavaScript coding standards 407

http://www.jshint.com
http://nodejs.org


CKAN documentation, Release 2.10.0a0

(continued from previous page)

* Returns describes what the object returns.
*/

For example:

/* Loads an HTML template from the CKAN snippet API endpoint. Template
* variables can be passed through the API using the params object.
*
* Optional success and error callbacks can be provided or these can
* be attached using the returns jQuery promise object.
*
* filename - The filename of the template to load.
* params - An optional object containing key/value arguments to be
* passed into the template.
* success - An optional success callback to be called on load. This will
* recieve the HTML string as the first argument.
* error - An optional error callback to be called if the request fails.
*
* Example
*
* client.getTemplate('index.html', {limit: 1}, function (html) {
* module.el.html(html);
* });
*
* Returns a jqXHR promise object that can be used to attach callbacks.
*/

7.12.6 Testing

For testing we use Cypress.

Tests are run from the cypress directory. We use the BDD interface (describe(), it() etc.).

Generally we try and have the core functionality of all libraries and modules unit tested.

7.12.7 Best practices

Forms

All forms should work without JavaScript enabled. This means that they must submit application/
x-www-form-urlencoded data to the server and receive an appropriate response. The server should check for the
X-Requested-With: XMLHTTPRequest header to determine if the request is an ajax one. If so it can return an
appropriate format, otherwise it should issue a 303 redirect.

The one exception to this rule is if a form or button is injected with JavaScript after the page has loaded. It’s then not
part of the HTML document and can submit any data format it pleases.

408 Chapter 7. Contributing guide

https://www.cypress.io/


CKAN documentation, Release 2.10.0a0

Ajax

Note: Calls to the CKAN API from JavaScript should be done through the CKAN client.

Ajax requests can be used to improve the experience of submitting forms and other actions that require server interac-
tions. Nearly all requests will go through the following states.

1. User clicks button.

2. JavaScript intercepts the click and disables the button (add disabled attr).

3. A loading indicator is displayed (add class .loading to button).

4. The request is made to the server.

5. a) On success the interface is updated.

b) On error a message is displayed to the user if there is no other way to resolve the issue.

6. The loading indicator is removed.

7. The button is re-enabled.

Here’s a possible example for submitting a search form using jQuery.

jQuery('#search-form').submit(function (event) {
var form = $(this);
var button = $('[type=submit]', form);

// Prevent the browser submitting the form.
event.preventDefault();

button.prop('disabled', true).addClass('loading');

jQuery.ajax({
type: this.method,
data: form.serialize(),
success: function (results) {
updatePageWithResults(results);

},
error: function () {
showSearchError('Sorry we were unable to complete this search');

},
complete: function () {
button.prop('disabled', false).removeClass('loading');

}
});

});

This covers possible issues that might arise from submitting the form as well as providing the user with adequate
feedback that the page is doing something. Disabling the button prevents the form being submitted twice and the error
feedback should hopefully offer a solution for the error that occurred.

7.12. JavaScript coding standards 409

./frontend/index.html#client


CKAN documentation, Release 2.10.0a0

Event handlers

When using event handlers to listen for browser events it’s a common requirement to want to cancel the default browser
action. This should be done by calling the event.preventDefault() method:

jQuery('button').click(function (event) {
event.preventDefault();

});

It is also possible to return false from the callback function. Avoid doing this as it also calls the event.
stopPropagation() method which prevents the event from bubbling up the DOM tree. This prevents other handlers
listening for the same event. For example an analytics click handler attached to the <body> element.

Also jQuery (1.7+) now provides the .on() and .off() methods as alternatives to .bind(), .unbind(), .delegate()
and .undelegate() and they should be preferred for all tasks.

Templating

Small templates that will not require customisation by the instance can be placed inline. If you need to create multi-line
templates use an array rather than escaping newlines within a string:

var template = [
'<li>',
'<span></span>',
'</li>'

].join('');

Always localise text strings within your template. If you are including them inline this can be done with jQuery:

jQuery(template).find('span').text(this._('This is my text string'));

Larger templates can be loaded in using the CKAN snippet API. Modules get access to this functionality via the
sandbox.client object:

initialize: function () {
var el = this.el;
this.sandbox.client.getTemplate('dataset.html', function (html) {
el.html(html);

});
}

The primary benefits of this is that the localisation can be done by the server and it keeps the JavaScript modules free
from large strings.

7.13 Python coding standards

For Python code style follow PEP 8 plus the guidelines below.

Some good links about Python code style:

• Guide to Python from Hitchhiker’s

• Google Python Style Guide

See also:

410 Chapter 7. Contributing guide

http://api.jquery.com/on/
http://api.jquery.com/off/
http://www.python.org/dev/peps/pep-0008/
http://docs.python-guide.org/en/latest/writing/style/
https://google.github.io/styleguide/pyguide.html


CKAN documentation, Release 2.10.0a0

String internationalization How to mark strings for translation.

7.13.1 Use single quotes

Use single-quotes for string literals, e.g. 'my-identifier', but use double-quotes for strings that are likely to contain
single-quote characters as part of the string itself (such as error messages, or any strings containing natural language),
e.g. "You've got an error!".

Single-quotes are easier to read and to type, but if a string contains single-quote characters then double-quotes are
better than escaping the single-quote characters or wrapping the string in double single-quotes.

We also use triple single-quotes for docstrings, see Docstrings.

7.13.2 Imports

• Avoid creating circular imports by only importing modules more specialized than the one you are editing.

CKAN often uses code imported into a data structure instead of importing names directly. For example CKAN
controllers only use get_action to access logic functions. This allows customization by CKAN plugins.

• Don’t use from module import *. Instead list the names you need explicitly:

from module import name1, name2

Use parenthesis around the names if they are longer than one line:

from module import (name1, name2, ...
name12, name13)

7.13. Python coding standards 411



CKAN documentation, Release 2.10.0a0

Most of the current CKAN code base imports just the modules and then accesses names with module.name.
This allows circular imports in some cases and may still be necessary for existing code, but is not recommended
for new code.

• Make all imports at the start of the file, after the module docstring. Imports should be grouped in the following
order:

1. Standard library imports

2. Third-party imports

3. CKAN imports

7.13.3 Logging

We use the Python standard library’s logging module to log messages in CKAN, e.g.:

import logging
...
logger = logging.getLogger(__name__)
...
logger.debug('some debug message')

When logging:

• Keep log messages short.

• Don’t include object representations in the log message. It is useful to include a domain model identifier where
appropriate.

• Choose an appropriate log-level (DEBUG, INFO, ERROR, WARNING or CRITICAL, see Python’s Logging
HOWTO).

7.13.4 String formatting

Don’t use the old %s style string formatting, e.g. "i am a %s" % sub. This kind of string formatting is not helpful
for internationalization.

Use the new .format() method instead, and give meaningful names to each replacement field, for example:

_(' ... {foo} ... {bar} ...').format(foo='foo-value', bar='bar-value')

7.13.5 Unicode handling

CKAN strives to only use Unicode internally (via the unicode type) and to convert to/from ASCII at the interface to
other systems and libraries if necessary.

See also:

Unicode handling Details on Unicode handling in CKAN

412 Chapter 7. Contributing guide

https://docs.python.org/2.7/library/logging.html
http://docs.python.org/2/howto/logging.html
http://docs.python.org/2/howto/logging.html
http://docs.python.org/2/library/stdtypes.html#str.format


CKAN documentation, Release 2.10.0a0

7.13.6 Docstrings

We want CKAN’s docstrings to be clear and easy to read for programmers who are smart and competent but who may
not know a lot of CKAN technical jargon and whose first language may not be English. We also want it to be easy to
maintain the docstrings and keep them up to date with the actual behaviour of the code as it changes over time. So:

• All modules and all public functions, classes and methods exported by a module should normally have docstrings
(see PEP 257).

• Keep docstrings short, describe only what’s necessary and no more.

• Keep docstrings simple: use plain, concise English.

• Try to avoid repetition.

PEP 257 (Docstring Conventions)

Generally, follow PEP 257 for docstrings. We’ll only describe the ways that CKAN differs from or extends PEP 257
below.

CKAN docstrings deviate from PEP 257 in a couple of ways:

• We use '''triple single quotes''' around docstrings, not """triple double quotes""" (put triple
single quotes around one-line docstrings as well as multi-line ones, it makes them easier to expand later)

• We use Sphinx domain object cross-references to cross-reference to other code objects (see below)

• We use Sphinx directives for documenting parameters, exceptions and return values (see below)

7.13.7 Referencing other code objects with :py:

If you want to refer to another Python or JavaScript module, function or class etc. in a docstring (or from a .rst file),
use Sphinx domain object cross-references, for example:

See :py:mod:`ckan.lib.helpers`.

See :py:func:`ckan.logic.action.create.package_create`.

See :py:class:`ckan.logic.NotFound`.

For the full list of types of cross-reference, see the Sphinx docs.

Note: These kinds of cross-references can also be used to reference other types of object besides Python objects, for
example JavaScript objects or even command-line scripts and options and environment variables. See the Sphinx docs
for the full details.

Cross-referencing objects like this means that Sphinx will style the reference with the right CSS, and hyperlink the
reference to the docs for the referenced object. Sphinx can also generate error messages when non-existent objects are
referenced, which helps to keep the docs up to date as the code changes.

Tip: Sphinx will render a cross-reference like :py:func:`ckan.logic.action.create.package_create` as
the full name of the function: ckan.logic.action.create.package_create(). If you want the docs to contain
only the local name of the function (e.g. just package_create()), put a ~ at the start:

7.13. Python coding standards 413

http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
http://sphinx-doc.org/domains.html#the-javascript-domain
http://sphinx-doc.org/domains.html


CKAN documentation, Release 2.10.0a0

:py:func:`~ckan.logic.action.create.package_create`

(But you should always use the fully qualified name in your docstring or *.rst file.)

Documenting exceptions raised with :raises

There are a few guidelines that CKAN code should follow regarding exceptions:

1. All public functions that CKAN exports for third-party code to use should document any exceptions they
raise. See below for how to document exceptions raised.

For example the template helper functions in ckan.lib.helpers, anything imported into ckan.plugins.
toolkit, and all of the action API functions defined in ckan.logic.action, should list exceptions raised in
their docstrings.

This is because CKAN themes, extensions and API clients need to be able to call CKAN code without crashing,
so they need to know what exceptions they should handle (and extension developers shouldn’t have to understand
the CKAN core source code).

2. On the other hand, internal functions that are only used within CKAN shouldn’t list exceptions in their
docstrings.

This is because it would be difficult to keep all the exception lists up to date with the actual code behaviour, so
the docstrings would become more misleading than useful.

3. Code should only raise exceptions from within its allowed set.

Each module in CKAN has a set of zero or more exceptions, defined somewhere near the module, that code in
that module is allowed to raise. For example ckan/logic/__init__.py defines a number of exception types
for code in ckan/logic/ to use. CKAN code should never raise exceptions types defined elsewhere in CKAN,
in third-party code or in the Python standard library.

4. All code should catch any exceptions raised by called functions, and either handle the exception, re-raise the
exception (if it’s from the code’s set of allowed exception types), or wrap the exception in an allowed exception
type and re-raise it.

This is to make it easy for a CKAN core developer to look at the source code of an internal function, scan it
for the keyword raise, and see what types of exception the function may raise, so they know what exceptions
they need to catch if they’re going to call the function. Developers shouldn’t have to read the source of all the
functions that a function calls (and the functions they call. . . ) to find out what exceptions they needs to catch to
call a function without crashing.

Todo: Insert examples of how to re-raise and how to wrap-and-re-raise an exception.

Use :raises: to document exceptions raised by public functions. The docstring should say what type of exception is
raised and under what conditions. Use :py:class: to reference exception types. For example:

def member_list(context, data_dict):
'''Return the members of a group.

... (parameters and return values documented here) ...

:raises: :py:class:`ckan.logic.NotFound`: if the group doesn't exist

'''

414 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Sphinx field lists

Use Sphinx field lists for documenting the parameters, exceptions and returns of functions:

• Use :param and :type to describe each parameter

• Use :returns and :rtype to describe each return

• Use :raises to describe each exception raised

Example of a short docstring:

@property
def packages(self):

'''Return a list of all packages that have this tag, sorted by name.

:rtype: list of ckan.model.package.Package objects

'''

Example of a longer docstring:

@classmethod
def search_by_name(cls, search_term, vocab_id_or_name=None):

'''Return all tags whose names contain a given string.

By default only free tags (tags which do not belong to any vocabulary)
are returned. If the optional argument ``vocab_id_or_name`` is given
then only tags from that vocabulary are returned.

:param search_term: the string to search for in the tag names
:type search_term: string
:param vocab_id_or_name: the id or name of the vocabulary to look in

(optional, default: None)
:type vocab_id_or_name: string

:returns: a list of tags that match the search term
:rtype: list of ckan.model.tag.Tag objects

'''

The phrases that follow :param foo:, :type foo:, or :returns: should not start with capital letters or end with full
stops. These should be short phrases and not full sentences. If more detail is required put it in the function description
instead.

Indicate optional arguments by ending their descriptions with (optional) in brackets. Where relevant also indicate
the default value: (optional, default: 5).

You can also use a little inline reStructuredText markup in docstrings, e.g. *stars for emphasis* or
``double-backticks for literal text``

7.13. Python coding standards 415

http://www.sphinx-doc.org/en/stable/markup/misc.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html#inline-markup


CKAN documentation, Release 2.10.0a0

Action API docstrings

Docstrings from CKAN’s action API are processed with autodoc and included in the API chapter of CKAN’s docu-
mentation. The intended audience of these docstrings is users of the CKAN API and not (just) CKAN core developers.

In the Python source each API function has the same two arguments (context and data_dict), but the docstrings
should document the keys that the functions read from data_dict and not context and data_dict themselves, as
this is what the user has to POST in the JSON dict when calling the API.

Where practical, it’s helpful to give examples of param and return values in API docstrings.

CKAN datasets used to be called packages and the old name still appears in the source, e.g. in function names like
package_list(). When documenting functions like this write dataset not package, but the first time you do this put
package after it in brackets to avoid any confusion, e.g.

def package_show(context, data_dict):
'''Return the metadata of a dataset (package) and its resources.

Example of a ckan.logic.action API docstring:

def vocabulary_create(context, data_dict):
'''Create a new tag vocabulary.

You must be a sysadmin to create vocabularies.

:param name: the name of the new vocabulary, e.g. ``'Genre'``
:type name: string
:param tags: the new tags to add to the new vocabulary, for the format of

tag dictionaries see ``tag_create()``
:type tags: list of tag dictionaries

:returns: the newly-created vocabulary
:rtype: dictionary

'''

7.13.8 Some helpful tools for Python code quality

There are various tools that can help you to check your Python code for PEP8 conformance and general code quality.
We recommend using them.

• pep8 checks your Python code against some of the style conventions in PEP 8. As mentioned above, only perform
style clean-ups on master to help avoid spurious merge conflicts.

• pylint analyzes Python source code looking for bugs and signs of poor quality.

• pyflakes also analyzes Python programs to detect errors.

• flake8 combines both pep8 and pyflakes into a single tool.

• Syntastic is a Vim plugin with support for flake8, pyflakes and pylint.

416 Chapter 7. Contributing guide

https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
http://pypi.python.org/pypi/pep8
http://www.logilab.org/857
http://pypi.python.org/pypi/pyflakes
http://pypi.python.org/pypi/flake8
https://github.com/scrooloose/syntastic


CKAN documentation, Release 2.10.0a0

7.14 String internationalization

All user-facing Strings in CKAN Python, JavaScript and Jinja2 code should be internationalized, so that our translators
can then localize the strings for each of the many languages that CKAN supports. This guide shows CKAN developers
how to internationalize strings, and what to look for regarding string internationalization when reviewing a pull request.

Note: Internationalization (or i18n) is the process of marking strings for translation, so that the strings can be extracted
from the source code and given to translators. Localization (l10n) is the process of translating the marked strings into
different languages.

See also:

Translating CKAN If you want to translate CKAN, this page documents the process that translators follow to localize
CKAN into different languages.

Doing a CKAN release The processes for extracting internationalized strings from CKAN and uploading them to Tran-
sifex to be translated, and for downloading the translations from Transifex and loading them into CKAN to be
displayed are documented on this page.

Note: Much of the existing code in CKAN was written before we had these guidelines, so it doesn’t always do things
as described on this page. When writing new code you should follow the guidelines on this page, not the existing code.

7.14.1 Internationalizating strings in Jinja2 templates

Most user-visible strings should be in the Jinja2 templates, rather than in Python or JavaScript code. This doesn’t really
matter to translators, but it’s good for the code to separate logic and content. Of course this isn’t always possible. For
example when error messages are delivered through the API, there’s no Jinja2 template involved.

The preferred way to internationalize strings in Jinja2 templates is by using the trans tag from Jinja2’s i18n extension,
which is available to all CKAN core and extension templates and snippets.

Most of the following examples are taken from the Jinja2 docs.

To internationalize a string put it inside a {% trans %} tag:

<p>{% trans %}This paragraph is translatable.{% endtrans %}</p>

You can also use variables from the template’s namespace inside a {% trans %}:

<p>{% trans %}Hello {{ user }}!{% endtrans %}</p>

(Only variable tags are allowed inside trans tags, not statements.)

You can pass one or more arguments to the {% trans %} tag to bind variable names for use within the tag:

<p>{% trans user=user.username %}Hello {{ user }}!{% endtrans %}</p>

{% trans book_title=book.title, author=author.name %}
This is {{ book_title }} by {{ author }}
{% endtrans %}

To handle different singular and plural forms of a string, use a {% pluralize %} tag:

7.14. String internationalization 417

http://jinja.pocoo.org/docs/templates/#i18n


CKAN documentation, Release 2.10.0a0

{% trans count=list|length %}
There is {{ count }} {{ name }} object.
{% pluralize %}
There are {{ count }} {{ name }} objects.
{% endtrans %}

(In English the first string will be rendered if count is 1, the second otherwise. For other languages translators will be
able to provide their own strings for different values of count.)

The first variable in the block (count in the example above) is used to determine which of the singular or plural forms
to use. Alternatively you can explicitly specify which variable to use:

{% trans ..., user_count=users|length %}
...

{% pluralize user_count %}
...

{% endtrans %}

The {% trans %} tag is preferable, but if you need to pluralize a string within a Jinja2 expression you can use the _()
and ungettext() functions:

{% set hello = _('Hello World!') %}

To use variables in strings, use Python format string syntax and then call the .format() method on the string that _()
returns:

{% set hello = _('Hello {name}!').format(name=user.name) %}

Singular and plural forms are handled by ungettext():

{% set text = ungettext(
'{num} apple', '{num} apples', num_apples).format(num=num_apples) %}

Note: There are also gettext() and ngettext() functions available to templates, but we recommend using _() and
ungettext() for consistency with CKAN’s Python code. This deviates from the Jinja2 docs, which do use gettext()
and ngettext().

_() is not an alias for gettext() in CKAN’s Jinja2 templates, _() is the function provided by Pylons, whereas
gettext() is the version provided by Jinja2, their behaviors are not exactly the same.

7.14.2 Internationalizing strings in Python code

CKAN uses the _() and ngettext() functions from the Flask-Babel library to internationalize strings in Python code.

Note: Code running on Pylons will use the functions provided by the pylons.i18n.translation module, but their be-
haviour is the same.

Core CKAN modules should import _() and ungettext() from ckan.common, i.e. from ckan.common import
_, ungettext (don’t import flask_babel._() or pylons.i18n.translation._() directly, for example).

418 Chapter 7. Contributing guide

https://docs.python.org/2/library/string.html#formatstrings
https://pythonhosted.org/Flask-Babel/
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/modules/i18n_translation.html#module-pylons.i18n.translation


CKAN documentation, Release 2.10.0a0

CKAN plugins should import ckan.plugins.toolkit and use ckan.plugins.toolkit._() and ckan.plugins.
toolkit.ungettext(), i.e. do import ckan.plugins.toolkit as toolkit and then use toolkit._() and
toolkit.ungettext() (see Plugins toolkit reference).

To internationalize a string pass it to the _() function:

my_string = _("This paragraph is translatable.")

To use variables in a string, call the .format() method on the translated string that _() returns:

hello = _("Hello {user}!").format(user=user.name)

book_description = _("This is { book_title } by { author }").format(
book_title=book.title, author=author.name)

To handle different plural and singular forms of a string, use ungettext():

translated_string = ungettext(
"There is {count} {name} object.",
"There are {count} {name} objects.",
num_objects).format(count=count, name=name)

7.14.3 Internationalizing strings in JavaScript code

Each CKAN JavaScript module offers the methods _ and ngettext. The ngettext function is used to translate a
single string which has both a singular and a plural form, whereas _ is used to translate a single string only:

this.ckan.module('i18n-demo', function($) {
return {

initialize: function () {
console.log(this._('Translate me!'));
console.log(this.ngettext('%(num)d item', '%(num)d items', 3));

}
};

};

To translate a fixed singular string, use _. It returns the translation of the string for the currently selected locale. If the
current locale doesn’t provide a translation for the string then it is returned unchanged.

this._('Something that should be translated')

Placeholders are supported via sprintf-syntax, the corresponding values are passed via another parameter:

this._("My name is %(name)s and I'm from %(hometown)s.",
{name: 'Sarah', hometown: 'Cape Town'})

ngettext allows you to translate a string that may be either singular or plural, depending on some variable:

this.ngettext('Deleted %(num)d item',
'Deleted %(num)d items',
items.length)

If items.length is 1 then the translation for the first argument will be returned, otherwise that of the second argument.
num is a magical placeholder that is automatically provided by ngettext and contains the value of the third parameter.

7.14. String internationalization 419

http://www.diveintojavascript.com/projects/javascript-sprintf


CKAN documentation, Release 2.10.0a0

Like _, ngettext can take additional placeholders:

this.ngettext("I'm %(name)s and I'm %(num)d year old",
"I'm %(name)s and I'm %(num)d years old",
age,
{name: 'John'})

Note: CKAN’s JavaScript code automatically downloads the appropriate translations at request time from the CKAN
server. Since CKAN 2.7 the corresponding translation files are regenerated automatically if necessary when CKAN
starts.

You can also regenerate the translation files manually using ckan translation js:

python setup.py extract_messages # Extract translatable strings
# Update .po files as desired
python setup.py compile_catalog # Compile .mo files for Python/Jinja
ckan -c /etc/ckan/default/ckan.ini translation js # Compile JavaScript catalogs

Note: Prior to CKAN 2.7, JavaScript modules received a similar but different _ function for string translation as a
parameter. This is still supported but deprecated and will be removed in a future release.

7.14.4 General guidelines for internationalizing strings

Below are some guidelines to follow when marking your strings for translation. These apply to strings in Jinja2 tem-
plates or in Python or JavaScript code. These are mostly meant to make life easier for translators, and help to improve
the quality of CKAN’s translations:

• Leave as much HTML and other code out of the translation string as possible.

For example, don’t include surrounding <p>...</p> tags in the marked string. These aren’t necessary for the
translator to do the translation, and if the translator accidentally changes them in the translation string the HTML
will be broken.

Good:

<p>{% trans %}Don't put HTML tags inside translatable strings{% endtrans %}</p>

Bad (<p> tags don’t need to be in the translation string):

mystring = _("<p>Don't put HTML tags inside translatable strings</p>")

• But don’t split a string into separate strings.

Translators need as much context as possible to translate strings well, and if you split a string up into separate
strings and mark each for translation separately, translators must translate each of these separate strings in iso-
lation. Also, some languages may need to change the order of words in a sentence or even change the order of
sentences in a paragraph, splitting into separate strings makes assumptions about word order.

It’s better to leave HTML tags or other code in strings than to split a string. For example, it’s often best to leave
HTML <a> tags in rather than split a string.

Good:

420 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

_("Don't split a string containing some <b>markup</b> into separate strings.")

Bad (text will be difficult to translate or untranslatable):

_("Don't split a string containing some ") + "<b>" + _("markup") + </b> + _("into␣
→˓separate strings.")

• You can split long strings over multiple lines using parentheses to avoid long lines, Python will concatenate them
into a single string:

Good:

_("This is a really long string that would just make this line far too "
"long to fit in the window")

• Leave unnecessary whitespace out of translatable strings, but do put punctuation into translatable strings.

• Try not to make translators translate strings that don’t need to be translated.

For example, 'templates' is the name of a directory, it doesn’t need to be marked for translation.

• Mark singular and plural forms of strings correctly.

In Jinja2 templates this means using {% trans %} and {% pluralize %} or ungettext(). In Python it
means using ungettext(). See above for examples.

Singular and plural forms work differently in different languages. For example English has singular and plural
nouns, but Slovenian has singular, dual and plural.

Good:

num_people = 4
translated_string = ungettext(

'There is one person here',
'There are {num_people} people here',
num_people).format(num_people=num_people)

Bad (this assumes that all languages have the same plural forms as English):

if num_people == 1:
translated_string = _('There is one person here')

else:
translated_string = _(

'There are {num_people} people here'.format(num_people=num_people))

• Don’t use old-style %s string formatting in Python, use the new .format() method instead.

Strings formatted with .format() give translators more context. The .format() method is also more expres-
sive, and is the preferred way to format strings in Python 3.

Good:

"Welcome to {site_title}".format(site_title=site_title)

Bad (not enough context for translators):

"Welcome to %s" % site_title

7.14. String internationalization 421

https://docs.python.org/2/library/stdtypes.html#string-formatting
https://docs.python.org/2/library/stdtypes.html#str.format


CKAN documentation, Release 2.10.0a0

• Use descriptive names for replacement fields in strings.

This gives translators more context.

Good:

"Welcome to {site_title}".format(site_title=site_title)

Bad (not enough context for translators):

"Welcome to {0}".format(site_title)

Worse (doesn’t work in Python 2.6):

"Welcome to {}".format(site_title)

• Use TRANSLATORS: comments to provide extra context for translators for difficult to find, very short, or obscure
strings.

For example, in Python:

# TRANSLATORS: This is a helpful comment.
_("This is an ambiguous string")

In Jinja2:

{# TRANSLATORS: This heading is displayed on the user's profile page. #}
<h1>{% trans %}Heading{% endtrans %}</h1>

In JavaScript:

// TRANSLATORS: "Manual" refers to the user manual
_("Manual")

These comments end up in the ckan.pot file and translators will see them when they’re translating the strings
(Transifex shows them, for example).

Note: The comment must be on the line before the line with the _(), ungettext() or {% trans %}, and
must start with the exact string TRANSLATORS: (in upper-case and with the colon). This string is configured in
setup.cfg.

Todo: Explain how to use message contexts, where the same exact string may appear in two different places in the UI
but have different meanings.

For example “filter” can be a noun or a verb in English, and may need two different translations in another language.
Currently if the string _("filter") appears in different places in CKAN this will only produce one string to be
translated in the ckan.pot file.

I think the right way to handle this with gettext is using msgctxt, but it looks like babel doesn’t support it yet.

Todo: Explain how we internationalize dates, currencies and numbers (e.g. different positioning and separators used
for decimal points in different languages).

422 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.15 Unicode handling

This document explains how Unicode and related issues are handled in CKAN. For a general introduction to Unicode
and Unicode handling in Python 2 please read the Python 2 Unicode HOWTO. Since Unicode handling differs greatly
between Python 2 and Python 3 you might also be interested in the Python 3 Unicode HOWTO.

CKAN uses the six module to provide simultaneous compatibility with Python 2 and Python 3. All strs are Unicode
in Python 3 so the builtins unicode and basestring have been removed so there are a few general rules to follow:

1. Change all calls to basestring() into calls to six.string_types()

2. Change remaining instances of basestring to six.string_types

3. Change all instances of (str, unicode) to six.string_types

4. Change all calls to unicode() into calls to six.text_type()

5. Change remaining instances of unicode to six.text_type

These rules do not apply in every instance so some thought needs to be given about the context around these changes.

Note: This document describes the intended future state of Unicode handling in CKAN. For historic reasons, some
existing code does not yet follow the rules described here.

New code should always comply with the rules in this document. Exceptions must be documented.

7.15.1 Overall Strategy

CKAN only uses Unicode internally (six.text_type on both Python 2 and Python 3). Conversion to/from ASCII
strings happens on the boundary to other systems/libraries if necessary.

7.15.2 Encoding of Python files

Files containing Python source code (*.py) must be encoded using UTF-8, and the encoding must be declared using
the following header:

# encoding: utf-8

This line must be the first or second line in the file. See PEP 263 for details.

7.15.3 String literals

String literals are string values given directly in the source code (as opposed to strings variables read from a file,
received via argument, etc.). In Python 2, string literals by default have type str. They can be changed to unicode by
adding a u prefix. In addition, the b prefix can be used to explicitly mark a literal as str:

x = "I'm a str literal"
y = u"I'm a unicode literal"
z = b"I'm also a str literal"

In Python 3, all str are Unicode and str and bytes are explicitly different data types so:

7.15. Unicode handling 423

https://docs.python.org/2/howto/unicode.html
https://docs.python.org/3/howto/unicode.html
http://six.readthedocs.io
https://www.python.org/dev/peps/pep-0263/


CKAN documentation, Release 2.10.0a0

x = "I'm a str literal"
y = u"I'm also a str literal"
z = b"I'm a bytes literal"

In CKAN, every string literal must carry either a u or a b prefix. While the latter is redundant in Python 2, it makes
the developer’s intention explicit and eases a future migration to Python 3.

This rule also holds for raw strings, which are created using an r prefix. Simply use ur instead:

m = re.match(ur'A\s+Unicode\s+pattern')

For more information on string prefixes please refer to the Python documentation.

Note: The unicode_literals future statement is not used in CKAN.

7.15.4 Best Practices

Use io.open to open text files

When opening text (not binary) files you should use io.open instead of open. This allows you to specify the file’s
encoding and reads will return Unicode instead of ASCII:

import io

with io.open(u'my_file.txt', u'r', encoding=u'utf-8') as f:
text = f.read() # contents is automatically decoded

# to Unicode using UTF-8

Text files should be encoded using UTF-8 if possible.

Normalize strings before comparing them

For many characters, Unicode offers multiple descriptions. For example, a small latin e with an acute accent (é) can
either be specified using its dedicated code point (U+00E9) or by combining the code points for e (U+0065) and the
accent (U+0301). Both variants will look the same but are different from a numerical point of view:

>>> x = u'\N{LATIN SMALL LETTER E WITH ACUTE}'
>>> y = u'\N{LATIN SMALL LETTER E}\N{COMBINING ACUTE ACCENT}'
>>> print x, y
é e
>>> print repr(x), repr(y)
u'\xe9' u'e\u0301'
>>> x == y
False

Therefore, if you want to compare two Unicode strings based on their characters you need to normalize them first using
unicodedata.normalize:

>>> from unicodedata import normalize
>>> x_norm = normalize(u'NFC', x)
>>> y_norm = normalize(u'NFC', y)

(continues on next page)

424 Chapter 7. Contributing guide

https://docs.python.org/2.7/reference/lexical_analysis.html#string-literals
https://docs.python.org/2/reference/simple_stmts.html#future
https://docs.python.org/2/library/io.html#io.open
http://www.fileformat.info/info/unicode/char/e9
http://www.fileformat.info/info/unicode/char/0065
http://www.fileformat.info/info/unicode/char/0301
https://docs.python.org/2/library/unicodedata.html#unicodedata.normalize


CKAN documentation, Release 2.10.0a0

(continued from previous page)

>>> print x_norm, y_norm
é é
>>> print repr(x_norm), repr(y_norm)
u'\xe9' u'\xe9'
>>> x_norm == y_norm
True

Use the Unicode flag in regular expressions

By default, the character classes of Python’s re module (\w, \d, . . . ) only match ASCII-characters. For example, \w
(alphanumeric character) does, by default, not match ö:

>>> print re.match(ur'^\w$', u'ö')
None

Therefore, you need to explicitly activate Unicode mode by passing the re.U flag:

>>> print re.match(ur'^\w$', u'ö', re.U)
<_sre.SRE_Match object at 0xb60ea2f8>

Note: Some functions (e.g. re.split and re.sub) take additional optional parameters before the flags, so you should
pass the flag via a keyword argument:

replaced = re.sub(ur'\W', u'_', original, flags=re.U)

The type of the values returned by re.split, re.MatchObject.group, etc. depends on the type of the input string:

>>> re.split(ur'\W+', b'Just a string!', flags=re.U)
['Just', 'a', 'string', '']

>>> re.split(ur'\W+', u'Just some Unicode!', flags=re.U)
[u'Just', u'some', u'Unicode', u'']

Note that the type of the pattern string does not influence the return type.

Filenames

Like all other strings, filenames should be stored as Unicode strings internally. However, some filesystem operations
return or expect byte strings, so filenames have to be encoded/decoded appropriately. Unfortunately, different operating
systems use different encodings for their filenames, and on some of them (e.g. Linux) the file system encoding is even
configurable by the user.

To make decoding and encoding of filenames easier, the ckan.lib.io module therefore contains the functions
decode_path and encode_path, which automatically use the correct encoding:

import io
import json

from ckan.lib.io import decode_path
(continues on next page)

7.15. Unicode handling 425

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html#re.U


CKAN documentation, Release 2.10.0a0

(continued from previous page)

# __file__ is a byte string, so we decode it
MODULE_FILE = decode_path(__file__)
print(u'Running from ' + MODULE_FILE)

# The functions in os.path return unicode if given unicode
MODULE_DIR = os.path.dirname(MODULE_FILE)
DATA_FILE = os.path.join(MODULE_DIR, u'data.json')

# Most of Python's built-in I/O-functions accept Unicode filenames as input
# and encode them automatically
with io.open(DATA_FILE, encoding='utf-8') as f:

data = json.load(f)

Note that almost all Python’s built-in I/O-functions accept Unicode filenames as input and encode them automatically,
so using encode_path is usually not necessary.

The return type of some of Python’s I/O-functions (e.g. os.listdir and os.walk) depends on the type of their input:
If passed byte strings they return byte strings and if passed Unicode they automatically decode the raw filenames to
Unicode before returning them. Other functions exist in two variants that return byte strings (e.g. os.getcwd) and
Unicode (os.getcwdu), respectively.

Warning: Some of Python’s I/O-functions may return both byte and Unicode strings for a single call. For exam-
ple, os.listdir will normally return Unicode when passed Unicode, but filenames that cannot be decoded using the
filesystem encoding will still be returned as byte strings!

Note that if the filename of an existing file cannot be decoded using the filesystem’s encoding then the environment
Python is running in is most probably incorrectly set up.

The instructions above are meant for the names of existing files that are obtained using Python’s I/O functions. However,
sometimes one also wants to create new files whose names are generated from unknown sources (e.g. user input). To
make sure that the generated filename is safe to use and can be represented using the filesystem’s encoding use ckan.
lib.munge.munge_filename:

>> ckan.lib.munge.munge_filename(u'Data from Linköping (year: 2016).txt')
u'data-from-linkoping-year-2016.txt'

Note: munge_filename will remove a leading path from the filename.

7.16 Testing coding standards

All new code, or changes to existing code, should have new or updated tests before being merged into master.
This document gives some guidelines for developers who are writing tests or reviewing code for CKAN.

See also:

Testing CKAN How to set up your development environment to run CKAN’s test suite

Testing code that uses background jobs How to handle asynchronous background jobs in your tests

426 Chapter 7. Contributing guide

https://docs.python.org/2/library/os.html#os.listdir
https://docs.python.org/2/library/os.html#os.walk
https://docs.python.org/2/library/os.html#os.getcwd
https://docs.python.org/2/library/os.html#os.getcwdu
https://docs.python.org/2/library/os.html#os.listdir


CKAN documentation, Release 2.10.0a0

7.16.1 Guidelines for writing tests

We want the tests in ckan.tests to be:

Fast

• Don’t share setup code between tests (e.g. in test class setup() or setup_class()methods, saved against
the self attribute of test classes, or in test helper modules).

Instead use fixtures that create test objects and pass them as parameters, and inject into every method only
the required fixtures.

• Where appropriate, use the monkeypatch fixture to avoid pulling in other parts of CKAN (especially the
database).

Independent

• Each test module, class and method should be able to be run on its own.

• Tests shouldn’t be tightly coupled to each other, changing a test shouldn’t affect other tests.

Clear It should be quick and easy to see what went wrong when a test fails, or to see what a test does and how it works
if you have to debug or update a test. If you think the test or helper method isn’t clear by itself, add docstrings.

You shouldn’t have to figure out what a complex test method does, or go and look up a lot of code in other files
to understand a test method.

• Tests should follow the canonical form for a pytest, see Recipe for a test method.

• Write lots of small, simple test methods not a few big, complex tests.

• Each test method should test just One Thing.

• The name of a test method should clearly explain the intent of the test. See Naming test methods.

Easy to find It should be easy to know where to add new tests for some new or changed code, or to find the existing
tests for some code.

• See How should tests be organized?

• See Naming test methods.

Easy to write Writing lots of small, clear and simple tests that all follow similar recipes and organization should make
tests easy to write, as well as easy to read.

The follow sections give some more specific guidelines and tips for writing CKAN tests.

How should tests be organized?

The organization of test modules in ckan.tests mirrors the organization of the source modules in ckan:

ckan/
tests/
controllers/
test_package.py <-- Tests for ckan/controllers/package.py
...

lib/
test_helpers.py <-- Tests for ckan/lib/helpers.py
...

logic/
action/
test_get.py

(continues on next page)

7.16. Testing coding standards 427

https://docs.pytest.org/en/latest/monkeypatch.html


CKAN documentation, Release 2.10.0a0

(continued from previous page)

...
auth/
test_get.py
...

test_converters.py
test_validators.py

migration/
versions/
test_001_add_existing_tables.py
...

model/
test_package.py
...

...

There are a few exceptional test modules that don’t fit into this structure, for example PEP8 tests and coding standards
tests. These modules can just go in the top-level ckan/tests/ directory. There shouldn’t be too many of these.

Naming test methods

The name of a test method should clearly explain the intent of the test.

Test method names are printed out when tests fail, so the user can often see what went wrong without having to look
into the test file. When they do need to look into the file to debug or update a test, the test name helps to clarify the test.

Do this even if it means your method name gets really long, since we don’t write code that calls our test methods there’s
no advantage to having short test method names.

Some modules in CKAN contain large numbers of loosely related functions. For example, ckan.logic.action.
update contains all functions for updating things in CKAN. This means that ckan.tests.logic.action.
test_update is going to contain an even larger number of test functions.

So as well as the name of each test method explaining the intent of the test, tests should be grouped by a test class that
aggregates tests against a model entity or action type, for instance:

class TestPackageCreate(object):
# ...
def test_it_validates_name(self):

# ...

def test_it_validates_url(self):
# ...

class TestResourceCreate(object)
# ...
def test_it_validates_package_id(self):

# ...

# ...

Good test names:

• TestUserUpdate.test_update_with_id_that_does_not_exist

428 Chapter 7. Contributing guide

http://docs.pylonsproject.org/en/latest/community/testing.html#rule-name-tcms-to-indicate-what-they-test


CKAN documentation, Release 2.10.0a0

• TestUserUpdate.test_update_with_no_id

• TestUserUpdate.test_update_with_invalid_name

Bad test names:

• test_user_update

• test_update_pkg_1

• test_package

Recipe for a test method

The Pylons Unit Testing Guidelines give the following recipe for all unit test methods to follow:

1. Set up the preconditions for the method / function being tested.

2. Call the method / function exactly one time, passing in the values established in the first step.

3. Make assertions about the return value, and / or any side effects.

4. Do absolutely nothing else.

Most CKAN tests should follow this form. Here’s an example of a simple action function test demonstrating the recipe:

def test_user_update_name(self):
"""Test that updating a user's name works successfully."""

# The canonical form of a test has four steps:
# 1. Setup any preconditions needed for the test.
# 2. Call the function that's being tested, once only.
# 3. Make assertions about the return value and/or side-effects of
# of the function that's being tested.
# 4. Do nothing else!

# 1. Setup.
user = factories.User()
user["name"] = "updated"

# 2. Make assertions about the return value and/or side-effects.
with pytest.raises(logic.ValidationError):

helpers.call_action("user_update", **user)

How detailed should tests be?

Generally, what we’re trying to do is test the interfaces between modules in a way that supports modularization: if you
change the code within a function, method, class or module, if you don’t break any of that code’s tests you should be
able to expect that CKAN as a whole will not be broken.

As a general guideline, the tests for a function or method should:

• Test for success:

– Test the function with typical, valid input values

– Test with valid, edge-case inputs

7.16. Testing coding standards 429

http://docs.pylonsproject.org/en/latest/community/testing.html#tips-for-avoiding-bad-unit-tests


CKAN documentation, Release 2.10.0a0

– If the function has multiple parameters, test them in different combinations

• Test for failure:

– Test that the function fails correctly (e.g. raises the expected type of exception) when given likely invalid
inputs (for example, if the user passes an invalid user_id as a parameter)

– Test that the function fails correctly when given bizarre input

• Test that the function behaves correctly when given unicode characters as input

• Cover the interface of the function: test all the parameters and features of the function

Creating test objects: ckan.tests.factories

This is a collection of factory classes for building CKAN users, datasets, etc.

Factories can be either used directly or via corresponding pytest fixtures to create any objects that are needed for the
tests. These factories are written using factory_boy:

https://factoryboy.readthedocs.org/en/latest/

These are not meant to be used for the actual testing, e.g. if you’re writing a test for the user_create() function then
call call_action(), don’t test it via the User factory or user_factory() fixture.

Usage:

# Create a user with the factory's default attributes, and get back a
# user dict:
def test_creation():

user_dict = factories.User()

# or

def test_creation(user_factory):
user_dict = user_factory()

# You can create a second user the same way. For attributes that can't be
# the same (e.g. you can't have two users with the same name) a new value
# will be generated each time you use the factory:
def test_creation():

user_dict = factories.User()
another_user_dict = factories.User()

# Create a user and specify your own user name and email (this works
# with any params that CKAN's user_create() accepts):
def test_creation():

custom_user_dict = factories.User(name='bob', email='bob@bob.com')

# Get a user dict containing the attributes (name, email, password, etc.)
# that the factory would use to create a user, but without actually
# creating the user in CKAN:
def test_creation():

user_attributes_dict = vars(factories.User.stub())

# If you later want to create a user using these attributes, just pass them
# to the factory:

(continues on next page)

430 Chapter 7. Contributing guide

https://factoryboy.readthedocs.org/en/latest/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

def test_creation():
user = factories.User(**user_attributes_dict)

# If you just need random user, you can get ready-to-use dictionary inside
# your test by requiring `user` fixture (just drop `_factory` suffix):
def test_creation(user):

assert isinstance(user, dict)
assert "name" in user

# If you need SQLAlchemy model object instead of the plain dictionary, call
# `model` method of the corresponding factory. All arguments has the same
# effect as if they were passed directly to the factory:
def test_creation():

user = factories.User.model(name="bob")
assert isinstance(user, model.User)

# In order to create your own factory:
# * inherit from :py:class:`~ckan.tests.factories.CKANFactory`
# * create `Meta` class inside it, with the two properties:
# * model: corresponding SQLAlchemy model
# * action: API action that can create instances of the model
# * define any extra attributes
# * register factory as a fixture using :py:func:`~pytest_factoryboy.register`
import factory
from pytest_factoryboy import register
from ckan.tests.factories import CKANFactory

@register
class RatingFactory(CKANFactory):

class Meta:
model = ckanext.ext.model.Rating
action = "rating_create"

# These are the default params that will be used to create new ratings
value = factory.Faker("pyint")
comment = factory.Faker("text")
approved = factory.Faker("boolean")

Factory-fixtures are generated using pytest-factoryboy:

https://pytest-factoryboy.readthedocs.io/en/latest/

class ckan.tests.factories.CKANOptions

CKANFactory options.

Parameters

• action – name of the CKAN API action used for entity creation

• primary_key – name of the entity’s property that can be used for retrieving entity object
from database

class ckan.tests.factories.CKANFactory(**kwargs)

7.16. Testing coding standards 431

https://pytest-factoryboy.readthedocs.io/en/latest/


CKAN documentation, Release 2.10.0a0

Extension of SQLAlchemy factory.

Creates entities via CKAN API using an action specified by the Meta.action.

Provides model method that returns created model object instead of the plain dictionary.

Check factoryboy’s documentation for more details: https://factoryboy.readthedocs.io/en/stable/orms.html#
sqlalchemy

classmethod api_create(data_dict)
Create entity via API call.

classmethod model(**kwargs)
Create entity via API and retrieve result directly from the DB.

class ckan.tests.factories.User(**kwargs)
A factory class for creating CKAN users.

class ckan.tests.factories.Resource(**kwargs)
A factory class for creating CKAN resources.

class ckan.tests.factories.ResourceView(**kwargs)
A factory class for creating CKAN resource views.

Note: if you use this factory, you need to load the image_view plugin on your test class (and unload it later),
otherwise you will get an error.

Example:

@pytest.mark.ckan_config("ckan.plugins", "image_view")
@pytest.mark.usefixtures("with_plugins")
def test_resource_view_factory():

...

class ckan.tests.factories.Sysadmin(**kwargs)
A factory class for creating sysadmin users.

class ckan.tests.factories.Group(**kwargs)
A factory class for creating CKAN groups.

class ckan.tests.factories.Organization(**kwargs)
A factory class for creating CKAN organizations.

class ckan.tests.factories.Dataset(**kwargs)
A factory class for creating CKAN datasets.

class ckan.tests.factories.Vocabulary(**kwargs)
A factory class for creating tag vocabularies.

class ckan.tests.factories.Tag(**kwargs)
A factory class for creating tag vocabularies.

class ckan.tests.factories.MockUser(**kwargs)
A factory class for creating mock CKAN users using the mock library.

class ckan.tests.factories.SystemInfo(**kwargs)
A factory class for creating SystemInfo objects (config objects stored in the DB).

class ckan.tests.factories.APIToken(**kwargs)
A factory class for creating CKAN API Tokens

432 Chapter 7. Contributing guide

https://factoryboy.readthedocs.io/en/stable/orms.html#sqlalchemy
https://factoryboy.readthedocs.io/en/stable/orms.html#sqlalchemy


CKAN documentation, Release 2.10.0a0

Test helper functions: ckan.tests.helpers

This is a collection of helper functions for use in tests.

We want to avoid sharing test helper functions between test modules as much as possible, and we definitely don’t want
to introduce a complex hierarchy of test class subclasses, etc.

We want to reduce the amount of “travel” that a reader needs to undertake to understand a test method – reducing the
number of other files they need to go and read to understand what the test code does. And we want to avoid tightly
coupling test modules to each other by having them share code.

But some test helper functions just increase the readability of tests so much and make writing tests so much easier, that
it’s worth having them despite the potential drawbacks.

New in CKAN 2.9: Consider using Pytest fixtures whenever possible for setting up the initial state of a test or to create
helpers objects like client apps.

ckan.tests.helpers.reset_db()

Reset CKAN’s database.

Rather than use this function directly, use the clean_db fixture either for all tests in a class:

@pytest.mark.usefixtures("clean_db")
class TestExample(object):

def test_example(self):

or for a single test:

class TestExample(object):

@pytest.mark.usefixtures("clean_db")
def test_example(self):

If a test class uses the database, then it may call this function in its setup() method to make sure that it has a
clean database to start with (nothing left over from other test classes or from previous test runs).

If a test class doesn’t use the database (and most test classes shouldn’t need to) then it doesn’t need to call this
function.

Returns None

ckan.tests.helpers.call_action(action_name: str, context=None, **kwargs)
Call the named ckan.logic.action function and return the result.

This is just a nicer way for user code to call action functions, nicer than either calling the action function directly
or via ckan.logic.get_action().

For example:

user_dict = call_action('user_create', name='seanh',
email='seanh@seanh.com', password='pass')

Any keyword arguments given will be wrapped in a dict and passed to the action function as its data_dict
argument.

Note: this skips authorization! It passes ‘ignore_auth’: True to action functions in their context dicts, so
the corresponding authorization functions will not be run. This is because ckan.tests.logic.action tests only the
actions, the authorization functions are tested separately in ckan.tests.logic.auth. See the testing guidelines for
more info.

7.16. Testing coding standards 433



CKAN documentation, Release 2.10.0a0

This function should eventually be moved to ckan.logic.call_action() and the current ckan.logic.
get_action() function should be deprecated. The tests may still need their own wrapper function for ckan.
logic.call_action(), e.g. to insert 'ignore_auth': True into the context dict.

Parameters

• action_name (string) – the name of the action function to call, e.g. 'user_update'

• context (dict) – the context dict to pass to the action function (optional, if no context is
given a default one will be supplied)

Returns the dict or other value that the action function returns

ckan.tests.helpers.call_auth(auth_name: str, context, **kwargs)→ bool
Call the named ckan.logic.auth function and return the result.

This is just a convenience function for tests in ckan.tests.logic.auth to use.

Usage:

result = helpers.call_auth('user_update', context=context,
id='some_user_id',
name='updated_user_name')

Parameters

• auth_name (string) – the name of the auth function to call, e.g. 'user_update'

• context (dict) – the context dict to pass to the auth function, must contain 'user' and
'model' keys, e.g. {'user': 'fred', 'model': my_mock_model_object}

Returns the ‘success’ value of the authorization check, e.g. {'success': True} or
{'success': False, msg: 'important error message'} or just {'success':
False}

Return type bool

class ckan.tests.helpers.CKANCliRunner(charset: str = 'utf-8', env: Optional[Mapping[str, Optional[str]]]
= None, echo_stdin: bool = False, mix_stderr: bool = True)

invoke(*args, **kwargs)
Invokes a command in an isolated environment. The arguments are forwarded directly to the command line
script, the extra keyword arguments are passed to the main() function of the command.

This returns a Result object.

Parameters

• cli – the command to invoke

• args – the arguments to invoke. It may be given as an iterable or a string. When given as
string it will be interpreted as a Unix shell command. More details at shlex.split().

• input – the input data for sys.stdin.

• env – the environment overrides.

• catch_exceptions – Whether to catch any other exceptions than SystemExit.

• extra – the keyword arguments to pass to main().

• color – whether the output should contain color codes. The application can still override
this explicitly.

434 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Changed in version 8.0: The result object has the return_value attribute with the value returned from
the invoked command.

Changed in version 4.0: Added the color parameter.

Changed in version 3.0: Added the catch_exceptions parameter.

Changed in version 3.0: The result object has the exc_info attribute with the traceback if available.

class ckan.tests.helpers.CKANResponse(response: Optional[Union[Iterable[bytes], bytes, Iterable[str],
str]] = None, status: Optional[Union[int, str, http.HTTPStatus]] =
None, headers: Optional[Union[Mapping[str, Union[str, int,
Iterable[Union[str, int]]]], Iterable[Tuple[str, Union[str, int]]]]] =
None, mimetype: Optional[str] = None, content_type:
Optional[str] = None, direct_passthrough: bool = False)

class ckan.tests.helpers.CKANTestApp(app)
A wrapper around flask.testing.Client

It adds some convenience methods for CKAN

class ckan.tests.helpers.CKANTestClient(application: WSGIApplication, response_wrapper:
Optional[Type[Response]] = None, use_cookies: bool = True,
allow_subdomain_redirects: bool = False)

open(*args, **kwargs)
Generate an environ dict from the given arguments, make a request to the application using it, and return
the response.

Parameters

• args – Passed to EnvironBuilder to create the environ for the request. If a single arg is
passed, it can be an existing EnvironBuilder or an environ dict.

• buffered – Convert the iterator returned by the app into a list. If the iterator has a close()
method, it is called automatically.

• follow_redirects – Make additional requests to follow HTTP redirects until a non-
redirect status is returned. TestResponse.history lists the intermediate responses.

Changed in version 2.0: as_tuple is deprecated and will be removed in Werkzeug 2.1. Use
TestResponse.request and request.environ instead.

Changed in version 2.0: The request input stream is closed when calling response.close(). Input
streams for redirects are automatically closed.

Changed in version 0.5: If a dict is provided as file in the dict for the data parameter the content type has
to be called content_type instead of mimetype. This change was made for consistency with werkzeug.
FileWrapper.

Changed in version 0.5: Added the follow_redirects parameter.

class ckan.tests.helpers.FunctionalTestBase

A base class for functional test classes to inherit from.

Deprecated: Use the app, clean_db, ckan_config and with_plugins ref:fixtures as needed to create func-
tional test classes, eg:

@pytest.mark.ckan_config('ckan.plugins', 'image_view')
@pytest.mark.usefixtures('with_plugins')
@pytest.mark.usefixtures('clean_db')

(continues on next page)

7.16. Testing coding standards 435



CKAN documentation, Release 2.10.0a0

(continued from previous page)

class TestDatasetSearch(object):

def test_dataset_search(self, app):

url = h.url_for('dataset.search')
response = app.get(url)

Allows configuration changes by overriding _apply_config_changes and resetting the CKAN config after your
test class has run. It creates a CKANTestApp at self.app for your class to use to make HTTP requests to the
CKAN web UI or API. Also loads plugins defined by _load_plugins in the class definition.

If you’re overriding methods that this class provides, like setup_class() and teardown_class(), make sure to use
super() to call this class’s methods at the top of yours!

setup()

Reset the database and clear the search indexes.

class ckan.tests.helpers.RQTestBase

Base class for tests of RQ functionality.

setup()

Delete all RQ queues and jobs.

all_jobs()

Get a list of all RQ jobs.

enqueue(job=None, *args, **kwargs)
Enqueue a test job.

class ckan.tests.helpers.FunctionalRQTestBase

Base class for functional tests of RQ functionality.

setup()

Delete all RQ queues and jobs.

ckan.tests.helpers.change_config(key, value)
Decorator to temporarily change CKAN’s config to a new value

This allows you to easily create tests that need specific config values to be set, making sure it’ll be reverted to
what it was originally, after your test is run.

Usage:

@helpers.change_config('ckan.site_title', 'My Test CKAN')
def test_ckan_site_title(self):

assert config['ckan.site_title'] == 'My Test CKAN'

Parameters

• key (string) – the config key to be changed, e.g. 'ckan.site_title'

• value (string) – the new config key’s value, e.g. 'My Test CKAN'

See also:

The context manager changed_config()

436 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

ckan.tests.helpers.changed_config(key, value)
Context manager for temporarily changing a config value.

Allows you to temporarily change the value of a CKAN configuration option. The original value is restored once
the context manager is left.

Usage:

with changed_config(u'ckan.site_title', u'My Test CKAN'):
assert config[u'ckan.site_title'] == u'My Test CKAN'

See also:

The decorator change_config()

ckan.tests.helpers.recorded_logs(logger=None, level=10, override_disabled=True,
override_global_level=True)

Context manager for recording log messages.

Parameters

• logger – The logger to record messages from. Can either be a logging.Logger instance
or a string with the logger’s name. Defaults to the root logger.

• level (int) – Temporary log level for the target logger while the context manager is active.
Pass None if you don’t want the level to be changed. The level is automatically reset to its
original value when the context manager is left.

• override_disabled (bool) – A logger can be disabled by setting its disabled attribute.
By default, this context manager sets that attribute to False at the beginning of its execution
and resets it when the context manager is left. Set override_disabled to False to keep
the current value of the attribute.

• override_global_level (bool) – The logging.disable function allows one to install
a global minimum log level that takes precedence over a logger’s own level. By default, this
context manager makes sure that the global limit is at most level, and reduces it if necessary
during its execution. Set override_global_level to False to keep the global limit.

Returns A recording log handler that listens to logger during the execution of the context manager.

Return type RecordingLogHandler

Example:

import logging

logger = logging.getLogger(__name__)

with recorded_logs(logger) as logs:
logger.info(u'Hello, world!')

logs.assert_log(u'info', u'world')

class ckan.tests.helpers.RecordingLogHandler(*args, **kwargs)
Log handler that records log messages for later inspection.

You can inspect the recorded messages via the messages attribute (a dict that maps log levels to lists of messages)
or by using assert_log.

This class is rarely useful on its own, instead use recorded_logs() to temporarily record log messages.

7.16. Testing coding standards 437



CKAN documentation, Release 2.10.0a0

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

assert_log(level, pattern, msg=None)
Assert that a certain message has been logged.

Parameters

• pattern (string) – A regex which the message has to match. The match is done using
re.search.

• level (string) – The message level ('debug', . . . ).

• msg (string) – Optional failure message in case the expected log message was not logged.

Raises AssertionError – If the expected message was not logged.

clear()

Clear all captured log messages.

class ckan.tests.helpers.FakeSMTP

Mock SMTP client, catching all the messages.

sendmail(from_addr, to_addrs, msg, mail_options=(), rcpt_options=())
Just store message inside current instance.

Pytest fixtures

This is a collection of pytest fixtures for use in tests.

All fixtures below available anywhere under the root of CKAN repository. Any external CKAN extension should be
able to include them by adding next lines under root conftest.py

# -*- coding: utf-8 -*-

pytest_plugins = [
u'ckan.tests.pytest_ckan.ckan_setup',
u'ckan.tests.pytest_ckan.fixtures',

]

There are three type of fixtures available in CKAN:

• Fixtures that have some side-effect. They don’t return any useful value and generally should be injected via
pytest.mark.usefixtures. Ex.: with_plugins, clean_db, clean_index.

• Fixtures that provide value. Ex. app

• Fixtures that provide factory function. They are rarely needed, so prefer using ‘side-effect’ or ‘value’ fixtures.
Main use-case when one may use function-fixture - late initialization or repeatable execution(ex.: cleaning
database more than once in a single test). But presence of these fixtures in test usually signals that is’s a good
time to refactor this test.

Deeper explanation can be found in official documentation

class ckan.tests.pytest_ckan.fixtures.UserFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.ResourceFactory(**kwargs)

438 Chapter 7. Contributing guide

https://docs.pytest.org/en/latest/fixture.html


CKAN documentation, Release 2.10.0a0

class ckan.tests.pytest_ckan.fixtures.ResourceViewFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.GroupFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.PackageFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.VocabularyFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.TagFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.SystemInfoFactory(**kwargs)

class ckan.tests.pytest_ckan.fixtures.APITokenFactory(**kwargs)

ckan.tests.pytest_ckan.fixtures.ckan_config(request, monkeypatch)
Allows to override the configuration object used by tests

Takes into account config patches introduced by the ckan_config mark.

If you just want to set one or more configuration options for the scope of a test (or a test class), use the
ckan_config mark:

@pytest.mark.ckan_config('ckan.auth.create_unowned_dataset', True)
def test_auth_create_unowned_dataset():

# ...

To use the custom config inside a test, apply the ckan_config mark to it and inject the ckan_config fixture:

@pytest.mark.ckan_config(u"some.new.config", u"exists")
def test_ckan_config_mark(ckan_config):

assert ckan_config[u"some.new.config"] == u"exists"

If the change only needs to be applied locally, use the monkeypatch fixture

@pytest.mark.usefixtures("with_request_context")
def test_deleting_a_key_delets_it_on_flask_config(monkeypatch, ckan_config):

monkeypatch.setitem(ckan_config, u"ckan.site_title", u"Example title")
del ckan_config[u"ckan.site_title"]
assert u"ckan.site_title" not in flask.current_app.config

ckan.tests.pytest_ckan.fixtures.make_app(ckan_config)
Factory for client app instances.

Unless you need to create app instances lazily for some reason, use the app fixture instead.

ckan.tests.pytest_ckan.fixtures.app(make_app)
Returns a client app instance to use in functional tests

To use it, just add the app parameter to your test function signature:

def test_dataset_search(self, app):

url = h.url_for('dataset.search')
(continues on next page)

7.16. Testing coding standards 439



CKAN documentation, Release 2.10.0a0

(continued from previous page)

response = app.get(url)

ckan.tests.pytest_ckan.fixtures.cli(ckan_config)
Provides object for invoking CLI commands from tests.

This is subclass of click.testing.CliRunner, so all examples from Click docs are valid for it.

ckan.tests.pytest_ckan.fixtures.reset_db()

Callable for resetting the database to the initial state.

If possible use the clean_db fixture instead.

ckan.tests.pytest_ckan.fixtures.reset_index()

Callable for cleaning search index.

If possible use the clean_index fixture instead.

ckan.tests.pytest_ckan.fixtures.clean_db(reset_db)
Resets the database to the initial state.

This can be used either for all tests in a class:

@pytest.mark.usefixtures("clean_db")
class TestExample(object):

def test_example(self):

or for a single test:

class TestExample(object):

@pytest.mark.usefixtures("clean_db")
def test_example(self):

ckan.tests.pytest_ckan.fixtures.migrate_db_for()

Apply database migration defined by plugin.

In order to use models defined by extension extra tables may be required. In such cases database migrations(that
were generated by ckan generate migration -p PLUGIN_NAME) can be applied as per example below:

@pytest.mark.usefixtures("clean_db")
def test_migrations_applied(migrate_db_for):

migrate_db_for("my_plugin")
assert model.Session.bind.has_table("my_plugin_custom_table")

ckan.tests.pytest_ckan.fixtures.clean_index(reset_index)
Clear search index before starting the test.

ckan.tests.pytest_ckan.fixtures.with_plugins(ckan_config)
Load all plugins specified by the ckan.plugins config option at the beginning of the test. When the test ends
(even it fails), it will unload all the plugins in the reverse order.

@pytest.mark.ckan_config("ckan.plugins", "image_view")
@pytest.mark.usefixtures("non_clean_db", "with_plugins")
def test_resource_view_factory():

(continues on next page)

440 Chapter 7. Contributing guide

https://click.palletsprojects.com/en/master/testing/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

resource_view1 = factories.ResourceView()
resource_view2 = factories.ResourceView()
assert resource_view1[u"id"] != resource_view2[u"id"]

ckan.tests.pytest_ckan.fixtures.test_request_context(app)
Provide function for creating Flask request context.

ckan.tests.pytest_ckan.fixtures.with_request_context(test_request_context)
Execute test inside requests context

ckan.tests.pytest_ckan.fixtures.mail_server(monkeypatch)
Catch all outcome mails.

ckan.tests.pytest_ckan.fixtures.with_test_worker(monkeypatch)
Worker that doesn’t create forks.

ckan.tests.pytest_ckan.fixtures.with_extended_cli(ckan_config, monkeypatch)
Enables effects of IClick.

Without this fixture, only CLI command that came from plugins specified in real config file are available. When
this fixture enabled, changing ckan.plugins on test level allows to update list of available CLI command.

ckan.tests.pytest_ckan.fixtures.non_clean_db(_reset_db_once)
Guarantees that DB is initialized.

This fixture either initializes DB if it hasn’t been done yet or does nothing otherwise. If there is some data in DB,
it stays intact. If your tests need empty database, use clean_db instead, which is much slower, but guarantees that
there are no data left from the previous test session.

Example:

@pytest.mark.usefixtures("non_clean_db")
def test_example():

assert factories.User()

class ckan.tests.pytest_ckan.fixtures.FakeFileStorage(stream, filename)

content_type = None

ckan.tests.pytest_ckan.fixtures.create_with_upload(clean_db, ckan_config, monkeypatch, tmpdir)
Shortcut for creating resource/user/org with upload.

Requires content and name for newly created object. By default is using resource_create action, but it can be
changed by passing named argument action.

Upload field if configured by passing upload_field_name named argument. Default value: upload.

In addition, accepts named argument context which will be passed to ckan.tests.helpers.call_action and arbitrary
number of additional named arguments, that will be used as resource properties.

Example:

def test_uploaded_resource(create_with_upload):
dataset = factories.Dataset()
resource = create_with_upload(

(continues on next page)

7.16. Testing coding standards 441



CKAN documentation, Release 2.10.0a0

(continued from previous page)

"hello world", "file.txt", url="http://data",
package_id=dataset["id"])

assert resource["url_type"] == "upload"
assert resource["format"] == "TXT"
assert resource["size"] == 11

Mocking: the mock library

We use the mock library to replace parts of CKAN with mock objects. This allows a CKAN function to be tested
independently of other parts of CKAN or third-party libraries that the function uses. This generally makes the test
simpler and faster (especially when ckan.model is mocked out so that the tests don’t touch the database). With
mock objects we can also make assertions about what methods the function called on the mock object and with which
arguments.

Note: Overuse of mocking is discouraged as it can make tests difficult to understand and maintain. Mocking can be
useful and make tests both faster and simpler when used appropriately. Some rules of thumb:

• Don’t mock out more than one or two objects in a single test method.

• Don’t use mocking in more functional-style tests. For example the action function tests in ckan.tests.logic.
action and the frontend tests in ckan.tests.controllers are functional tests, and probably shouldn’t do
any mocking.

• Do use mocking in more unit-style tests. For example the authorization function tests in ckan.tests.logic.
auth , the converter and validator tests in ckan.tests.logic.auth , and most (all?) lib tests in ckan.tests.
lib are unit tests and should use mocking when necessary (often it’s possible to unit test a method in isolation
from other CKAN code without doing any mocking, which is ideal).

In these kind of tests we can often mock one or two objects in a simple and easy to understand way, and make
the test both simpler and faster.

A mock object is a special object that allows user code to access any attribute name or call any method name (and pass
any parameters) on the object, and the code will always get another mock object back:

>>> import unittest.mock as mock
>>> my_mock = mock.MagicMock()
>>> my_mock.foo
<MagicMock name='mock.foo' id='56032400'>
>>> my_mock.bar
<MagicMock name='mock.bar' id='54093968'>
>>> my_mock.foobar()
<MagicMock name='mock.foobar()' id='54115664'>
>>> my_mock.foobar(1, 2, 'barfoo')
<MagicMock name='mock.foobar()' id='54115664'>

When a test needs a mock object to actually have some behavior besides always returning other mock objects, it can
set the value of a certain attribute on the mock object, set the return value of a certain method, specify that a certain
method should raise a certain exception, etc.

You should read the mock library’s documentation to really understand what’s going on, but here’s an example of a test
from ckan.tests.logic.auth.test_update that tests the user_update() authorization function and mocks out
ckan.model:

442 Chapter 7. Contributing guide

http://www.voidspace.org.uk/python/mock/


CKAN documentation, Release 2.10.0a0

def test_user_update_user_cannot_update_another_user():
"""Users should not be able to update other users' accounts."""

# 1. Setup.

# Make a mock ckan.model.User object, Fred.
fred = factories.MockUser()

# Make a mock ckan.model object.
mock_model = mock.MagicMock()
# model.User.get(user_id) should return Fred.
mock_model.User.get.return_value = fred

# Put the mock model in the context.
# This is easier than patching import ckan.model.
context = {"model": mock_model}

# The logged-in user is going to be Bob, not Fred.
context["user"] = "bob"

# 2. Call the function that's being tested, once only.

# Make Bob try to update Fred's user account.
params = {"id": fred.id, "name": "updated_user_name"}

# 3. Make assertions about the return value and/or side-effects.

with pytest.raises(logic.NotAuthorized):
helpers.call_auth("user_update", context=context, **params)

# 4. Do nothing else!

The following sections will give specific guidelines and examples for writing tests for each module in CKAN.

Note: When we say that all functions should have tests in the sections below, we mean all public functions that the
module or class exports for use by other modules or classes in CKAN or by extensions or templates.

Private helper methods (with names beginning with _) never have to have their own tests, although they can have tests
if helpful.

7.16. Testing coding standards 443



CKAN documentation, Release 2.10.0a0

Writing ckan.logic.action tests

All action functions should have tests.

Most action function tests will be high-level tests that both test the code in the action function itself, and also indirectly
test the code in ckan.lib, ckan.model, ckan.logic.schema etc. that the action function calls. This means that
most action function tests should not use mocking.

Tests for action functions should use the ckan.tests.helpers.call_action() function to call the action functions.

One thing call_action() does is to add ignore_auth: True into the context dict that’s passed to the action
function, so that CKAN will not call the action function’s authorization function. The tests for an action function don’t
need to cover authorization, because the authorization functions have their own tests in ckan.tests.logic.auth .
But action function tests do need to cover validation, more on that later.

Action function tests should test the logic of the actions themselves, and should test validation (e.g. that various kinds
of valid input work as expected, and invalid inputs raise the expected exceptions).

Here’s an example of a simple ckan.logic.action test:

def test_user_update_name(self):
"""Test that updating a user's name works successfully."""

# The canonical form of a test has four steps:
# 1. Setup any preconditions needed for the test.
# 2. Call the function that's being tested, once only.
# 3. Make assertions about the return value and/or side-effects of
# of the function that's being tested.
# 4. Do nothing else!

# 1. Setup.
user = factories.User()
user["name"] = "updated"

# 2. Make assertions about the return value and/or side-effects.
with pytest.raises(logic.ValidationError):

helpers.call_action("user_update", **user)

Todo: Insert the names of all tests for ckan.logic.action.update.user_update, for example, to show what
level of detail things should be tested in.

Writing ckan.logic.auth tests

All auth functions should have tests.

Most auth function tests should be unit tests that test the auth function in isolation, without bringing in other parts of
CKAN or touching the database. This requires using the mock library to mock ckan.model, see Mocking: the mock
library.

Tests for auth functions should use the ckan.tests.helpers.call_auth() function to call auth functions.

Here’s an example of a simple ckan.logic.auth test:

444 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

def test_user_update_user_cannot_update_another_user():
"""Users should not be able to update other users' accounts."""

# 1. Setup.

# Make a mock ckan.model.User object, Fred.
fred = factories.MockUser()

# Make a mock ckan.model object.
mock_model = mock.MagicMock()
# model.User.get(user_id) should return Fred.
mock_model.User.get.return_value = fred

# Put the mock model in the context.
# This is easier than patching import ckan.model.
context = {"model": mock_model}

# The logged-in user is going to be Bob, not Fred.
context["user"] = "bob"

# 2. Call the function that's being tested, once only.

# Make Bob try to update Fred's user account.
params = {"id": fred.id, "name": "updated_user_name"}

# 3. Make assertions about the return value and/or side-effects.

with pytest.raises(logic.NotAuthorized):
helpers.call_auth("user_update", context=context, **params)

# 4. Do nothing else!

Writing converter and validator tests

All converter and validator functions should have unit tests.

Although these converter and validator functions are tested indirectly by the action function tests, this may not catch
all the converters and validators and all their options, and converters and validators are not only used by the action
functions but are also available to plugins. Having unit tests will also help to clarify the intended behavior of each
converter and validator.

CKAN’s action functions call ckan.lib.navl.dictization_functions.validate() to validate data posted by
the user. Each action function passes a schema from ckan.logic.schema to validate(). The schema gives
validate() lists of validation and conversion functions to apply to the user data. These validation and conversion
functions are defined in ckan.logic.validators, ckan.logic.converters and ckan.lib.navl.validators.

Most validator and converter tests should be unit tests that test the validator or converter function in isolation, without
bringing in other parts of CKAN or touching the database. This requires using the mock library to mock ckan.model,
see Mocking: the mock library.

7.16. Testing coding standards 445



CKAN documentation, Release 2.10.0a0

When testing validators, we often want to make the same assertions in many tests: assert that the validator didn’t
modify the data dict, assert that the validator didn’t modify the errors dict, assert that the validator raised Invalid,
etc. Decorator functions are defined at the top of validator test modules like ckan.tests.logic.test_validators
to make these common asserts easy. To use one of these decorators you have to:

1. Define a nested function inside your test method, that simply calls the validator function that you’re trying to test.

2. Apply the decorators that you want to this nested function.

3. Call the nested function.

Here’s an example of a simple validator test that uses this technique:

def test_user_name_validator_with_non_string_value():
"""user_name_validator() should raise Invalid if given a non-string
value.

"""
non_string_values = [

13,
23.7,
100,
1.0j,
None,
True,
False,
("a", 2, False),
[13, None, True],
{"foo": "bar"},
lambda x: x ** 2,

]

# Mock ckan.model.
mock_model = mock.MagicMock()
# model.User.get(some_user_id) needs to return None for this test.
mock_model.User.get.return_value = None

key = ("name",)
for non_string_value in non_string_values:

data = validator_data_dict()
data[key] = non_string_value
errors = validator_errors_dict()
errors[key] = []

@t.does_not_modify_data_dict
@raises_invalid
def call_validator(*args, **kwargs):

return validators.user_name_validator(*args, **kwargs)

call_validator(key, data, errors, context={"model": mock_model})

446 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

No tests for ckan.logic.schema.py

We don’t write tests for the schemas defined in ckan.logic.schema. The validation done by the schemas is instead
tested indirectly by the action function tests. The reason for this is that CKAN actually does validation in multiple
places: some validation is done using schemas, some validation is done in the action functions themselves, some is
done in dictization, and some in the model. By testing all the different valid and invalid inputs at the action function
level, we catch it all in one place.

Writing ckan.controllers tests

Controller tests probably shouldn’t use mocking.

Todo: Write the tests for one controller, figuring out the best way to write controller tests. Then fill in this guidelines
section, using the first set of controller tests as an example.

Some things have been decided already:

• All controller methods should have tests

• Controller tests should be high-level tests that work by posting simulated HTTP requests to CKAN URLs and
testing the response. So the controller tests are also testing CKAN’s templates and rendering - these are CKAN’s
front-end tests.

For example, maybe we use a testapp and then use beautiful soup to parse the HTML?

• In general the tests for a controller shouldn’t need to be too detailed, because there shouldn’t be a lot of compli-
cated logic and code in controller classes. The logic should be handled in other places such as ckan.logic and
ckan.lib, where it can be tested easily and also shared with other code.

• The tests for a controller should:

– Make sure that the template renders without crashing.

– Test that the page contents seem basically correct, or test certain important elements in the page contents
(but don’t do too much HTML parsing).

– Test that submitting any forms on the page works without crashing and has the expected side-effects.

– When asserting side-effects after submitting a form, controller tests should user the ckan.tests.
helpers.call_action() function. For example after creating a new user by submitting the new user
form, a test could call the user_show() action function to verify that the user was created with the correct
values.

Warning: Some CKAN controllers do contain a lot of complicated logic code. These controllers should be
refactored to move the logic into ckan.logic or ckan.lib where it can be tested easily. Unfortunately in cases
like this it may be necessary to write a lot of controller tests to get this code’s behavior into a test harness before it
can be safely refactored.

7.16. Testing coding standards 447



CKAN documentation, Release 2.10.0a0

Writing ckan.model tests

All model methods should have tests.

Todo: Write the tests for one ckan.model module, figuring out the best way to write model tests. Then fill in this
guidelines section, using the first set of model tests as an example.

Writing ckan.lib tests

All lib functions should have tests.

Todo: Write the tests for one ckan.lib module, figuring out the best way to write lib tests. Then fill in this guidelines
section, using the first

We probably want to make these unit tests rather than high-level tests and mock out ckan.model, so the tests are really
fast and simple.

Note that some things in lib are particularly important, e.g. the functions in ckan.lib.helpers are exported for
templates (including extensions) to use, so all of these functions should really have tests and docstrings. It’s probably
worth focusing on these modules first.

Writing ckan.plugins tests

The plugin interfaces in ckan.plugins.interfaces are not directly testable because they don’t contain any code,
but:

• Each plugin interface should have an example plugin in ckan.ckanext and the example plugin should have its
own functional tests.

• The tests for the code that calls the plugin interface methods should test that the methods are called correctly.

For example ckan.logic.action.get.package_show() calls ckan.plugins.interfaces.IDatasetForm.
read(), so the package_show() tests should include tests that read() is called at the right times and with the right
parameters.

Everything in ckan.plugins.toolkit should have tests, because these functions are part of the API for extensions
to use. But toolkit imports most of these functions from elsewhere in CKAN, so the tests should be elsewhere also,
in the test modules for the modules where the functions are defined.

Other than the plugin interfaces and plugins toolkit, any other code in ckan.plugins should have tests.

Writing ckan.ckanext tests

Within extensions, follow the same guidelines as for CKAN core. For example if an extension adds an action function
then the action function should have tests, etc.

448 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.17 Frontend development guidelines

7.17.1 Templating

Within CKAN 2.0 we moved out templating to use Jinja2 from Genshi. This was done to provide a more flexible,
extensible and most importantly easy to understand templating language.

Some useful links to get you started.

• Jinja2 Homepage

• Jinja2 Developer Documentation

• Jinja2 Template Documentation

Legacy Templates

Existing Genshi templates have been moved to the templates_legacy directory and will continue to be served if no file
with the same name is located in templates. This should ensure backward compatibility until instances are able to
upgrade to the new system.

The lookup path for templates is as follows. Give the template path “user/index.html”:

1. Look in the template directory of each loaded extension.

2. Look in the template_legacy directory for each extension.

3. Look in the main ckan template directory.

4. Look in the template_legacy directory.

CKAN will automatically determine the template engine to use.

File Structure

The file structure for the CKAN templates is pretty much the same as before with a directory per controller and indi-
vidual files per action.

With Jinja2 we also have the ability to use snippets which are small fragments of HTML code that can be pulled in to
any template. These are kept in a snippets directory within the same folder as the actions that are using them. More
generic snippets are added to templates/snippets.

templates/
base.html # A base template with just core HTML structure
page.html # A base template with default page layout
header.html # The site header.
footer.html # The site footer.
snippets/ # A folder of generic sitewide snippets
home/
index.html # Template for the index action of the home controller
snippets/ # Snippets for the home controller

user/
...

templates_legacy/
# All ckan templates

7.17. Frontend development guidelines 449

http://Jinja2.pocoo.org
http://Jinja2.pocoo.org/docs/
http://Jinja2.pocoo.org/docs/templates/


CKAN documentation, Release 2.10.0a0

Using the templating system

Jinja2 makes heavy use of template inheritance to build pages. A template for an action will tend to inherit from
page.html:

{% extends "page.html" %}

Each parent defines a number of blocks that can be overridden to add content to the page. page.html defines majority
of the markup for a standard page. Generally only {% block primary_content %} needs to be extended:

{% extends "page.html" %}

{% block page_content.html %}
<h1>My page title</h1>
<p>This content will be added to the page</p>

{% endblock %}

Most template pages will define enough blocks so that the extending page can customise as little or as much as required.

Internationalisation

See Internationalizating strings in Jinja2 templates.

Conventions

There are a few common conventions that have evolved from using the language.

Includes

Note: Includes should be avoided as they are not portable use {% snippet %} tags whenever possible.

Snippets of text that are included using {% include %} should be kept in a directory called _snippets_. This should
be kept in the same directory as the code that uses it.

Generally we use the {% snippet %} helper in all theme files unless the parents context must absolutely be available
to the snippet. In which case the usage should be clearly documented.

Snippets

Note: {% snippet %} tags should be used in favour of h.snippet()

Snippets are essentially middle ground between includes and macros in that they are includes that allow a specific
context to be provided (includes just receive the parent context).

These should be preferred to includes at all times as they make debugging much easier.

450 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Macros

Macros should be used very sparingly to create custom generators for very generic snippets of code. For example
macros/form.html has macros for creating common form fields.

They should generally be avoided as they are hard to extend and customise.

Templating within extensions

When you need to add or customize a template from within an extension you need to tell CKAN that there is a tem-
plate directory that it can call from. Within your update_config method for the extension you’ll need to add a
extra_template_paths to the config.

Custom Control Structures

We’ve provided a few additional control structures to make working with the templates easier. Other helpers can still
be used using the h object as before.

ckan_extends

{% ckan_extends %}

This works in a very similar way to {% extend %} however it will load the next template up in the load path with the
same name.

For example if you wish to remove the breadcrumb from the user profile page in your own site. You would locate the
template you wish to override.

ckan/templates/user/read.html

And create a new one in your theme extension.

ckanext-mytheme/ckanext/mytheme/templates/user/read.html

In this new file you would pull in the core template using {% ckan_extends %}:

{% ckan_extends %}

This will now render the current user/read page but we can override any portion that we wish to change. In this case
the breadcrumb block.

{% ckan_extends %}

{# Remove the breadcrumb #}
{% block breadcrumb %}{% endblock %}

This function works recursively and so is ideal for extensions that wish to add a small snippet of functionality to the
page.

Note: {% ckan_extend %} only extends templates of the same name.

7.17. Frontend development guidelines 451



CKAN documentation, Release 2.10.0a0

snippet

{% snippet [filepath], [arg1=arg1], [arg2=arg2]... %}

Snippets work very much like Jinja2’s {% include %} except that that do not inherit the parent templates context.
This means that all variables must be explicitly passed in to the snippet. This makes debugging much easier.

{% snippet "package/snippets/package_form.html", data=data, errors=errors %}

url_for

{% url_for [arg1=arg1], [arg2=arg2]... %}

Works exactly the same as h.url_for():

<a href="{% url_for controller="home", action="index" %}">Home</a>

link_for

{% link_for text, [arg1=arg1], [arg2=arg2]... %}

Works exactly the same as h.link_for():

<li>{% link_for _("Home"), controller="home", action="index" %}</li>

url_for_static

{% url_for_static path %}

Works exactly the same as h.url_for_static():

<script src="{% url_for_static "/javascript/home.js" %}"></script>

Form Macros

For working with forms we have provided some simple macros for generating common fields. These will be suitable
for most forms but anything more complicated will require the markup to be written by hand.

The macros can be imported into the page using the {% import %} command.

{% import 'macros/form.html' as form %}

The following fields are provided:

452 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

form.input()

Creates all the markup required for an input element. Handles matching labels to inputs, error messages and other
useful elements.

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
value - The value of the input.
placeholder - Some placeholder text.
type - The type of input eg. email, url, date (default: text).
error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.input('title', label=_('Title'), value=data.title, error=errors.title) }}

form.checkbox()

Builds a single checkbox input.

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
value - The value of the input.
checked - If true the checkbox will be checked
error - An error string for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Example:

{% import 'macros/form.html' as form %}
{{ form.checkbox('remember', checked=true) }}

form.select()

Creates all the markup required for an select element. Handles matching labels to inputs and error messages.

A field should be a dict with a “value” key and an optional “text” key which will be displayed to the user. {"value":
"my-option", "text": "My Option"}. We use a dict to easily allow extension in future should extra options be
required.

7.17. Frontend development guidelines 453



CKAN documentation, Release 2.10.0a0

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
options - A list/tuple of fields to be used as <options>.
selected - The value of the selected <option>.
error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.select('year', label=_('Year'), options=[{'name':2010, 'value': 2010},{'name':␣
→˓2011, 'value': 2011}], selected=2011, error=errors.year) }}

form.textarea()

Creates all the markup required for a plain textarea element. Handles matching labels to inputs, selected item and error
messages.

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
value - The value of the input.
placeholder - Some placeholder text.
error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.textarea('desc', id='field-description', label=_('Description'), value=data.desc,
→˓ error=errors.desc) }}

form.markdown()

Creates all the markup required for a Markdown textarea element. Handles matching labels to inputs, selected item
and error messages.

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
value - The value of the input.
placeholder - Some placeholder text.

(continues on next page)

454 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

(continued from previous page)

error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.markdown('desc', id='field-description', label=_('Description'), value=data.desc,
→˓ error=errors.desc) }}

form.prepend()

Creates all the markup required for an input element with a prefixed segment. These are useful for showing url slugs
and other fields where the input information forms only part of the saved data.

name - The name of the form parameter.
id - The id to use on the input and label. Convention is to prefix with 'field-
→˓'.
label - The human readable label.
prepend - The text that will be prepended before the input.
value - The value of the input.

which will use the name key as the value.
placeholder - Some placeholder text.
error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.
attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.prepend('slug', id='field-slug', prepend='/dataset/', label=_('Slug'),␣
→˓value=data.slug, error=errors.slug) }}

form.custom()

Creates all the markup required for an custom key/value input. These are usually used to let the user provide custom
meta data. Each “field” has three inputs one for the key, one for the value and a checkbox to remove it. So the arguments
for this macro are nearly all tuples containing values for the (key, value, delete) fields respectively.

name - A tuple of names for the three fields.
id - An id string to be used for each input.
label - The human readable label for the main label.
values - A tuple of values for the (key, value, delete) fields. If delete

is truthy the checkbox will be checked.
placeholder - A tuple of placeholder text for the (key, value) fields.
error - A list of error strings for the field or just true to highlight the field.
classes - An array of classes to apply to the control-group.

(continues on next page)

7.17. Frontend development guidelines 455



CKAN documentation, Release 2.10.0a0

(continued from previous page)

attrs - Dictionary of extra tag attributes
is_required - Boolean of whether this input is required for the form to validate

Examples:

{% import 'macros/form.html' as form %}
{{ form.custom(

names=('custom_key', 'custom_value', 'custom_deleted'),
id='field-custom',
label=_('Custom Field'),
values=(extra.key, extra.value, extra.deleted),
error='')

}}

form.autoform()

Builds a form from the supplied form_info list/tuple.

form_info - A list of dicts describing the form field to build.
data - The form data object.
errors - The form errors object.
error_summary - The form errors object.

Example

{% set form_info = [
{'name': 'ckan.site_title', 'control': 'input', 'label': _('Site Title'),

→˓'placeholder': ''},
{'name': 'ckan.main_css', 'control': 'select', 'options': styles, 'label': _('Style

→˓'), 'placeholder': ''},
{'name': 'ckan.site_description', 'control': 'input', 'label': _('Site Tag Line'),

→˓'placeholder': ''},
{'name': 'ckan.site_logo', 'control': 'input', 'label': _('Site Tag Logo'),

→˓'placeholder': ''},
{'name': 'ckan.site_about', 'control': 'markdown', 'label': _('About'), 'placeholder

→˓': _('About page text')},
{'name': 'ckan.site_intro_text', 'control': 'markdown', 'label': _('Intro Text'),

→˓'placeholder': _('Text on home page')},
{'name': 'ckan.site_custom_css', 'control': 'textarea', 'label': _('Custom CSS'),

→˓'placeholder': _('Customisable css inserted into the page header')},
] %}

{% import 'macros/form.html' as form %}
{{ form.autoform(form_info, data, errors) }}

456 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.17.2 Assets

Note: Assets are only supported on CKAN 2.9 and above. If you are using CKAN <= 2.8, refer to the legacy Fanstatic
resources documentation.

Assets are .css and .js files that may be included in an html page. Assets are included in the page by using the {% asset
%} tag. CKAN then uses Webassets to serve these assets.

{% asset 'library_name/asset_name' %}

Assets are grouped into libraries and the full asset name consists of <library name>/<asset name>. For example:

{% asset 'my_webassets_library/my_javascript_file.js' %}

It is important to note that these assets will be added to the page as defined by the assets configuration, not in the
location of the {% asset %} tag. Duplicate assets will not be added and any dependencies will be included as well as
the assets, all in the correct order (see below for details).

Extensions can add new libraries to CKAN using a helper function defined in the :doc:` plugins-toolkit <plugins-
toolkit>`. See below.

In debug mode assets are served un-minified and un-bundled (ie each asset is served separately). In non-debug mode
the files are served minified and bundled (where allowed).

Note: When adding js and css files to the repository, they should be supplied as un-minified files. Minified files will
be created automatically when serving them.

Assets within extensions

To add an asset from an extension, use the add_resource(path, name) function:

ckan.plugins.toolkit.add_resource('path/to/my/webassets/library/dir',
'my_webassets_library')

The first argument is the path to the asset directory relative to the file calling the function (generally plugin.py). The
second argument, is the name of the library (to be used by templates when they want to include an asset from the library
using the {% asset %} tag as, so for instance my_webassets_library in the example shown above).

webassets.yml

The webassets.yml file is used to define the assets in a directory and its sub-folders. Here is an example file. Each
section is described below

# Example webassets.yml file

select2-css:
contents:
- select2/select2.css

output: my_webassets_library/%(version)s_select2.css
filters: cssrewrite

(continues on next page)

7.17. Frontend development guidelines 457

https://docs.ckan.org/en/2.8/contributing/frontend/resources.html
https://docs.ckan.org/en/2.8/contributing/frontend/resources.html
https://webassets.readthedocs.io/en/latest/


CKAN documentation, Release 2.10.0a0

(continued from previous page)

jquery:
contents:
- jquery.js

filters: rjsmin
output: my_webassets_library/%(version)s_jquery.js

vendor:
contents:
- jed.js
- moment-with-locales.js
- select2/select2.js

filters: rjsmin
output: my_webassets_library/%(version)s_vendor.js
extra:
preload:
- my_webassets_library/select2-css
- my_webassets_library/jquery

Top level items

These are names of the available assets

select2-css

This asset should be added via {% asset 'my_webassets_library/select2-css' %}.

jquery

This asset should be added via {% asset 'my_webassets_library/jquery' %}.

vendor

This asset should be added via {% asset 'my_webassets_library/vendor' %}. If it is present in the template,
select2-css and jquery can be omitted (because they are explicitly defined in vendor.extra.preload)

458 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

[contents] (required)

List of relative paths to source files that will be used to generate final asset.

Important: An asset must only include files of the same type. I.e, one cannot mix JS and CSS files in the same asset.

[output] (optional)

Assets will be compiled the first time they are included in a template. Output files are located either on the path specified
by the ckan.webassets.path config directive or at {{ ckan.storage_path }}/webassets if the former is not
provided. The file specified by the output option will be created there. If it’s not provided, the file will be created in a
webassets-external sub-folder. The %(version)s fragment is a dynamic part that will be replaced with a hash of
the generated file content. This technique is useful to address a number of cache issues for static files.

[filters] (optional)

These are the pre-processors that are applied to the file before producing the final asset. cssrewrite for CSS and
rjsmin for JS are supported out of the box. Details and other options can be found in the Webassets documentation

[extra] (optional)

Additional configuration details. Currently, only one option is supported: preload.

preload

Defines list of assets in format asset_library/asset_name, that must be included into HTML output before the
current asset.

7.17.3 Creating a new template

This is a brief tutorial covering the basics of building a common template.

Extending a base template

Firstly we need to extend a parent template to provide us with some basic page structure. This can be any other HTML
page however the most common one is page.html which provides the full CKAN theme including header and footer.

{% extends "page.html" %}

The page.html template provides numerous blocks that can be extended. It’s worth spending a few minutes getting
familiar with what’s available. The most common blocks that we’ll be using are those ending with “content”.

• primary_content: The main content area of the page.

• secondary_content: The secondary content (sidebar) of the page.

• breadcrumb_content: The contents of the breadcrumb navigation.

• actions_content: The content of the actions bar to the left of the breadcrumb.

7.17. Frontend development guidelines 459

https://webassets.readthedocs.io/en/latest/builtin_filters.html


CKAN documentation, Release 2.10.0a0

Primary Content

For now we’ll add some content to the main content area of the page.

{% block primary_content %}
{{ super() }}

{% block my_content %}
<h2>{{ _('This is my content heading') }}</h2>
<p>{{ _('This is my content') }}</p>

{% endblock %}
{% endblock %}

Notice we’ve wrapped our own content in a block. This allows other templates to extend and possibly override this one
and is extremely useful for making a them more customisable.

Secondary Content

Secondary content usually compromises of reusable modules which are pulled in as snippets. Snippets are also very
useful for keeping the templates clean and allowing theme extensions to override them.

{% block primary_content %}
{{ super() }}

{% block my_sidebar_module %}
{% snippet "snippets/my-sidebar-module.html" %}

{% endblock %}
{% endblock %}

Breadcrumb and Actions

There is a consistent breadcrumb running through all the pages and often it is useful to provide additional actions that
a related to the page.

{% block breadcrumb_content %}
<li class="active">{% link_for _('Viewing Dataset'), named_route=pkg.type ~ '.read',␣

→˓id=pkg.id %}</li>
{% endblock %}

{% block actions_content %}
{{ super() }}
<li class="active">{% link_for _('New Dataset'), named_route='dataset.new', class_='btn

→˓', icon='plus' %}</li>
{% endblock %}

460 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Scripts and Stylesheets

Currently scripts and stylesheets can be added by using the {% asset %} tag which manages script loading for us.

{% asset 'my-extension/main-css' %}
{% asset 'my-extension/main-js' %}

Summary

And that’s about all there is to it be sure to check out base.html and page.html to see all the tags available for
extension.

7.17.4 Template Blocks

These blocks can be extended by child templates to replace or extend common CKAN functionality.

Usage

There are currently two base templates base.html which provides the bare HTML structure such as title, head and body
tags as well as hooks for adding links, stylesheets and scripts. page.html defines the content structure and is the template
that you’ll likely want to use.

To extend a template simply create a new template file and call {% extend %} then define the blocks that you wish to
override.

7.17.5 Blocks in page.html

page.html extends the “page” block in base.html and provides the basic page structure for primary and secondary
content.

header

Override the header on a page by page basis by extending this block. If making site wide header changes it is preferable
to override the header.html file:

{% block header %}
{% include "custom_header.html" %}

{% endblock %}

content

The content block allows you to replace the entire content section of the page with your own markup if needed:

{% block content %}
<div class="custom-content">
{% block custom_block %}{% endblock %}

</div>
{% endblock %}

7.17. Frontend development guidelines 461



CKAN documentation, Release 2.10.0a0

toolbar

The toolbar is for content to be added at the top of the page such as the breadcrumb navigation. You can remove/replace
this by extending this block:

{# Remove the toolbar from this page. #}
{% block toolbar %}{% endblock %}

breadcrumb

Add a breadcrumb to the page by extending this element:

{% block breadcrumb %}
{% include "breadcrumb.html" %}

{% endblock %}

primary

This block can be used to remove the entire primary content element:

{% block primary %}{% endblock %}

primary_content

The primary_content block can be used to add content to the page. This is the main block that is likely to be used
within a template:

{% block primary_content %}
<h1>My page content</h1>
<p>Some content for the page</p>

{% endblock %}

secondary

This block can be used to remove the entire secondary content element:

{% block secondary %}{% endblock %}

secondary_content

The secondary_content block can be used to add content to the sidebar of the page. This is the main block that is likely
to be used within a template:

{% block secondary_content %}
<h2>A sidebar item</h2>
<p>Some content for the item</p>

{% endblock %}

462 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

footer

Override the footer on a page by page basis by extending this block:

{% block footer %}
{% include "custom_footer.html" %}

{% endblock %}

If making site wide header changes it is preferable to override the footer.html. Adding scripts should use the “scripts”
block instead.

7.17.6 Blocks in base.html

doctype

Allows the DOCTYPE to be set on a page by page basis:

{% block doctype %}<!DOCTYPE html>{% endblock %}

htmltag

Allows custom attributes to be added to the <html> tag:

{% block htmltag %}<html lang="en-gb" class="no-js">{% endblock %}

headtag

Allows custom attributes to be added to the <head> tag:

{% block headtag %}<head data-tag="No idea what you'd add here">{% endblock %}

bodytag

Allows custom attributes to be added to the <body> tag:

{% block bodytag %}<body class="full-page">{% endblock %}

meta

Add custom meta tags to the page. Call super() to get the default tags such as charset, viewport and generator:

{% block meta %}
{{ super() }}
<meta name="author" value="Joe Bloggs" />
<meta name="description" value="My website description" />

{% endblock %}

7.17. Frontend development guidelines 463



CKAN documentation, Release 2.10.0a0

title

Add a custom title to the page by extending the title block. Call super() to get the default page title:

{% block title %}My Subtitle - {{ super() }}{% endblock %}

links

The links block allows you to add additional content before the stylesheets such as rss feeds and favicons in the same
way as the meta block:

{% block link %}
<meta rel="shortcut icon" href="custom_icon.png" />

{% endblock %}

styles

The styles block allows you to add additional stylesheets to the page in the same way as the meta block. Use `` super()
`` to include the default stylesheets before or after your own:

{% block styles %}
{{ super() }}
<link rel="stylesheet" href="/base/css/custom.css" />

{% endblock %}

page

The page block allows you to add content to the page. Most of the time it is recommended that you extend one of the
page.html templates in order to get the site header and footer. If you need a clean page then this is the block to use:

{% block page %}
<div>Some other page content</div>

{% endblock %}

scripts

The scripts block allows you to add additional scripts to the page. Use the super() function to load the default scripts
before/after your own:

{% block scripts %}
{{ super() }}
<script src="/base/js/custom.js"></script>

{% endblock %}

464 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.17.7 Building a JavaScript Module

CKAN makes heavy use of modules to add additional functionality to the page. Essentially all a module consists of is
an object with an .initialize() and .teardown() method.

Here we will go through the basic functionality of building a simple module that sends a “favourite” request to the
server when the user clicks a button.

HTML

The idea behind modules is that the element should already be in the document when the page loads. For example our
favourite button will work just fine without our module JavaScript loaded.

<form action="/favourite" method="post" data-module="favorite">
<button class="btn" name="package" value="101">Submit</button>

</form>

Here it’s the data-module="favorite" that tells the CKAN module loader to create a new instance for this element.

JavaScript

Modules reside in the javascript/modules directory and should share the same name as the module. We use hyphens to
delimit spaces in both filenames and modules.

/javascript/modules/favorite.js

A module can be created by calling ckan.module():

ckan.module('favorite', function (jQuery) {
return {};

});

We pass in the module name and a factory function that should return our module object. This factory gets passed a
local jQuery object and a translation object.

Note: In order to include a module for page render inclusion within an extension it is recommended that you use {%
asset %} within your templates. See the Assets Documentation

Initialisation

Once ckan has found an element on the page it creates a new instance of your module and if present calls the .
initialize() method.

ckan.module('favorite', function (jQuery) {
return {
initialize: function () {
console.log('I've been called for element: %o', this.el);

}
};

});

7.17. Frontend development guidelines 465

./assets.html


CKAN documentation, Release 2.10.0a0

Here we can set up event listeners and other setup functions.

initialize: function () {
// Grab our button and assign it to a property of our module.
this.button = this.$('button');

// Watch for our favourite button to be clicked.
this.button.on('submit', jQuery.proxy(this._onClick, this));

},
_onClick: function (event) {}

Event Handling

Now we create our click handler for the button:

_onClick: function (event) {
event.preventDefault();
this.favorite();

}

And this calls a .favorite() method. It’s generally best not to do too much in event handlers it means that you can’t
use the same functionality elsewhere.

favorite: function () {
// The client on the sandbox should always be used to talk to the api.
this.sandbox.client.favoriteDataset(this.button.val());

}

Internationalisation

See Internationalizing strings in JavaScript code.

Notifications

This submits the dataset to the API but ideally we want to tell the user what we’re doing.

favorite: function () {
this.button.text('Loading');

// The client on the sandbox should always be used to talk to the api.
var request = this.sandbox.client.favoriteDataset(this.button.val())
request.done(jQuery.proxy(this._onSuccess, this));

},
_onSuccess: function () {
// Notify allows global messages to be displayed to the user.
this.sandbox.notify('Done', 'success');

}

466 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Options

Displaying an id to the user isn’t very friendly. We can use the data-module attributes to pass options through to the
module.

<form action="/favourite" method="post" data-module="favorite" data-module-dataset="my␣
→˓dataset">

This will override the defaults in the options object.

ckan.module('favorite', function (jQuery) {
return {
options: {
dataset: ''

}
initialize: function () {
console.log('this dataset is: %s', this.options.dataset);
//=> "this dataset is: my dataset"

}
};

});

Error handling

When ever we make an Ajax request we want to make sure that we notify the user if the request fails. Again we can
use this.sandbox.notify() to do this.

favorite: function () {
// The client on the sandbox should always be used to talk to the api.
var request = this.sandbox.client.favoriteDataset(this.button.val())
request.done(jQuery.proxy(this._onSuccess, this));
request.fail(jQuery.proxy(this._onError, this));

},
_onError: function () {
// Notify allows global messages to be displayed to the user.
this.sandbox.notify('An error occurred!', 'error');

}

Module Scope

You may have noticed we keep making calls to jQuery.proxy() within these methods. This is to ensure that this
when the callback is called is the module it belongs to.

We have a shortcut method called jQuery.proxyAll() that can be used in the .initialize() method to do all the
binding at once. It can accept method names or simply a regexp.

initialize: function () {
jQuery.proxyAll(this, '_onSuccess');

// Same as:
this._onSuccess = jQuery.proxy(this, '_onSuccess');

(continues on next page)

7.17. Frontend development guidelines 467



CKAN documentation, Release 2.10.0a0

(continued from previous page)

// Even better do all methods starting with _on at once.
jQuery.proxyAll(this, /_on/);

}

Publish/Subscribe

Sometimes we want modules to be able to talk to each other in order to keep the page state up to date. The sandbox has
the .publish() and .subscribe() methods for just this cause.

For example say we had a counter up in the header that showed how many favourite datasets the user had. This would
be incorrect when the user clicked the ajax button. We can publish an event when the favorite button is successful.

_onSuccess: function () {
// Notify allows global messages to be displayed to the user.
this.sandbox.notify(message, 'success');

// Tell other modules about this event.
this.sandbox.publish('favorite', this.button.val());

}

Now in our other module ‘user-favorite-counter’ we can listen for this.

ckan.module('user-favorite-counter', function (jQuery) {
return {
initialize: function () {
jQuery.proxyAll(this, /_on/);
this.sandbox.subscribe('favorite', this._onFavorite);

},
teardown: function () {
// We must always unsubscribe on teardown to prevent memory leaks.
this.sandbox.unsubscribe('favorite', this._onFavorite);

},
incrementCounter: function () {
var count = this.el.text() + 1;
this.el.text(count);

},
_onFavorite: function (id) {
this.incrementCounter();

}
};

});

468 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Unit Tests

Every module has unit tests. These use Cypress to assert the expected functionality of the module.

7.17.8 Install frontend dependencies

The front end stylesheets are written using Sass (this depends on node.js being installed on the system)

Instructions for installing Node.js can be found on the Node.js website. Please check the ones relevant to your own
distribution

On Ubuntu, run the following to install Node.js official repository and the node package:

curl -sL https://deb.nodesource.com/setup_13.x | sudo -E bash -
sudo apt-get install -y nodejs

Note: If you use the package on the default Ubuntu repositories (eg sudo apt-get install nodejs), the node
binary will be called nodejs. This will prevent the CKAN Sass script to work properly, so you will need to create a
link to make it work:

ln -s /usr/bin/nodejs /usr/bin/node

For more information, refer to the Node.js instructions.

Dependencies can then be installed via the node package manager (npm). We use gulp to make our Sass compiler a
watcher style script.

cd into the CKAN source folder (eg /usr/lib/ckan/default/src/ckan ) and run:

$ npm install

You may need to use sudo depending on your CKAN install type.

7.17.9 File structure

All front-end files to be served via a web server are located in the public directory (in the case of the new CKAN base
theme it’s public/base).

css/
main.css

scss/
main.scss
_ckan.scss
...

javascript/
main.js
utils.js
components/
...

vendor/
jquery.js
jquery.plugin.js

(continues on next page)

7.17. Frontend development guidelines 469

https://sass-lang.com/
http://nodejs.org/
http://nodejs.org/
https://nodejs.org/en/download/package-manager/#debian-and-ubuntu-based-linux-distributions


CKAN documentation, Release 2.10.0a0

(continued from previous page)

underscore.js
bootstrap.css
...

All files and directories should be lowercase with hyphens used to separate words.

css Should contain any site specific CSS files including compiled production builds generated by Sass.

scss Should contain all the scss files for the site. Additional vendor styles should be added to the vendor directory and
included in main.scss.

javascript Should contain all website files. These can be structured appropriately. It is recommended that main.js be
used as the bootstrap filename that sets up the page.

vendor Should contain all external dependencies. These should not contain version numbers in the filename. This
information should be available in the header comment of the file. Library plugins should be prefixed with the
library name. If a dependency has many files (such as bootstrap) then the entire directory should be included as
distributed by the maintainer.

7.17.10 Stylesheets

Because all the stylesheets are using Sass we need to compile them before beginning development by running:

$ npm run watch

This will watch for changes to all of the scss files and automatically rebuild the CSS for you. To quit the script press
ctrl-c. If you need sourcemaps for debugging, set DEBUG environment variable. I.e:

$ DEBUG=1 npm run watch

There are many Sass files which attempt to group the styles in useful groups. The main two are:

main.scss: This contains all the styles for the website including dependancies and local styles. The only files that are
excluded here are those that are conditionally loaded such as IE only CSS and large external apps (like recline)
that only appear on a single page.

ckan.scss: This includes all the local ckan stylesheets.

Note: Whenever a CSS change effects main.scss it’s important than after the merge into master that a $ npm run
build should be run and commited.

There is a basic pattern primer available at: http://localhost:5000/testing/primer/ that shows all the main page elements
that make up the CKAN core interface.

470 Chapter 7. Contributing guide

http://localhost:5000/testing/primer/


CKAN documentation, Release 2.10.0a0

7.17.11 JavaScript

The core of the CKAN JavaScript is split up into three areas.

• Core (such as i18n, pub/sub and API clients)

• Modules (small HTML components or widgets)

• jQuery Plugins (very small reusable components)

Core

Everything in the CKAN application lives on the ckan namespace. Currently there are four main components that
make up the core.

• Modules

• Publisher/Subscriber

• Client

• i18n/Jed

Modules

Modules are the core of the CKAN website, every component that is interactive on the page should be a module. These
are then initialized by including a data-module attribute on an element on the page. For example:

<select name="format" data-module="autocomplete"></select>

The idea is to create small isolated components that can easily be tested. They should ideally not use any global objects,
all functionality should be provided to them via a “sandbox” object.

There is a global factory that can be used to create new modules and jQuery and Localisation methods are available via
this.sandbox.jQuery and this.sandbox.translate() respectively. To save typing these two common objects
we can take advantage of JavaScript closures and use an alternative module syntax that accepts a factory function.

ckan.module('my-module', function (jQuery) {
return {
initialize: function () {
// Called when a module is created.
// jQuery and translate are available here.

},
teardown: function () {
// Called before a module is removed from the page.

}
}

});

Note: A guide on creating your own modules is located in the Building a JavaScript Module guide.

7.17. Frontend development guidelines 471



CKAN documentation, Release 2.10.0a0

Publisher/subscriber

There is a simple pub/sub module included under ckan.pubsub it’s methods are available to modules via this.
sandbox.publish/subscribe/unsubscribe. This can be used to publish messages between modules.

Modules should use the publish/subscribe methods to talk to each other and allow different areas of the UI to update
where relevant.

ckan.module('language-picker', function (jQuery) {
return {
initialize: function () {
var sandbox = this.sandbox;
this.el.on('change', function () {

sandbox.publish('change:lang', this.selected);
});

}
}

});

ckan.module('language-notifier', function (jQuery) {
return {
initialize: function () {
this.sandbox.subscribe('change:lang', function (lang) {

alert('language is now ' + lang);
});

}
}

});

Client

Ideally no module should use jQuery.ajax() to make XHR requests to the CKAN API, all functionality should be
provided via the client object.

ckan.module('my-module', function (jQuery) {
return {
initialize: function () {
this.sandbox.client.getCompletions(this.options.completionsUrl);

}
}

});

Internationalization

See Internationalizing strings in JavaScript code.

472 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

Life cycle

CKAN modules are intialised on dom ready. The ckan.module.initialize() will look for all elements on the page
with a data-module attribute and attempt to create an instance.

<select name="format" data-module="autocomplete" data-module-key="id"></select>

The module will be created with the element, any options object extracted from data-module-* attributes and a new
sandbox instance.

Once created the modules initialize() method will be called allowing the module to set themselves up.

Modules should also provide a teardown() method this isn’t used at the moment except in the unit tests to restore
state but may become useful in the future.

jQuery plugins

Any functionality that is not directly related to ckan should be packaged up in a jQuery plug-in if possible. This keeps
the modules containing only ckan specific code and allows plug-ins to be reused on other sites.

Examples of these are jQuery.fn.slug(), jQuery.fn.slugPreview() and jQuery.proxyAll().

Unit tests

Every core component, module and plugin should have a set of unit tests. Tests can be filtered using the grep={regexp}
query string parameter.

Each file has a description block for it’s top level object and then within that a nested description for each method that
is to be tested:

describe('ckan.module.MyModule()', function () {
describe('.initialize()', function () {
it('should do something...', function () {

// assertions.
});

});

describe('.myMethod(arg1, arg2, arg3)', function () {
});

});

The `.beforeEach()` and `.afterEach()` callbacks can be used to setup objects for testing (all blocks share the
same scope so test variables can be attached):

describe('ckan.module.MyModule()', function () {
before(() => {

// Open CKAN front page
cy.visit('/');

// Pull the class out of the registry.
cy.window().then(win => {
// make module available as this.MyModule
cy.wrap(win.ckan.module.registry['my-module']).as('MyModule');
win.jQuery('<div id="fixture">').appendTo(win.document.body)

(continues on next page)

7.17. Frontend development guidelines 473



CKAN documentation, Release 2.10.0a0

(continued from previous page)

})
});

beforeEach(function () {
// window object is needed to access the javascript objects
cy.window().then(win => {
// Create a test element.
this.el = win.jQuery('<div />');

// Create a test sandbox.
this.sandbox = win.ckan.sandbox();

// Create a test module.
this.module = new this.MyModule(this.el, {}, this.sandbox);

});
});

afterEach(function () {
// Clean up.
this.module.teardown();

});
});

Templates can also be loaded using the .loadFixture() method that is available in all test contexts. Tests can be
made asynchronous by using promises (Cypress returns a promise in almost all functions):

describe('ckan.module.MyModule()', function () {

before(function (done) {
cy.visit('/');

// Add a fixture element to page
cy.window().then(win => {

win.jQuery('<div id="fixture">').appendTo(win.document.body)
})

// Load the template once.
cy.loadFixture('my-template.html').then((template) => {

cy.wrap(template).as('template');
});

});

beforeEach(function () {
// Assign the template to the module each time.
cy.window().then(win => {

win.jQuery('#fixture').html(this.template).children();
});

});

474 Chapter 7. Contributing guide



CKAN documentation, Release 2.10.0a0

7.18 Database migrations

When changes are made to the model classes in ckan.model that alter CKAN’s database schema, a migration script
has to be added to migrate old CKAN databases to the new database schema when they upgrade their copies of CKAN.
These migration scripts are kept in ckan.migration.versions.

When you upgrade a CKAN instance, as part of the upgrade process you run any necessary migration scripts with the
ckan db upgrade command.

A migration script should be checked into CKAN at the same time as the model changes it is related to.

To create a new migration script, use CKAN CLI:

ckan generate migration -m "Add account table"

Update the generated file, because it doesn’t contain any actual changes, only placeholders for upgrade and downgrade
steps. For more details see: https://alembic.sqlalchemy.org/en/latest/tutorial.html#create-a-migration-script

Rename the file to include a prefix numbered one higher than the previous one, like the others in ckan/migration/
versions/.

7.18.1 Manual checking

As a diagnostic tool, you can manually compare the database as created by the model code and the migrations code:

# Database created by model
ckan -c |ckan.ini| db clean
ckan -c |ckan.ini| db create-from-model
sudo -u postgres pg_dump -s -f /tmp/model.sql ckan_default

# Database created by migrations
ckan -c |ckan.ini| db clean
ckan -c |ckan.ini| db init
sudo -u postgres pg_dump -s -f /tmp/migrations.sql ckan_default

sudo -u postgres diff /tmp/migrations.sql /tmp/model.sql

7.18.2 Troubleshooting

If you are working on a branch that adds new database migrations and merge the most recent commits from master,
you might find the following error when running the tests (or manually upgrading the database):

if len(current_heads) > 1:
raise MultipleHeads(

current_heads,
> "%s@head" % branch_label if branch_label else "head")
E CommandError: Multiple head revisions are present for given argument 'head';␣
→˓please specify a specific target revision, '<branchname>@head' to narrow to a specific␣
→˓head, or 'heads' for all heads

../../local/lib/python2.7/site-packages/alembic/script/revision.py:271: CommandError

This means that your current alembic history has two heads, because a new database migration was also added in master
in the meantime. To check which migrations need adjusting, go to the ckan/migrations folder and run:

7.18. Database migrations 475

https://alembic.sqlalchemy.org/en/latest/tutorial.html#create-a-migration-script


CKAN documentation, Release 2.10.0a0

alembic history

You should see a branchpoint revision and two head revisions, like in this example:

d4d9be9189fe -> 588d7cfb9a41 (head), Add metadata_modified filed to Resource
d4d9be9189fe -> f789f233226e (head), Add package_member_table
01afcadbd8c0 -> d4d9be9189fe (branchpoint), Remove activity.revision_id
0ffc0b277141 -> 01afcadbd8c0, resource package_id index
980dcd44de4b -> 0ffc0b277141, group_extra group_id index
23c92480926e -> 980dcd44de4b, delete migrate version table

In this case d4d9be9189fe was the latest common migration, and changes in master introduced 588d7cfb9a41, while
we had already added f789f233226e.

The easiest fix is to manually set the down revision in our branch migration to the most recent one in master:

diff --git a/ckan/migration/versions/f789f233226e_add_package_member_table.py b/ckan/
→˓migration/versions/f789f233226e_add_package_member_table.py
index 5628d1350..ade2dd07f 100644
--- a/ckan/migration/versions/f789f233226e_add_package_member_table.py
+++ b/ckan/migration/versions/f789f233226e_add_package_member_table.py
@@ -10,7 +10,7 @@ import sqlalchemy as sa

# revision identifiers, used by Alembic.
revision = 'f789f233226e'
-down_revision = u'd4d9be9189fe'
+down_revision = u'588d7cfb9a41'
branch_labels = None
depends_on = None

This will give us a linear history once again:

588d7cfb9a41 -> f789f233226e (head), Add package_member_table
d4d9be9189fe -> 588d7cfb9a41, Add metadata_modified filed to Resource
01afcadbd8c0 -> d4d9be9189fe, Remove activity.revision_id
0ffc0b277141 -> 01afcadbd8c0, resource package_id index
980dcd44de4b -> 0ffc0b277141, group_extra group_id index
23c92480926e -> 980dcd44de4b, delete migrate version table

In more complex scenarios like two migrations updating the same tables, you can use the alembic merge command.

7.19 Upgrading CKAN’s dependencies

The Python modules that CKAN depends on are pinned to specific versions, so we can guarantee that whenever anyone
installs CKAN, they’ll always get the same versions of the Python modules in their virtual environment.

Our dependencies are defined in three files:

requirements.in This file is only used to create a new version of the requirements.txt file when upgrading the
dependencies. Contains our direct dependencies only (not dependencies of dependencies) with loosely defined
versions. For example, python-dateutil>=1.5.0,<2.0.0.

requirements.txt This is the file that people actually use to install CKAN’s dependencies into their virtualenvs. It
contains every dependency, including dependencies of dependencies, each pinned to a specific version. For

476 Chapter 7. Contributing guide

https://alembic.sqlalchemy.org/en/latest/branches.html#merging-branches


CKAN documentation, Release 2.10.0a0

example, simplejson==3.3.1.

dev-requirements.txt Contains those dependencies only needed by developers, not needed for production sites. These
are pinned to a specific version. For example, factory-boy==2.1.1.

We haven’t created a dev-requirements.in file because we have too few dev dependencies, we don’t update them
often, and none of them have a known incompatible version.

7.19.1 Steps to upgrade

These steps will upgrade all of CKAN’s dependencies to the latest versions that work with CKAN:

1. Create a new virtualenv: virtualenv --no-site-packages upgrading

2. Install the requirements with unpinned versions: pip install -r requirements.in

3. Save the new dependencies versions: pip freeze > requirements.txt. We have to do this before installing
the other dependencies so we get only what was in requirements.in

4. Install CKAN: python setup.py develop

5. Install the development dependencies: pip install -r dev-requirements.txt

6. Run the tests to make sure everything still works (see Testing CKAN).

• If not, try to fix the problem. If it’s too complicated, pinpoint which dependency’s version broke our tests,
find an older version that still works, and add it to requirements.in (i.e., if python-dateutil 2.0.0
broke CKAN, you’d add python-dateutil>=1.5.0,<2.0.0). Go back to step 1.

7. Navigate a bit on CKAN to make sure the tests didn’t miss anything. Review the dependencies changes and their
changelogs. If everything seems fine, go ahead and make a pull request (see Making a pull request).

7.20 Doing a CKAN release

This section documents the steps followed by the development team to do a new CKAN release.

See also:

Upgrading CKAN An overview of the different kinds of CKAN release, and the process for upgrading a CKAN site
to a new version.

7.20.1 Process overview

Changed in version 2.6.

The process of a new release starts with the creation of a new release development branch. A release development
branch is the one that will be stabilized and eventually become the actual released version. Release branches are always
named dev-vM.m, after the major and minor versions they include. Major and minor versions are always branched
from master. When the release is actually published a patch version number is added and the release is tagged in the
form ckan-M.m.p. All backports are cherry-picked on the dev-vM.m branch.

+--+-----------------------------------------+-------------> Master
| |
+-----+-------------+------> dev-v2.6 +-------> dev-v2.7

| |
ckan-2.6.0 ckan-2.6.1

7.20. Doing a CKAN release 477



CKAN documentation, Release 2.10.0a0

Additionally, the release-vM.m-latest branches always contain the latest published release for that version (eg
2.6.1 on the example above).

Note: Prior to CKAN 2.6, release branches were named release-vM.m.p, after the major, minor and patch versions
they included, and patch releases were always branched from the most recent tip of the previous patch release branch
(tags were created with the same convention). Starting from CKAN 2.6, the convention is the one described above.

+--+---------------------------------------+-------------> Master
| |
+-----------------> release-v2.4.0 +----------> release-v2.5.0

|
+---------> release-v2.4.1

|
+------> release-v2.4.2

Once a release branch has been created there is generally a three-four week period until the actual release. During this
period the branch is tested and fixes cherry-picked. The whole process is described in the following sections.

7.20.2 Doing the beta release

Beta releases are branched off a certain point in master and will eventually become stable releases.

Turn this file into a github issue with a checklist using this command:

echo 'Full instructions here: https://github.com/ckan/ckan/blob/master/doc/contributing/
→˓release-process.rst'; egrep '^(\#\.|Doing|Leading|Preparing)' doc/contributing/release-
→˓process.rst | sed 's/^\([^#]\)/\n## \1/g' | sed 's/\#\./* [ ]/g' |sed 's/::/./g'

1. Create a new release branch:

git checkout -b dev-v2.7

Update ckan/__init__.py to change the version number to the new version with a b after it, e.g. 2.7.0b (Make
sure to include 0 as the patch version number). Commit the change and push the new branch to GitHub:

git commit -am "Update version number"
git push origin dev-v2.7

You will probably need to update the same file on master to increase the version number, in this case ending with
an a (for alpha).

During the beta process, all changes to the release branch must be cherry-picked from master (or merged from
special branches based on the release branch if the original branch was not compatible).

As in the master branch, if some commits involving CSS changes are cherry-picked from master, the sass com-
piling command needs to be run on the release branch. This will update the main.css file:

npm run build
git commit -am "Rebuild CSS"
git push

2. Update beta.ckan.org to run new branch.

The beta staging site (http://beta.ckan.org, currently on s084) must be set to track the latest beta release branch
to allow user testing. This site is automatically updated nightly.

478 Chapter 7. Contributing guide

http://beta.ckan.org


CKAN documentation, Release 2.10.0a0

Check the message on the front page reflects the current version. Edit it as a syadmin here: http://beta.ckan.org/
ckan-admin/config

3. Announce the branch and ask for help testing on beta.ckan.org on ckan-dev.

4. Create the documentation branch from the release branch. This branch should be named just with the minor
version and nothing else (eg 2.7, 2.8, etc). We will use this branch to build the documentation in Read the Docs
on all patch releases for this version.

5. Make latest translation strings available on Transifex.

During beta, a translation freeze is in place (ie no changes to the translatable strings are allowed). Strings need
to be extracted and uploaded to Transifex:

a. Install the Babel and Transifex libraries if necessary:

pip install --upgrade Babel
pip install transifex-client

b. Create a ~/.transifexrc file if necessary with your login details (token should be left blank):

[https://www.transifex.com]
hostname = https://www.transifex.com
username = <username>
password = <password>
token =

c. Extract new strings from the CKAN source code into the ckan.pot file. The pot file is a text file that
contains the original, untranslated strings extracted from the CKAN source code.:

python setup.py extract_messages

The po files are text files, one for each language CKAN is translated to, that contain the translated strings
next to the originals. Translators edit the po files (on Transifex) to update the translations. We never edit
the po files locally.

c. Get the latest translations (of the previous CKAN release) from Transifex, in case any have changed since:

tx pull --all --minimum-perc=5 --force

(This ignores any language files which less than 5% translation - which is the bare minimum we require)

e. Update the ckan.po files with the new strings from the ckan.pot file:

python setup.py update_catalog --no-fuzzy-matching

Any new or updated strings from the CKAN source code will get into the po files, and any strings in the po
files that no longer exist in the source code will be deleted (along with their translations).

We use the --no-fuzzy-matching option because fuzzy matching often causes problems with Babel and
Transifex.

If you get this error for a new translation:

babel.core.UnknownLocaleError: unknown locale ‘crh’

then it’s Transifex appears to know about new languages before Babel does. Just delete that translation
locally - it may be ok with a newer Babel in later CKAN releases.

f. Run msgfmt checks:

7.20. Doing a CKAN release 479

http://beta.ckan.org/ckan-admin/config
http://beta.ckan.org/ckan-admin/config
https://www.transifex.com/projects/p/ckan


CKAN documentation, Release 2.10.0a0

find ckan/i18n/ -name "*.po"| xargs -n 1 msgfmt -c

You must correct any errors or you will not be able to send these to Transifex.

A common problem is that Transifex adds to the end of a po file as comments any extra strings it has, but
msgfmt doesn’t understand them. Just delete these lines.

g. Run our script that checks for mistakes in the ckan.po files:

ckan -c |ckan.ini| translation check-po ckan/i18n/*/LC_MESSAGES/ckan.po

If the script finds any mistakes then at some point before release you will need to correct them, but it doesn’t
need to be done now, since the priority is to announce the call for translations.

When it is done, you must do the correction on Transifex and then run the tx pull command again, don’t
edit the files directly. Repeat until the script finds no mistakes.

h. Edit .tx/config, on line 4 to set the Transifex ‘resource’ to the new major release name (if different),
using dashes instead of dots. For instance v2.4.0, v2.4.1 and v2.4.2 all share: [ckan.2-4].

i. Create a new resource in the CKAN project on Transifex by pushing the new pot and po files:

tx push --source --translations --force

Because it reads the new version number in the .tx/config file, tx will create a new resource on Tran-
sifex rather than updating an existing resource (updating an existing resource, especially with the --force
option, can result in translations being deleted from Transifex).

If you get a ‘msgfmt’ error, go back to the step where msgfmt is run.

j. On Transifex give the new resource a more friendly name. Go to the resource e.g. https://www.transifex.
com/okfn/ckan/2-5/ and the settings are accessed from the triple dot icon “. . . ”. Keep the slug like “2-4”,
but change the name to be like “CKAN 2.5”.

k. Update the ckan.mo files by compiling the po files:

python setup.py compile_catalog

The mo files are the files that CKAN actually reads when displaying strings to the user.

l. Commit all the above changes to git and push them to GitHub:

git add ckan/i18n/*.mo ckan/i18n/*.po
git commit -am "Update strings files before CKAN X.Y.Z call for translations"
git push

6. Send an annoucement email with a call for translations.

Send an email to the ckan-dev list, tweet from @CKANproject and send a transifex announcement from: https:
//www.transifex.com/okfn/ckan/announcements/ . Make sure to post a link to the correct Transifex resource (like
this one) and tell users that they can register on Transifex to contribute. Give a deadline in two weeks time.

7. Create deb packages.

Ideally do this once a week. Create the deb package with the latest release branch, using betaX iterations. Deb
packages are built using Ansible scripts located at the following repo:

https://github.com/ckan/ckan-packaging

The repository contains further instructions on how to run the scripts, but essentially you need to generate the
packages (one for precise and one for trusty) on your local machine and upload them to the Amazon S3 bucket.

480 Chapter 7. Contributing guide

https://www.transifex.com/okfn/ckan/2-5/
https://www.transifex.com/okfn/ckan/2-5/
https://www.transifex.com/okfn/ckan/announcements/
https://www.transifex.com/okfn/ckan/announcements/
https://www.transifex.com/okfn/ckan/2-5/
http://ansible.com/
https://github.com/ckan/ckan-packaging


CKAN documentation, Release 2.10.0a0

To generate the packages, run:

./ckan-package -v 2.x.y -i betaX

To upload the files to the S3 bucket, you will need the relevant credentials and to install the Amazon AWS
command line interface

Make sure to upload them to the build folder, so they are not mistaken by the stable ones:

aws s3 cp python-ckan_2.5.0-precisebeta1_amd64.deb s3://packaging.ckan.org/build/
→˓python-ckan_2.5.0-precisebeta1_amd64.deb

Now the .deb files are available at https://packaging.ckan.org/build/ invite people on ckan-dev to test them.

7.20.3 Leading up to the release

1. Update the CHANGELOG.txt with the new version changes.

• Check that all merged PRs have corresponding fragment inside changes/ folder. Name of every fragment
is following format {issue number}.{fragment type}, where issue number is GitHub issue id and
fragment type is one of migration, removal, bugfix or misc depending on change introduced by PR. Missing
fragments can be created using towncrier create –edit {issue number}.{fragment type} command. The
following gist has a script that uses the GitHub API to aid in getting the merged issues between releases:

https://gist.github.com/amercader/4ec55774b9a625e815bf

But dread found changed the first step slightly to get it to work:

git log --pretty=format:%s --reverse --no-merges release-v2.4.2...release-v2.5.
→˓0 -- | grep -Pzo "^\[#\K[0-9]+" | sort -u -n > issues_2.5.txt

When all fragments are ready, make a test build:

towncrier build --draft

And check output. If no problems identified, compile updated changelog:

towncrier build --yes

You’ll be asked, whether it’s ok to remove source fragments. Feel free to answer “yes” - all changes will be
automatically inserted into changelog, so there is no sense in keeping those files. Don’t forget to commit
changes afterwards.

2. A week before the translations will be closed send a reminder email.

3. Once the translations are closed, sync them from Transifex.

Pull the updated strings from Transifex:

tx pull --all --minimum-perc=5 --force

Check and compile them as before:

ckan -c |ckan.ini| translation check-po ckan/i18n/*/LC_MESSAGES/ckan.po
python setup.py compile_catalog

The compilation shows the translation percentage. Compare this with the new
(continues on next page)

7.20. Doing a CKAN release 481

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://packaging.ckan.org/build/
https://gist.github.com/amercader/4ec55774b9a625e815bf


CKAN documentation, Release 2.10.0a0

(continued from previous page)

languages directories added to ckan/i18n::

git status

git add any new ones. (If all is well, you won’t see any that are under 5% translated.)

Now push:

git commit -am "Update translations from Transifex"
git push

4. A week before the actual release, announce the upcoming release(s).

Send an email to the ckan-announce mailing list, so CKAN instance maintainers can be aware of the upcoming
releases. List any patch releases that will be also available. Here’s an example email.

7.20.4 Doing the final release

Once the release branch has been thoroughly tested and is stable we can do a release.

1. Run the most thorough tests:

pytest --ckan-ini=test-core.ini ckan/tests

2. Review the CHANGELOG to check it is complete.

3. Check that the docs compile correctly:

rm build/sphinx -rf
python setup.py build_sphinx

4. Remove the beta letter in the version number.

The version number is in ckan/__init__.py (eg 2.5.0b -> 2.5.0) and commit the change:

git commit -am "Update version number for release X.Y.Z"

5. Tag the repository with the version number.

Make sure to push it to GitHub afterwards:

git tag -a -m '[release]: Release tag' ckan-X.Y.Z
git push --tags

6. Create and deploy the final deb package.

Move it to the root of the publicly accessible folder of the packaging server from the /build folder.

Make sure to rename it so it follows the deb packages name convention:

python-ckan_Major.minor_amd64.deb

Note that we drop any patch version or iteration from the package name.

7. Upload the release to PyPI:

python setup.py sdist upload

482 Chapter 7. Contributing guide

https://groups.google.com/a/ckan.org/g/ckan-announce
https://groups.google.com/a/ckan.org/g/ckan-announce/c/BcDR7Guzb44
https://packaging.ckan.org/


CKAN documentation, Release 2.10.0a0

You will need a PyPI account with admin permissions on the ckan package, and your credentials should be
defined on a ~/.pypirc file such as:

[distutils]
index-servers =

pypi

[pypi]
username: <user-name>
password: <password>

For more info, see: here

If running in Vagrant you may get error error: Operation not permitted due to failure to create a hard
link. The solution is to add a line at the top of setup.py:

# Avoid problem releasing to pypi from vagrant
import os
if os.environ.get('USER', '') == 'vagrant':

del os.link

as described here: https://stackoverflow.com/questions/7719380/python-setup-py-sdist-error-operation-not-permitted

If you upload a bad package, then you can remove it from PyPI however you must use a new version number next
time.

8. Build new Docker images for the new version in the following repos:

• openknowledge/docker-ckan -> openknowledge/ckan-base:{Major:minor} and openknowledge/
ckan-dev:{Major:minor} (ping @amercader for this one)

• ckan/ckan-solr-dev -> ckan/ckan-solr-dev:{Major:minor}

• ckan/ckan-postgres-dev -> ckan/ckan-postgres-dev:{Major:minor}

9. Enable the new version of the docs on Read the Docs.

(You will need an admin account.)

a. Make sure the documentation branch is up to date with the latest changes in the corresponding dev-vX.Y
branch.

b. If this is the first time a minor version is released, go to the Read The Docs versions page and make the
relevant release ‘active’ (make sure to use the documentation branch, ie X.Y, not the development branch,
ie dev-vX.Y).

c. If it is the latest stable release, set it to be the Default Version and check it is displayed on http://docs.ckan.
org.

10. Write a CKAN blog post and announce it to ckan-announce & ckan-dev & twitter.

CKAN blog here: <http://ckan.org/wp-admin>`_

• Example blog

• Example email

Tweet from @CKANproject

11. Cherry-pick the i18n changes from the release branch onto master.

7.20. Doing a CKAN release 483

http://docs.python.org/distutils/packageindex.html#pypirc
https://stackoverflow.com/questions/7719380/python-setup-py-sdist-error-operation-not-permitted
https://github.com/okfn/docker-ckan
https://github.com/ckan/ckan-solr-dev
https://github.com/ckan/ckan-postgres-dev
https://readthedocs.org/projects/ckan/versions/
http://docs.ckan.org
http://docs.ckan.org
http://ckan.org/wp-admin
https://ckan.org/2021/02/10/new-patch-releases-available-upgrade-now-your-ckan-site/
https://groups.google.com/a/ckan.org/g/ckan-announce/c/BcDR7Guzb44


CKAN documentation, Release 2.10.0a0

We don’t generally merge or cherry-pick release branches into master, but the files in ckan/i18n are an exception.
These files are only ever changed on release branches following the Doing the beta release instructions above,
and after a release has been finalized the changes need to be cherry-picked onto master.

To find out what i18n commits there are on the release-v* branch that are not on master, do:

git log master..dev-v* ckan/i18n

Then checkout the master branch, do a git status and a git pull to make sure you have the latest commits
on master and no local changes. Then use git cherry-pick when on the master branch to cherry-pick these
commits onto master. You should not get any merge conflicts. Run the check-po command again just to be
safe, it should not report any problems. Run CKAN’s tests, again just to be safe. Then do git push origin
master.

7.20.5 Preparing patch releases

1. Announce the release date & time with a week’s notice on ckan-announce.

Often this will be part of the announcement of a CKAN major/minor release. But if patches go out separately
then they will need their own announcement.

2. Update ckan/__init__.py with the incremented patch number e.g. 2.5.1 becomes 2.5.2. Commit the change
and push the new branch to GitHub:

git commit -am "Update version number"
git push origin release-v2.5.2

3. Cherry-pick PRs marked for back-port.

These are usually marked on Github using the Backport Pending labels and the relevant labels for the versions
they should be cherry-picked to (eg Backport 2.5.3). Remember to look for PRs that are closed i.e. merged.
Remove the Backport Pending label once the cherry-picking has been done (but leave the version ones).

4. Ask the tech team if there are security fixes or other fixes to include.

5. Update the CHANGELOG.

7.20.6 Doing the patch releases

1. Review the CHANGELOG to check it is complete.

2. Tag the repository with the version number.

Make sure to push it to GitHub afterwards:

git tag -a -m '[release]: Release tag' ckan-X.Y.Z
git push --tags

3. Create and deploy the final deb package.

Create using ckan-packaging checkout e.g.:

./ckan-package -v 2.5.2 -i 1

Make sure to rename the deb files so it follows the deb packages name convention:

python-ckan_Major.minor_amd64.deb

484 Chapter 7. Contributing guide

https://github.com/ckan/ckan/labels


CKAN documentation, Release 2.10.0a0

Note that we drop the patch version and iteration number from the package name.

Move it to the root of the publicly accessible folder of the packaging server from the /build folder, replacing the
existing file for this minor version.

4. Upload the release to PyPI:

python setup.py sdist upload

5. Make sure the documentation branch (X.Y) is up to date with the latest changes in the corresponding dev-vX.Y
branch.

6. Write a CKAN blog post and announce it to ckan-announce & ckan-dev & twitter.

Often this will be part of the announcement of a CKAN major/minor release. But if patches go out separately
then they will need their own announcement.

7.20. Doing a CKAN release 485

https://packaging.ckan.org/


CKAN documentation, Release 2.10.0a0

486 Chapter 7. Contributing guide



CHAPTER

EIGHT

CHANGELOG

8.1 v.2.9.5 2022-01-19

8.1.1 Major features

• Solr 8 support. Starting from version 2.9.5, CKAN supports Solr versions 6 and 8. Support for Solr 6 will
be dropped in the next CKAN minor version (2.10). Note that if you want to use Solr 8 you need to use the
ckan/config/solr/schema.solr8.xml file, or alternatively you can use the ckan/ckan-solr:2.9-solr8
Docker image which comes pre-configured. (#6530)

8.1.2 Bugfixes

• Consistent CLI behavior when no command is provided and when using –help (#6120)

• Fix regression when validating resource subfields (#6546)

• Fix user create/edit email validators (#6399)

• Error opening JS translations on Python 2 (#6531)

• Set logging level to error in error mail handler (#6577)

• Add RootPathMiddleware to flask stack to support non-root installs running on python 3 (#6556)

• Use correct auth function when editing organizations (#6622)

• Fix invite user with existing email error (#5880)

• Accept empty string in one of validator (#6612)

8.1.3 Minor changes

• Add timeouts to requests calls (see ckan.requests.timeout) (#6408)

• Types of file uploads for group and user imags can be restricted via the ckan.upload.{object_type}.types and
ckan.upload.{object_type}.mimetypes config options (eg ckan.upload.group.types, ckan.upload.user.mimetypes)
(#6477)

• Allow children elements on select2 lists (#6503)

• Enable minimumInputLength and fix loading message in select2 (#6554)

487

https://github.com/ckan/ckan/pull/6530
https://github.com/ckan/ckan/pull/6120
https://github.com/ckan/ckan/pull/6546
https://github.com/ckan/ckan/pull/6399
https://github.com/ckan/ckan/pull/6531
https://github.com/ckan/ckan/pull/6577
https://github.com/ckan/ckan/pull/6577
https://github.com/ckan/ckan/pull/6622
https://github.com/ckan/ckan/pull/5880
https://github.com/ckan/ckan/pull/6612
https://github.com/ckan/ckan/pull/6408
https://github.com/ckan/ckan/pull/6477
https://github.com/ckan/ckan/pull/6503
https://github.com/ckan/ckan/pull/6554


CKAN documentation, Release 2.10.0a0

8.2 v.2.9.4 2021-09-22

Note: This release includes requirements upgrades to address security issues

8.2.1 Bugfixes

• Don’t show snippet names in non-debug mode (#6406)

• Show job title on job start/finish log messages (#6387)

• Fix unpriviledged users being able to access bulk process (#6290)

• Allow UTF-8 in JS translations (#6051)

• Handle Traceback Exception for HTTP and HTTP status Code in logging (#6340)

• Fix object list validation output (#6149)

• Coerce query string keys/values before passing to quote() (#6099)

• Fix datetime formatting when listing user tokens on py2. (#6319)

• Fix Solr HTTP basic auth cred handling (#6286)

• Remove not accessed user object in resource_update (#6220)

• Fix for g.__timer (#6207)

• Fix guard clause on has_more_facets, #6190 (#6190)

• Fix page render errors when search facets are not defined (#6181)

• Fix exception when using solr_user and solr_password on Py3 (#6179)

• Fix pagination links for custom org types (#6162)

• Fixture for plugin DB migrations (#6139)

• Render activity timestamps with title= attribute (#6109)

• Fix db init error in alembic (#5998)

• Fix user email validator when using name as id parameter (#6113)

• Fix DataPusher error during resource_update (#5597)

• render_datetime helper does not respect ckan.display_timezone configuration (#6252)

• Fix SQLAlchemy configuration for DataStore (#6087)

• Don’t cache license translations across requests (#5586)

• Fix tracking.js module preventing links to be opened in new tabs (#6386)

• Fix deleted org/group feeds (#6368)

• Fix runaway preview height (#6284)

• Stable default ordering when consuming resource content from datastore (#2317)

• Several documentation fixes and improvements

488 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/6406
https://github.com/ckan/ckan/pull/6387
https://github.com/ckan/ckan/pull/6290
https://github.com/ckan/ckan/pull/6051
https://github.com/ckan/ckan/pull/6340
https://github.com/ckan/ckan/pull/6149
https://github.com/ckan/ckan/pull/6099
https://github.com/ckan/ckan/pull/6319
https://github.com/ckan/ckan/pull/6286
https://github.com/ckan/ckan/pull/6220
https://github.com/ckan/ckan/pull/6207
https://github.com/ckan/ckan/pull/6190
https://github.com/ckan/ckan/pull/6181
https://github.com/ckan/ckan/pull/6179
https://github.com/ckan/ckan/pull/6162
https://github.com/ckan/ckan/pull/6139
https://github.com/ckan/ckan/pull/6109
https://github.com/ckan/ckan/pull/5998
https://github.com/ckan/ckan/pull/6113
https://github.com/ckan/ckan/pull/5597
https://github.com/ckan/ckan/pull/6252
https://github.com/ckan/ckan/pull/6086
https://github.com/ckan/ckan/pull/5586
https://github.com/ckan/ckan/pull/6384
https://github.com/ckan/ckan/pull/6368
https://github.com/ckan/ckan/pull/6283
https://github.com/ckan/ckan/pull/2317


CKAN documentation, Release 2.10.0a0

8.3 v.2.9.3 2021-05-19

8.3.1 Bugfixes

• Fix Chinese locales. Note that the URLs for the zh_CN and zh_TW locales have changed but there are redirects
in place, eg http://localhost:5000/zh_CN/dataset -> http://localhost:5000/zh_Hans_CN/dataset (#6008)

• Fix performance bottleneck in activity queries (#6028)

• Keep repeatable facets inside pagination links (#6084)

• Ensure order of plugins in PluginImplementations (#5965)

• Fix for Datastore file dump extension (#5593)

• Allow package activity migration on py3 (#5930)

• Fix TemplateSyntaxError in snippets/changes/license.html (#5972)

• Remove hardcoded logging level (#5941)

• Include extra files into ckanext distribution (#5995)

• Fix db init in docker as the directory is not empty (#6027)

• Fix sqlalchemy configuration, add doc (#5932)

• Fix issue with purging custom entity types (#5859)

• Only load view filters on templates that need them

• Sanitize user image url

• Allow installation of requirements without any additional actions using pip (#5408)

• Include requirements files in Manifest (#5726)

• Dockerfile: pin pip version (#5929)

• Allow uploaders to only override asset / resource uploading (#6088)

• Catch TypeError from invalid thrown by dateutils (#6085)

• Display proper message when sysadmin password is incorect (#5911)

• Use external library to parse view filter params

• Fix auth error when deleting a group/org (#6006)

• Fix datastore_search language parameter (#5974)

• make SQL function whitelist case-insensitive unless quoted (#5969)

• Fix Explore button not working (#3720)

• remove unused var in task_status_update (#5861)

• Prevent guessing format and mimetype from resource urls without path (#5852)

• Multiple documentation improvements

8.3. v.2.9.3 2021-05-19 489

http://localhost:5000/zh_CN/dataset
http://localhost:5000/zh_Hans_CN/dataset
https://github.com/ckan/ckan/pull/6008
https://github.com/ckan/ckan/pull/6028
https://github.com/ckan/ckan/pull/6084
https://github.com/ckan/ckan/pull/5965
https://github.com/ckan/ckan/pull/5593
https://github.com/ckan/ckan/pull/5930
https://github.com/ckan/ckan/pull/5972
https://github.com/ckan/ckan/pull/5941
https://github.com/ckan/ckan/pull/5995
https://github.com/ckan/ckan/pull/6027
https://github.com/ckan/ckan/pull/5932
https://github.com/ckan/ckan/pull/5859
https://github.com/ckan/ckan/pull/5408
https://github.com/ckan/ckan/pull/5726
https://github.com/ckan/ckan/pull/5929
https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/6085
https://github.com/ckan/ckan/pull/5911
https://github.com/ckan/ckan/pull/6006
https://github.com/ckan/ckan/pull/5974
https://github.com/ckan/ckan/pull/5969
https://github.com/ckan/ckan/pull/3720
https://github.com/ckan/ckan/pull/5861
https://github.com/ckan/ckan/pull/5852


CKAN documentation, Release 2.10.0a0

8.3.2 Minor changes

• Support for setting host and port on the ini file (#5939)

• Allow to set path to INI file in the WSGI script (#5987)

• Allow multi-level config inheritance (#6000)

8.4 v.2.9.2 2021-02-10

General notes:

• Note: To use PostgreSQL 12 on CKAN 2.9 you need to upgrade psycopg2 to at least 2.8.4 (more details in
#5796)

8.4.1 Major features

• Add CLI commands for API Token management (#5868)

8.4.2 Bugfixes

• Persist attributes in chained functions (#5751)

• Fix install documentation (#5618)

• Fix exception when passing limit to organization (#5789)

• Fix for adding directories from plugins if partially string matches existing values (#5836)

• Fix upload log activity sorting (#5827)

• Textview: escape text formats (#5814)

• Add allow_partial_update to fix losing users (#5734)

• Set default group_type to group in group_create (#5693)

• Use user performing the action on activity context on user_update (#5743)

• New block in nav links in user dashboard (#5804)

• Update references to DataPusher documentation

• Fix JavaScript error on Edge (#5782)

• Fix error when deleting resource with missing datastore table (#5757)

• ensure HTTP_HOST is bytes under python2 (#5714)

• Don’t set old_filename when updating groups (#5707)

• Filter activities from user at the database level (#5698)

• Fix user_list ordering (#5667)

• Allowlist for functions in datastore_search_sql (see ckan.datastore.sqlsearch.allowed_functions_file)

• Fix docker install (#5381)

• Fix Click requirement conflict (#5539)

• Return content-type header on downloads if mimetype is (#5670)

490 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5939
https://github.com/ckan/ckan/pull/5987
https://github.com/ckan/ckan/pull/6000
https://github.com/ckan/ckan/issues/5796
https://github.com/ckan/ckan/pull/5868
https://github.com/ckan/ckan/pull/5751
https://github.com/ckan/ckan/pull/5618
https://github.com/ckan/ckan/pull/5789
https://github.com/ckan/ckan/pull/5836
https://github.com/ckan/ckan/pull/5827
https://github.com/ckan/ckan/pull/5814
https://github.com/ckan/ckan/pull/5734
https://github.com/ckan/ckan/pull/5693
https://github.com/ckan/ckan/pull/5743
https://github.com/ckan/ckan/pull/5804
https://github.com/ckan/ckan/pull/5782
https://github.com/ckan/ckan/pull/5757
https://github.com/ckan/ckan/pull/5714
https://github.com/ckan/ckan/pull/5707
https://github.com/ckan/ckan/pull/5698
https://github.com/ckan/ckan/pull/5667
https://github.com/ckan/ckan/pull/5381
https://github.com/ckan/ckan/pull/5539
https://github.com/ckan/ckan/pull/5670


CKAN documentation, Release 2.10.0a0

• Fix missing activities from UI when internal processes are run by ignored users (#5699)

• Replace ‘paster’ occurrences with ‘ckan’ in docs (#5700)

• Include requirements files in Manifest (#5726)

• Fix order which plugins are returned by PluginImplementations changing (#5731)

• Raise NotFound when creating a non-existing collaborator (#5759)

• Restore member edit page (#5767)

• Don’t add –ckan-ini pytest option if already added (by pytest-ckan) (#5774)

• Update organization_show package limit docs (#5784)

• Solve encoding errors in changes templates (#5785)

8.4.3 Minor changes

• Add aria attribute and accessible screen reader text to the mobile nav button. (#5555)

• Remove jinja2 blocks from robots.txt (#5648)

• Allow to run the development server using SSL (#5825)

• Update extension template, migrate tests to GitHub Actions (#5797)

8.5 v.2.9.1 2020-10-21

General notes:

• Note: This version requires a database upgrade with ckan db upgrade (You should always backup your
database first)

8.5.1 Bugfixes

• Restore stats extension with reduced functionality (#5215)

• Allow IAuthenticator methods to return responses (#5259)

• Emit activities when updating datasets in bulk (#5479)

• Catch IndexError from date parsing during dataset indexation (#5535)

• Remove foreign keys relationships in revision tables to avoid purge errors (#5542)

• Fix fullscreen for resource webpageview (#5552)

• Fix skip to content link hiding on screen readers (#5556)

• Fix KeyErrors in change list detection (#5562)

• Fix instantiation of smtp on python 3.8 (#5595)

• Fix unflatten function and DataDictionary/package extras update bug (#5611)

• Fix managing resources by collaborators (#5620)

• package_revise: allow use by normal users (#5637)

• Fix reloader option on ckan run command (#5639)

8.5. v.2.9.1 2020-10-21 491

https://github.com/ckan/ckan/pull/5699
https://github.com/ckan/ckan/pull/5700
https://github.com/ckan/ckan/pull/5726
https://github.com/ckan/ckan/pull/5731
https://github.com/ckan/ckan/pull/5759
https://github.com/ckan/ckan/pull/5767
https://github.com/ckan/ckan/pull/5774
https://github.com/ckan/ckan/pull/5784
https://github.com/ckan/ckan/pull/5785
https://github.com/ckan/ckan/pull/5555
https://github.com/ckan/ckan/pull/5648
https://github.com/ckan/ckan/pull/5825
https://github.com/ckan/ckan/pull/5797
https://github.com/ckan/ckan/pull/5215
https://github.com/ckan/ckan/pull/5259
https://github.com/ckan/ckan/pull/5479
https://github.com/ckan/ckan/pull/5535
https://github.com/ckan/ckan/pull/5542
https://github.com/ckan/ckan/pull/5552
https://github.com/ckan/ckan/pull/5556
https://github.com/ckan/ckan/pull/5562
https://github.com/ckan/ckan/pull/5595
https://github.com/ckan/ckan/pull/5611
https://github.com/ckan/ckan/pull/5620
https://github.com/ckan/ckan/pull/5637
https://github.com/ckan/ckan/pull/5639


CKAN documentation, Release 2.10.0a0

• Allow config-tool to be used with an incomplete config file (#5647)

8.5.2 Minor changes

• Add aria attribute and accessible screen reader text to the mobile nav button. (#5555)

• Remove jinja2 blocks from robots.txt (#5648)

8.6 v.2.9.0 2020-08-05

8.6.1 Migration notes

• This version does require a requirements upgrade on source installations

• This version does require a database upgrade

• This version does not require a Solr schema upgrade if you are already using the 2.8 schema, but it is recom-
mended to upgrade to the 2.9 Solr schema.

• This version requires changes to the who.ini configuration file. If your setup doesn’t use the one bundled with
this repo, you will have to manually change the following lines:

use = ckan.lib.auth_tkt:make_plugin

to:

use = ckan.lib.repoze_plugins.auth_tkt:make_plugin

And also:

use = repoze.who.plugins.friendlyform:FriendlyFormPlugin

to:

use = ckan.lib.repoze_plugins.friendly_form:FriendlyFormPlugin

Otherwise, if you are using symbolinc link to who.ini under vcs, no changes required. (#4796)

• All the static CSS/JS files must be bundled via a webassets.yml file, as opposed to the previously used, optional
resource.config file. Check the Assets documentation for more details. (#4614)

• When ckan.cache_enabled is set to False (default) all requests include the Cache-control: private
header. If ckan.cache_enabled is set to True, when the user is not logged in and there is no session data,
a Cache-Control: public header will be added. For all other requests the Cache-control: private
header will be added. Note that you will also need to set the ckan.cache_expires config option to allow
caching of requests. (#4781)

• A full history of dataset changes is now displayed in the Activity Stream to admins, and optionally to the public.
By default this is enabled for new installs, but disabled for sites which upgrade (just in case the history is sen-
sitive). When upgrading, open data CKANs are encouraged to make this history open to the public, by setting
this in production.ini: ckan.auth.public_activity_stream_detail = true (#3972)

• When upgrading from previous CKAN versions, the Activity Stream needs a migrate_package_activity.py run-
ning for displaying the history of dataset changes. This can be performed while CKAN is running or stopped
(whereas the standard paster db upgrade migrations need CKAN to be stopped). Ideally it is run before CKAN

492 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5647
https://github.com/ckan/ckan/pull/5555
https://github.com/ckan/ckan/pull/5648
https://github.com/ckan/ckan/pull/4796
https://docs.ckan.org/en/latest/contributing/frontend/assets.html
https://github.com/ckan/ckan/pull/4614
https://github.com/ckan/ckan/pull/4781
https://github.com/ckan/ckan/pull/3972


CKAN documentation, Release 2.10.0a0

is upgraded, but it can be run afterwards. If running previous versions or this version of CKAN, download and
run migrate_package_activity.py like this:

cd /usr/lib/ckan/default/src/ckan/
wget https://raw.githubusercontent.com/ckan/ckan/2.9/ckan/migration/migrate_package_
→˓activity.py
wget https://raw.githubusercontent.com/ckan/ckan/2.9/ckan/migration/revision_legacy_
→˓code.py
python migrate_package_activity.py -c /etc/ckan/production.ini

Future versions of CKAN are likely to need a slightly different procedure. Full info about this migration is found
here: https://github.com/ckan/ckan/wiki/Migrate-package-activity (#4784)

• The CKAN configuration file default name has been changed to ckan.ini across the documentation regardless
of the environment. You can use any name including the legacy development.ini and production.ini but
to keep in sync with the documentation is recommended to update the name.

• The old paster CLI has been removed in favour of the new ckan command. In most cases the commands and
subcommands syntax is the same, but the -c or --config parameter to point to the ini file needs to provided
immediately after the ckan command, eg:

ckan -c /etc/ckan/default/ckan.ini sysadmin

• The minimum PostgreSQL version required starting from this version is 9.5 (#5458)

8.6.2 Major features

• Python 3 support. CKAN nows supports Python 3.6, 3.7 and 3.8 (Overview). Check this page for support on
how to migrate existing extensions to Python 3.

• Dataset collaborators: In addition to traditional organization-based permissions, CKAN instances can also enable
the dataset collaborators feature, which allows dataset-level authorization. This provides more granular control
over who can access and modify datasets that belong to an organization, or allows authorization setups not based
on organizations. It works by allowing users with appropriate permissions to give permissions to other users over
individual datasets, regardless of what organization they belong to. To learn more about how to enable it and the
different configuration options available, check the documentation on Dataset collaborators. (#5346)

• API Tokens: an alternative to API keys. Tokens can be created and removed on demand (check Authentica-
tion and API tokens) and there is no restriction on the maximum number of tokens per user. Consider using
tokens instead of API keys and create a separate token for each use-case instead of sharing the same token
between multiple clients. By default API Tokens are JWT, but alternative formats can be implemented using
ckan.plugins.interfaces.IApiToken interface. (#5146)

• Safe dataset updates with package_revise: This is a new API action for safe concurrent changes to datasets and
resources. package_revise allows assertions about current package metadata, selective update and removal
of fields at any level, and multiple file uploads in a single call. See the documentation at package_revise()
(#4618)

• Refactor frontend assets management to use webassets, including support for X-Sendfile (#4614)

• Users can now upload or link to custom profile pictures. By default, if a user picture is not provided it will
fall back to gravatar. Alternatively, gravatar can be completely disabled by setting ckan.gravatar_default
= disabled. In that case a placeholder image is shown instead, which can be customized by overriding the
templates/user/snippets/placeholder.html template. (#5272)

• Add plugin_extras field allowing extending User object for internal use (#5382)

8.6. v.2.9.0 2020-08-05 493

https://github.com/ckan/ckan/wiki/Migrate-package-activity
https://github.com/ckan/ckan/pull/4784
https://github.com/ckan/ckan/pull/5458
https://github.com/ckan/ckan/projects/3
https://github.com/ckan/ckan/wiki/Python-3-migration-guide-for-extensions
https://github.com/ckan/ckan/pull/5346
https://github.com/ckan/ckan/pull/5146
https://github.com/ckan/ckan/pull/4618
https://webassets.readthedocs.io/en/latest/
https://github.com/ckan/ckan/pull/4614
https://github.com/ckan/ckan/pull/5272
https://github.com/ckan/ckan/pull/5382


CKAN documentation, Release 2.10.0a0

8.6.3 Minor changes

• New command for running database migrations from extensions. See Use migrations when introducing new
models for details, (#5150)

• For navl schemas, the ‘default’ validator no longer applies the default when the value is False, 0, [] or {} (#4448)

• Use alembic instead of sqlalchemy-migrate for managing database migrations (#4450)

• If you’ve customized the schema for package_search, you’ll need to add to it the limiting of row, as per de-
fault_package_search_schema now does. (#4484)

• Several logic functions now have new upper limits to how many items can be returned, notably group_list,
organization_list when all_fields=true, datastore_search and datastore_search_sql. These
are all configurable. (#4562)

• Give users the option to define which page they want to be redirected to after logging in via ckan.route_after_login
config variable. (#4770)

• Add cache control headers to flask (#4781)

• Create recline_view on ods files by default (#4936)

• Replase nosetests with pytest (#4996)

• Make creating new tags in autocomplete module optional (#5012)

• Allow reply to emails (#5024)

• Improve and reorder resource_formats.json (#5034)

• Email unique validator (#5100)

• Preview for multimedia files (#5103)

• Allow extensions to define Click commands (#5112)

• Add organization and group purge (#5127)

• HTML emails (#5132)

• Unified workflow for creating/applying DB migrations from extensions (#5150)

• Use current package_type for urls (#5189)

• Werkzeug dev server improvements (#5195)

• Allow passing arguments to the RQ enqueue_call function (#5208)

• Add option to configure labels of next/prev page button and pager format. (#5223)

• DevServer: threaded mode and extra files (#5303)

• Make default sorting configurable (#5314)

• Allow initial values in group form (#5345)

• Make ckan more accessible (#5360)

• Update date formatters (#5376)

• Allow multiple ext_* params in search views (#5398)

• Always 404 on non-existing user lookup (#5464)

494 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5150
https://github.com/ckan/ckan/pull/4448
https://github.com/ckan/ckan/pull/4450
https://github.com/ckan/ckan/pull/4484
https://github.com/ckan/ckan/pull/4562
https://github.com/ckan/ckan/pull/4770
https://github.com/ckan/ckan/pull/4781
https://github.com/ckan/ckan/pull/4936
https://github.com/ckan/ckan/pull/4996
https://github.com/ckan/ckan/pull/5012
https://github.com/ckan/ckan/pull/5024
https://github.com/ckan/ckan/pull/5034
https://github.com/ckan/ckan/pull/5100
https://github.com/ckan/ckan/pull/5103
https://github.com/ckan/ckan/pull/5112
https://github.com/ckan/ckan/pull/5127
https://github.com/ckan/ckan/pull/5132
https://github.com/ckan/ckan/pull/5150
https://github.com/ckan/ckan/pull/5189
https://github.com/ckan/ckan/pull/5195
https://github.com/ckan/ckan/pull/5208
https://github.com/ckan/ckan/pull/5223
https://github.com/ckan/ckan/pull/5303
https://github.com/ckan/ckan/pull/5314
https://github.com/ckan/ckan/pull/5345
https://github.com/ckan/ckan/pull/5360
https://github.com/ckan/ckan/pull/5376
https://github.com/ckan/ckan/pull/5398
https://github.com/ckan/ckan/pull/5464


CKAN documentation, Release 2.10.0a0

8.6.4 Bugfixes

• 500 error when calling resource_search by last_modified (#4130)

• Action function “datastore_search” would calculate the total, even if you set include_total=False. (#4448)

• Emails not sent from flask routes (#4711)

• Admin of organization can add himself as a member/editor to the organization and lose admin rights (#4821)

• Error when posting empty array with type json using datastore_create (#4826)

• ValueError when you configure exception emails (#4831)

• Dataset counts incorrect on Groups listing (#4987)

• Fix broken layout in organization bulk_process (#5147)

• Index template with template path instead of numeric index (#5172)

• Add metadata_modified field to resource (#5236)

• Send the right URL of CKAN to datapusher (#5281)

• Multiline translation strings not translated (#5339)

• Allow repeaded params in h.add_url_param (#5373)

• Accept timestamps with seconds having less than 6 decimals (#5417)

• RTL css fixes (#5420)

• Prevent account presence exposure when ckan.auth.public_user_details = false (#5432)

• ckan.i18n_directory config option ignored in Flask app. (#5436)

• Allow lists in resource extras (#5453)

8.6.5 Removals and deprecations

• Revision and History UI is removed: /revision/* & /dataset/{id}/history in favour of /dataset/changes/ visible in
the Activity Stream. model.ActivityDetail is no longer used and will be removed in the next CKAN release.
(#3972)

• c.action and c.controller variables should be avoided. ckan.plugins.toolkit.get_endpoint can be
used instead. This function returns tuple of two items(depending on request handler): 1. Flask blueprint name
/ Pylons controller name 2. Flask view name / Pylons action name In some cases, Flask blueprints have names
that are differs from their Pylons equivalents. For example, ‘package’ controller is divided between ‘dataset’ and
‘resource’ blueprints. For such cases you may need to perform additional check of returned value:

>>> if toolkit.get_endpoint()[0] in ['dataset', 'package']:
>>> do_something()

In this code snippet, will be called if current request is handled via Flask’s dataset blueprint in CKAN>=2.9,
and, in the same time, it’s still working for Pylons package controller in CKAN<2.9 (#4319)

• The following logic functions have been removed (#4627): * dashboard_activity_list_html *
organization_activity_list_html * user_activity_list_html * package_activity_list_html
* group_activity_list_html * organization_activity_list_html *
recently_changed_packages_activity_list_html * dashboard_activity_list_html *
activity_detail_list

• Remove Bootstrap 2 templates (#4779)

8.6. v.2.9.0 2020-08-05 495

https://github.com/ckan/ckan/pull/4130
https://github.com/ckan/ckan/pull/4448
https://github.com/ckan/ckan/pull/4711
https://github.com/ckan/ckan/pull/4821
https://github.com/ckan/ckan/pull/4826
https://github.com/ckan/ckan/pull/4831
https://github.com/ckan/ckan/pull/4987
https://github.com/ckan/ckan/pull/5147
https://github.com/ckan/ckan/pull/5172
https://github.com/ckan/ckan/pull/5236
https://github.com/ckan/ckan/pull/5281
https://github.com/ckan/ckan/pull/5339
https://github.com/ckan/ckan/pull/5373
https://github.com/ckan/ckan/pull/5417
https://github.com/ckan/ckan/pull/5420
https://github.com/ckan/ckan/pull/5432
https://github.com/ckan/ckan/pull/5436
https://github.com/ckan/ckan/pull/5453
https://github.com/ckan/ckan/pull/3972
https://github.com/ckan/ckan/pull/4319
https://github.com/ckan/ckan/pull/4627
https://github.com/ckan/ckan/pull/4779


CKAN documentation, Release 2.10.0a0

• Extensions that add CLI commands should note the deprecation of ckan.lib.cli.CkanCommand and all other
helpers in ckan.lib.cli. Extensions should instead implement CLIs using the new IClick interface. (#5112)

• Remove paster CLI (#5264)

8.7 v.2.8.10 2022-01-19

Fixes:

• Add timeouts to requests calls (see ckan.requests.timeout) (#6408)

• Fix user create/edit email validators (#6399)

• Allow children elements on select2 lists (#6503)

8.8 v.2.8.9 2021-09-22

Fixes:

• render_datetime helper does not respect ckan.display_timezone configuration (#6252)

• Fix SQLAlchemy configuration for DataStore (#6087)

• Don’t cache license translations across requests (#5586)

• Fix tracking.js module preventing links to be opened in new tabs (#6386)

• Fix deleted org/group feeds (#6368)

• Fix runaway preview height (#6284)

• Fix unreliable ordering of DataStore results (#2317)

8.9 v.2.8.8 2021-05-19

• Fix Chinese locales (#4413)

• Allow installation of requirements without any additional actions using pip (#5408)

• Include requirements files in Manifest (#5726)

• Dockerfile: pin pip version (#5929)

• Allow uploaders to only override asset / resource uploading (#6088)

• Catch TypeError from invalid thrown by dateutils (#6085)

• Display proper message when sysadmin password is incorect (#5911)

• Use external library to parse view filter params

• Fix auth error when deleting a group/org (#6006)

• Fix datastore_search language parameter (#5974)

• make SQL function whitelist case-insensitive unless quoted (#5969)

• Fix Explore button not working (#3720)

• remove unused var in task_status_update (#5861)

496 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5112
https://github.com/ckan/ckan/pull/5264
https://github.com/ckan/ckan/pull/6408
https://github.com/ckan/ckan/pull/6399
https://github.com/ckan/ckan/pull/6503
https://github.com/ckan/ckan/pull/6252
https://github.com/ckan/ckan/pull/6086
https://github.com/ckan/ckan/pull/5586
https://github.com/ckan/ckan/pull/6384
https://github.com/ckan/ckan/pull/6368
https://github.com/ckan/ckan/pull/6283
https://github.com/ckan/ckan/pull/2317
https://github.com/ckan/ckan/pull/4413
https://github.com/ckan/ckan/pull/5408
https://github.com/ckan/ckan/pull/5726
https://github.com/ckan/ckan/pull/5929
https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/6085
https://github.com/ckan/ckan/pull/5911
https://github.com/ckan/ckan/pull/6006
https://github.com/ckan/ckan/pull/5974
https://github.com/ckan/ckan/pull/5969
https://github.com/ckan/ckan/pull/3720
https://github.com/ckan/ckan/pull/5861


CKAN documentation, Release 2.10.0a0

• Prevent guessing format and mimetype from resource urls without path (#5852)

8.10 v.2.8.7 2021-02-10

General notes: * Note: To use PostgreSQL 12 on CKAN 2.8 you need to upgrade SQLAlchemy to 1.2.17 and vdm to
0.15 (more details in #5796)

Fixes:

• Persist attributes in chained functions (#5751)

• Fix install documentation (#5618)

• Fix exception when passing limit to organization (#5789)

• Fix for adding directories from plugins if partially string matches existing values (#5836)

• Fix upload log activity sorting (#5827)

• Textview: escape text formats (#5814)

• Add allow_partial_update to fix losing users (#5734)

• Set default group_type to group in group_create (#5693)

• Use user performing the action on activity context on user_update (#5743)

• New block in nav links in user dashboard (#5804)

• Update references to DataPusher documentation

• Fix JavaScript error on Edge (#5782)

• Fix error when deleting resource with missing datastore table (#5757)

• ensure HTTP_HOST is bytes under python2 (#5714)

• Don’t set old_filename when updating groups (#5707)

• Filter activities from user at the database level (#5698)

• Fix user_list ordering (#5667)

• Allowlist for functions in datastore_search_sql (see ckan.datastore.sqlsearch.allowed_functions_file)

8.11 v.2.8.6 2020-10-21

Fixes: * Allow IAuthenticator methods to return responses (#5259) * Fix skip to content link hiding on screen readers
(#5556) * Fix unflattening of dataset extras (#5602) * Fix minified JS files in 2.7 (#5557) * Send the right URL of CKAN
to datapusher (#5281) * Fix fullscreen for resource webpageview (#5552) * PackageSearchIndex.index_package():
catch IndexError from date parsing (#5535) * Fix collapsible menu in mobile view (#5448) * Refactor query string
parsing module

8.10. v.2.8.7 2021-02-10 497

https://github.com/ckan/ckan/pull/5852
https://github.com/ckan/ckan/issues/5796
https://github.com/ckan/ckan/pull/5751
https://github.com/ckan/ckan/pull/5618
https://github.com/ckan/ckan/pull/5789
https://github.com/ckan/ckan/pull/5836
https://github.com/ckan/ckan/pull/5827
https://github.com/ckan/ckan/pull/5814
https://github.com/ckan/ckan/pull/5734
https://github.com/ckan/ckan/pull/5693
https://github.com/ckan/ckan/pull/5743
https://github.com/ckan/ckan/pull/5804
https://github.com/ckan/ckan/pull/5782
https://github.com/ckan/ckan/pull/5757
https://github.com/ckan/ckan/pull/5714
https://github.com/ckan/ckan/pull/5707
https://github.com/ckan/ckan/pull/5698
https://github.com/ckan/ckan/pull/5667
https://github.com/ckan/ckan/pull/5259
https://github.com/ckan/ckan/pull/5556
https://github.com/ckan/ckan/pull/5611
https://github.com/ckan/ckan/pull/5561
https://github.com/ckan/ckan/pull/5281
https://github.com/ckan/ckan/pull/5552
https://github.com/ckan/ckan/pull/5535
https://github.com/ckan/ckan/pull/5448


CKAN documentation, Release 2.10.0a0

8.12 v.2.8.5 2020-08-05

Fixes:

• Add RTL support (#5413)

• Fix UnicodeDecodeError on abort fucntion (#4829)

• Improve and reorder resource_formats.json (#5034)

• Allow passing arguments to the RQ enqueue_call function (#5208)

• Fix dashboard follower filter (#5412)

• Update dictionary.html for bs2 version (#5365)

• Prevent password reset exposing account presence (#5431)

• Add class dropdown to ‘New view’ menu (#5470)

• Update jQuery to 3.5.0 (#5364)

• Fix dashboard activity filter (#5424)

• Prevent account presence exposure when ckan.auth.public_user_details = false (#5432)

• Fix resource upload filename fetching in IE (#5438)

• Unflatten: allow nesting >1 level (#5444)

• Allow lists in resource extras (#5453)

• Only add error to tag_errors if not empty (#5454)

• Fix order_by param in user_list action (#5342)

• Fix for Resources validation errors display (#5335)

8.13 v.2.8.4 2020-04-15

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

• Note: This version includes changes in the way the SameSite flag is set on the auth_tkt authorization
cookie. The new default setting for it is SameSite=Lax, which aligns with the behaviour of all major
browsers. If for some reason you need a different value, you can set it via the who.samesite configuration
option. You can find more information on the SameSite attribute here.

Fixes:

• Fix for number of datasets displayed on the My organizations tab (#3580)

• Allow chaining of core actions (#4509)

• Password reset request - generally tighten it up (#4636)

• Fix start option in data_dict (#4920)

• Add missing get_action calls in activity actions (#4967)

• Fix datetime comparison in resource_dict_save (#5033)

498 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5413
https://github.com/ckan/ckan/pull/4829
https://github.com/ckan/ckan/pull/5034
https://github.com/ckan/ckan/pull/5208
https://github.com/ckan/ckan/pull/5412
https://github.com/ckan/ckan/pull/5365
https://github.com/ckan/ckan/pull/5431
https://github.com/ckan/ckan/pull/5470
https://github.com/ckan/ckan/pull/5364
https://github.com/ckan/ckan/pull/5424
https://github.com/ckan/ckan/pull/5432
https://github.com/ckan/ckan/pull/5438
https://github.com/ckan/ckan/pull/5444
https://github.com/ckan/ckan/pull/5453
https://github.com/ckan/ckan/pull/5454
https://github.com/ckan/ckan/pull/5342
https://github.com/ckan/ckan/pull/5335
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#SameSite_cookies
https://github.com/ckan/ckan/pull/3580
https://github.com/ckan/ckan/pull/4509
https://github.com/ckan/ckan/pull/4636
https://github.com/ckan/ckan/pull/4920
https://github.com/ckan/ckan/pull/4967
https://github.com/ckan/ckan/pull/5033


CKAN documentation, Release 2.10.0a0

• Fix wrong _ function reference in user blueprint (#5046)

• Allow vocabulary_id in /api/2/util/tag/autocomplete (#5071)

• Fetch less data for get_all_entity_ids (#5201)

• Show error in text view if xhr failed (#5271)

• Fix code injection in autocomplete module (#5064)

• Check for the existence of tracking summary data before attempting to load it (#5030)

• Disable streaming for pylons requests (#4431)

• Filter revisions shown according to dataset permissions

• Fix wrong resource URL after ValidationErrors (#5152)

• Update JS vendor libraries

• Samesite support in auth cookie (#5255)

• Handle missing resources in case we have a race condition with the DataPusher (#3980)

• Add the g object to toolkit

• Use returned facets in group controller (#2713)

• Updated translations

• Fix broken translation in image view placeholder (#5099)

8.14 v.2.8.3 2019-07-03

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

• Fix include_total in datastore_search (#4446)

• Fix problem with reindex-fast (#4352)

• Fix ValueError in url_validator (#4629)

• Strip local path when uploading file in IE (#4608)

• Increase size of h1 headings to 1.8em (#4665)

• Fix broken div nesting in the user/read_base.html (#4672)

• package_search parameter fl accepts list-like values (#4464)

• Use chained_auth_function with core auth functions (#4491)

• Allow translation of custom licenses (#4594)

• Fix delete button links (#4598)

• Fix hardcoded root paths (#4662)

• Fix reCaptcha (#4732)

8.14. v.2.8.3 2019-07-03 499

https://github.com/ckan/ckan/pull/5046
https://github.com/ckan/ckan/pull/5071
https://github.com/ckan/ckan/pull/5201
https://github.com/ckan/ckan/pull/5271
https://github.com/ckan/ckan/pull/5064
https://github.com/ckan/ckan/pull/5139
https://github.com/ckan/ckan/pull/4657
https://github.com/ckan/ckan/pull/5153
https://github.com/ckan/ckan/pull/5255
https://github.com/ckan/ckan/pull/4918
https://github.com/ckan/ckan/pull/5167
https://github.com/ckan/ckan/pull/5116
https://github.com/ckan/ckan/issues/4446
https://github.com/ckan/ckan/issues/4352
https://github.com/ckan/ckan/issues/4629
https://github.com/ckan/ckan/issues/4608
https://github.com/ckan/ckan/issues/4665
https://github.com/ckan/ckan/issues/4672
https://github.com/ckan/ckan/issues/4464
https://github.com/ckan/ckan/issues/4491
https://github.com/ckan/ckan/issues/4594
https://github.com/ckan/ckan/issues/4598
https://github.com/ckan/ckan/issues/4662
https://github.com/ckan/ckan/issues/4732


CKAN documentation, Release 2.10.0a0

• Fix incremented follower-counter (#4767)

• Fix breadcrumb on /datasets (#4405)

• Fix root_path when using mod_wsgi (#4452)

• Correctly insert root_path for urls generated with _external flag (#4722)

• Make reorder resources button translatable (#4838)

• Fix feeds urls generation (#4854)

• More robust auth functions for resource_view_show (#4827)

• Allow to customize the DataProxy URL (#4874)

• Allow custom CKAN callback URL for the DataPusher (#4878)

• Add psycopg>=2.8 support (#4841)

8.15 v.2.8.2 2018-12-12

General notes:

• This version requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

• Strip full URL on uploaded resources before saving to DB (#4382)

• Fix user not being defined in check_access function (#4574)

• Remove html5 shim from stats extension (#4236)

• Fix for datastore_search distinct=true option (#4236)

• Fix edit slug button (#4379)

• Don’t re-register plugin helpers on flask_app (#4414)

• Fix for Resouce View Re-order (#4416)

• autocomplete.js: fix handling of comma key codes (#4421)

• Flask patch update (#4426)

• Allow plugins to define multiple blueprints (#4495)

• Fix i18n API encoding (#4505)

• Allow to defined legacy route mappings as a dict in config (#4521)

• group_patch does not reset packages (#4557)

500 Chapter 8. Changelog

https://github.com/ckan/ckan/issues/4767
https://github.com/ckan/ckan/issues/4405
https://github.com/ckan/ckan/issues/4452
https://github.com/ckan/ckan/issues/4722
https://github.com/ckan/ckan/issues/4838
https://github.com/ckan/ckan/pull/4854
https://github.com/ckan/ckan/issues/4827
https://github.com/ckan/ckan/issues/4874
https://github.com/ckan/ckan/issues/4878
https://github.com/ckan/ckan/pull/4841
https://github.com/ckan/ckan/issues/4382
https://github.com/ckan/ckan/issues/4574
https://github.com/ckan/ckan/issues/4236
https://github.com/ckan/ckan/issues/4236
https://github.com/ckan/ckan/issues/4379
https://github.com/ckan/ckan/issues/4414
https://github.com/ckan/ckan/issues/4416
https://github.com/ckan/ckan/issues/4421
https://github.com/ckan/ckan/issues/4426
https://github.com/ckan/ckan/issues/4495
https://github.com/ckan/ckan/issues/4505
https://github.com/ckan/ckan/issues/4521
https://github.com/ckan/ckan/issues/4557


CKAN documentation, Release 2.10.0a0

8.16 v.2.8.1 2018-07-25

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

• “Add Filter” Performance Issue (#4162)

• Error handler update (#4257)

• “New view” button does not work (#4260)

• Upload logo is not working (#4262)

• Unable to pip install ckan (#4271)

• The “License” Icon in 2.8 is wrong (#4272)

• Search - input- border color is overly specific in CSS (#4273)

• Site logo image does not scale down when very large (#4283)

• Validation Error on datastore_search when sorting timestamp fields (#4288)

• Undocumented changes breaking error_document_template (#4303)

• Internal server error when viewing /dashboard when logged out (#4305)

• Missing c.action attribute in 2.8.0 templates (#4310)

• [multilingual] AttributeError: ‘_Globals’ object has no attribute ‘fields’ (#4338)

• search legacy route missing (#4346)

8.17 v.2.8.0 2018-05-09

General notes:

• This version requires a requirements upgrade on source installations

• This version requires a database upgrade

• This version requires a Solr schema upgrade

• This version requires re-running the datastore set-permissions command (assuming you are using
the DataStore). See: Set permissions

Otherwise new and updated datasets will not be searchable in DataStore and the logs will contain this error:

ProgrammingError: (psycopg2.ProgrammingError) function populate_full_text_
→˓trigger() does not exist

CKAN developers should also re-run set-permissions on the test database: Set up the test databases

• There are several old features being officially deprecated starting from this version. Check the Deprecations
section to be prepared.

Major changes:

8.16. v.2.8.1 2018-07-25 501

https://github.com/ckan/ckan/issues/4162
https://github.com/ckan/ckan/issues/4257
https://github.com/ckan/ckan/issues/4260
https://github.com/ckan/ckan/issues/4262
https://github.com/ckan/ckan/issues/4271
https://github.com/ckan/ckan/issues/4272
https://github.com/ckan/ckan/issues/4273
https://github.com/ckan/ckan/issues/4283
https://github.com/ckan/ckan/issues/4288
https://github.com/ckan/ckan/issues/4303
https://github.com/ckan/ckan/issues/4305
https://github.com/ckan/ckan/issues/4310
https://github.com/ckan/ckan/issues/4338
https://github.com/ckan/ckan/issues/4346


CKAN documentation, Release 2.10.0a0

• New revamped frontend templates based on Bootstrap 3, see “Changes and deprecations” (#3547)

• Allow datastore_search_sql on private datasets (#2562)

• New Flask blueprints migrated from old Pylons controllers: user, dashboard, feeds, admin and home
(#3927, #3870, #3775, #3762)

• Improved support for custom groups and organization types (#4032)

• Hide user details to anonymous users (#3915)

Minor changes:

• Allow chaining of authentication functions (#3679)

• Show custom dataset types in search pages (#3807)

• Overriding datastore authorization system (#3679)

• Standardize on url_for (#3831)

• Deprecate notify_after_commit (#3633)

• _mail_recipient header override (#3781)

• Restrict access to member forms (#3684)

• Clean up template rendering code (#3923)

• Permission labels are indexed by type text in SOLR (#3863)

• CLI commands require a Flask test request context (#3760)

• Allow IValidator to override existing validators (#3865)

• Shrink datastore_create response size (#3810)

• Stable version URLs CKAN for documentation (#4209)

• API Documentation update (#4136)

• Documentation of Data Dictionary (#3989)

• Remove datastore legacy mode (#4041)

• Map old Pylons routes to Flask ones (#4066)

Bug fixes:

• File uploads don’t work on new Flask based API (#3869)

• {% ckan_extends %} not working on templates served by Flask (#4044)

• Problems in background workers with non-core database relations (#3606)

• Render_datetime can’t handle dates before year 1900 (#2228)

• DatapusherPlugin implementation of notify() can call ‘datapusher_submit’ multiple times (#2334)

• Dataset creation page generates incorrect URLs with Chrome autocomplete (#2501)

• Search buttons need accessible labels (#2550)

• Column name length limit for datastore upload (#2804)

• #2373: Do not validate packages or resources from database to views (#3016)

• Creation of dataset - different behaviour between Web API & CKAN Interface functionality (#3528)

• Redirecting to same page in non-root hosted ckan adds extra root_path to url (#3499)

502 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Beaker 1.8.0 exception when the code is served from OSX via Vagrant (#3512)

• Add “Add Dataset” button to user’s and group’s page (#2794)

• Some links in CKAN is not reachable (#2898)

• Exception when specifying a directory in the ckan.i18n_directory option (#3539)

• Resource view filter user filters JS error (#3590)

• Recaptcha v1 will stop working 2018-3-31 (#4061)

• “Testing coding standards” page in docs is missing code snippets (#3635)

• Followers count not updated immediately on UI (#3639)

• Increase jQuery version (#3665)

• Search icon on many pages is not properly vertically aligned (#3654)

• Datatables view can’t be used as a default view (#3669)

• Resource URL is not validated on create/update (#3660)

• Upload to Datastore tab shows incorrect time at Upload Log (#3588)

• Filter results button is not working (#3593)

• Broken link in “Upgrading CKAN’s dependencies” doc page (#3637)

• Default logo image not properly saved (#3656)

• Activity test relies on datetime.now() (#3644)

• Info block text for Format field not properly aligned in resource form page (#3663)

• Issue upon creating new organization/group through UI form (#3661)

• In API docs “package_create” lists “owner_org” as optional (#3647)

• Embed modal window not working (#3731)

• Frontent build command does not work on master (#3688)

• Loading image duplicated (#3716)

• Datastore set-up error - logging getting in the way (#3694)

• Registering a new account redirects to an unprefixed url (#3834)

• Exception in search page when not authorized (#4081)

• Datastore full-text-search column is populated by postgres trigger rather than python (#3785)

• Datastore dump results are not the same as data in database (#4150)

• Adding filter at resoruce preview doesn’t work while site is setup with ckan.root_path param (#4140)

• No such file or directory: ‘/usr/lib/ckan/default/src/ckan/requirement-setuptools.txt’ during installation
from source (#3641)

• Register user form missing required field indicators (#3658)

• Datastore full-text-search column is populated by postgres trigger rather than python (#3786)

• Add missing major changes to change log (#3799)

• Paster/CLI config-tool requires _get_test_app which in turn requires a dev-only dependency (#3806)

• Change log doesn’t mention necessary Solr scheme upgrade (#3851)

8.17. v.2.8.0 2018-05-09 503



CKAN documentation, Release 2.10.0a0

• TypeError: expected byte string object, value of type unicode found (#3921)

• CKAN’s state table clashes with PostGIS generated TIGER state table (#3929)

• [Docker] entrypoint initdb.d sql files copied to root (#3939)

• DataStore status page throws TypeError - Bleach upgrade regression (#3968)

• Source install error with who.ini (#4020)

• making a JSONP call to the CKAN API returns the wrong mime type (#4022)

• Deleting a resource sets datastore_active=False to all resources and overrides their extras (#4042)

• Deleting first Group and Organization custom field is not possible (#4094)

Changes and deprecations:

• The default templates included in CKAN core have been updated to use Bootstrap 3. Extensions imple-
menting custom themes are encouraged to update their templates, but they can still make CKAN load the
old Bootstrap 2 templates during the transition using the following configuration options:

ckan.base_public_folder = public-bs2
ckan.base_templates_folder = templates-bs2

• The API versions 1 and 2 (also known as the REST API), ie /api/rest/* have been completely removed
in favour of the version 3 (action API, /api/action/*).

• The old Celery based background jobs have been removed in CKAN 2.8 in favour of the new RQ based
jobs (http://docs.ckan.org/en/latest/maintaining/background-tasks.html). Extensions can still of course use
Celery but they will need to handle the management themselves.

• After introducing dataset blueprint, h.get_facet_items_dict takes search_facets as second argument. This
change is aimed to reduce usage of global variables in context. For a while, it has default value of None,
in which case, c.search_facets will be used. But all template designers are strongly advised to specify this
argument explicitly, as in future it’ll become required.

• The ckan.recaptcha.version config option is now removed, since v2 is the only valid version now
(#4061)

8.18 v.2.7.12 2021-09-22

Fixes:

• Fix tracking.js module preventing links to be opened in new tabs (#6384)

• Fix deleted org/group feeds (#6367)

• Fix runaway preview height (#6283)

• Fix unreliable ordering of DataStore results (#2317)

504 Chapter 8. Changelog

http://docs.ckan.org/en/latest/maintaining/background-tasks.html
https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/2317


CKAN documentation, Release 2.10.0a0

8.19 v.2.7.11 2021-05-19

Fixes:

• Allow uploaders to only override asset / resource uploading (#6088)

• Catch TypeError from invalid thrown by dateutils (#6085)

• Use external library to parse view filter params

• Fix auth error when deleting a group/org (#6006)

• Fix datastore_search language parameter (#5974)

• make SQL function whitelist case-insensitive unless quoted (#5969)

• Fix Explore button not working (#3720)

• “New view” button fix (#4260)

• remove unused var in task_status_update (#5861)

• Prevent guessing format and mimetype from resource urls without path (#5852)

8.20 v.2.7.10 2021-02-10

Fixes:

• Fix install documentation (#5618)

• Fix exception when passing limit to organization (#5789)

• Fix for adding directories from plugins if partially string matches existing values (#5836)

• Fix upload log activity sorting (#5827)

• Textview: escape text formats (#5814)

• Add allow_partial_update to fix losing users (#5734)

• Set default group_type to group in group_create (#5693)

• Use user performing the action on activity context on user_update (#5743)

• New block in nav links in user dashboard (#5804)

• Update references to DataPusher documentation

• Fix JavaScript error on Edge (#5782)

• Fix error when deleting resource with missing datastore table (#5757)

• ensure HTTP_HOST is bytes under python2 (#5714)

• Don’t set old_filename when updating groups (#5707)

• Filter activities from user at the database level (#5698)

• Fix user_list ordering (#5667)

• Allow list for functions in datastore_search_sql (see ckan.datastore.sqlsearch.allowed_functions_file)

8.19. v.2.7.11 2021-05-19 505

https://github.com/ckan/ckan/pull/6088
https://github.com/ckan/ckan/pull/6085
https://github.com/ckan/ckan/pull/6006
https://github.com/ckan/ckan/pull/5974
https://github.com/ckan/ckan/pull/5969
https://github.com/ckan/ckan/pull/3720
https://github.com/ckan/ckan/issues/4260
https://github.com/ckan/ckan/pull/5861
https://github.com/ckan/ckan/pull/5852
https://github.com/ckan/ckan/pull/5618
https://github.com/ckan/ckan/pull/5789
https://github.com/ckan/ckan/pull/5836
https://github.com/ckan/ckan/pull/5827
https://github.com/ckan/ckan/pull/5814
https://github.com/ckan/ckan/pull/5734
https://github.com/ckan/ckan/pull/5693
https://github.com/ckan/ckan/pull/5743
https://github.com/ckan/ckan/pull/5804
https://github.com/ckan/ckan/pull/5782
https://github.com/ckan/ckan/pull/5757
https://github.com/ckan/ckan/pull/5714
https://github.com/ckan/ckan/pull/5707
https://github.com/ckan/ckan/pull/5698
https://github.com/ckan/ckan/pull/5667


CKAN documentation, Release 2.10.0a0

8.21 v.2.7.9 2020-10-21

Fixes:

• Fix unflattening of dataset extras (#5602)

• Fix minified JS files in 2.7 (#5557)

• Send the right URL of CKAN to datapusher (#5281)

• Fix fullscreen for resource webpageview (#5552)

• PackageSearchIndex.index_package(): catch IndexError from date parsing (#5535)

• Fix collapsible menu in mobile view (#5448)

• Refactor query string parsing module

8.22 v.2.7.8 2020-08-05

Fixes:

• Fix UnicodeDecodeError on abort fucntion (#4829)

• Improve and reorder resource_formats.json (#5034)

• Allow passing arguments to the RQ enqueue_call function (#5208)

• Fix dashboard follower filter (#5412)

• Update dictionary.html for bs2 version (#5365)

• Prevent password reset exposing account presence (#5431)

• Add class dropdown to ‘New view’ menu (#5470)

• Update jQuery to 3.5.0 (#5364)

• Fix dashboard activity filter (#5424)

• Prevent account presence exposure when ckan.auth.public_user_details = false (#5432)

• Fix resource upload filename fetching in IE (#5438)

• Unflatten: allow nesting >1 level (#5444)

• Allow lists in resource extras (#5453)

• Only add error to tag_errors if not empty (#5454)

• Fix order_by param in user_list action (#5342)

• Fix for Resources validation errors display (#5335)

506 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/5611
https://github.com/ckan/ckan/pull/5561
https://github.com/ckan/ckan/pull/5281
https://github.com/ckan/ckan/pull/5552
https://github.com/ckan/ckan/pull/5535
https://github.com/ckan/ckan/pull/5448
https://github.com/ckan/ckan/pull/4829
https://github.com/ckan/ckan/pull/5034
https://github.com/ckan/ckan/pull/5208
https://github.com/ckan/ckan/pull/5412
https://github.com/ckan/ckan/pull/5365
https://github.com/ckan/ckan/pull/5431
https://github.com/ckan/ckan/pull/5470
https://github.com/ckan/ckan/pull/5364
https://github.com/ckan/ckan/pull/5424
https://github.com/ckan/ckan/pull/5432
https://github.com/ckan/ckan/pull/5438
https://github.com/ckan/ckan/pull/5444
https://github.com/ckan/ckan/pull/5453
https://github.com/ckan/ckan/pull/5454
https://github.com/ckan/ckan/pull/5342
https://github.com/ckan/ckan/pull/5335


CKAN documentation, Release 2.10.0a0

8.23 v.2.7.7 2020-04-15

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

• Note: This version includes changes in the way the SameSite flag is set on the auth_tkt authorization
cookie. The new default setting for it is SameSite=Lax, which aligns with the behaviour of all major
browsers. If for some reason you need a different value, you can set it via the who.samesite configuration
option. You can find more information on the SameSite attribute here.

Fixes:

• Fix for number of datasets displayed on the My organizations tab (#3580)

• Password reset request - generally tighten it up (#4636)

• Add missing get_action calls in activity actions (#4967)

• Fix datetime comparison in resource_dict_save (#5033)

• Allow vocabulary_id in /api/2/util/tag/autocomplete (#5071)

• Fetch less data for get_all_entity_ids (#5201)

• Show error in text view if xhr failed (#5271)

• Fix code injection in autocomplete module (#5064)

• Check for the existence of tracking summary data before attempting to load it (#5030)

• Fix broken translation in image view placeholder (#5099)

• Filter revisions shown according to dataset permissions

• Update JS vendor libraries

• Use returned facets in group controller (#2713)

• Samesite support in auth cookie (#5255)

• Handle missing resources in case we have a race condition with the DataPusher (#3980)

• Add the g object to toolkit

8.24 v.2.7.6 2019-07-03

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

• Fix problem with reindex-fast (#4352)

• Fix include_total in datastore_search (#4446)

• Fix ValueError in url_validator (#4629)

8.23. v.2.7.7 2020-04-15 507

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#SameSite_cookies
https://github.com/ckan/ckan/pull/3580
https://github.com/ckan/ckan/pull/4636
https://github.com/ckan/ckan/pull/4967
https://github.com/ckan/ckan/pull/5033
https://github.com/ckan/ckan/pull/5071
https://github.com/ckan/ckan/pull/5201
https://github.com/ckan/ckan/pull/5271
https://github.com/ckan/ckan/pull/5064
https://github.com/ckan/ckan/pull/5139
https://github.com/ckan/ckan/pull/5116
https://github.com/ckan/ckan/pull/5167
https://github.com/ckan/ckan/pull/5255
https://github.com/ckan/ckan/pull/4918
https://github.com/ckan/ckan/issues/4352
https://github.com/ckan/ckan/issues/4446
https://github.com/ckan/ckan/issues/4629


CKAN documentation, Release 2.10.0a0

• Strip local path when uploading file in IE (#4608)

• Increase size of h1 headings to 1.8em (#4665)

• Fix broken div nesting in the user/read_base.html (#4672)

• Use get_action to call activity actions (#4684)

• Make reorder resources button translatable (#4838)

• More robust auth functions for resource_view_show (#4827)

• Allow to customize the DataProxy URL (#4874)

• Allow custom CKAN callback URL for the DataPusher (#4878)

8.25 v2.7.5 2018-12-12

• Strip full URL on uploaded resources before saving to DB (#4382)

• Fix for datastore_search distinct=true option (#4236)

• Fix edit slug button (#4379)

• Don’t re-register plugin helpers on flask_app (#4414)

• Fix for Resouce View Re-order (#4416)

• autocomplete.js: fix handling of comma key codes (#4421)

• Flask patch update (#4426)

• Allow plugins to define multiple blueprints (#4495)

• Fix i18n API encoding (#4505)

• Allow to defined legacy route mappings as a dict in config (#4521)

• group_patch does not reset packages (#4557)

8.26 v2.7.4 2018-05-09

• Adding filter at resoruce preview doesn’t work while site is setup with ckan.root_path param (#4140)

• Datastore dump results are not the same as data in database (#4150)

8.27 v2.7.3 2018-03-15

General notes:

• As with all patch releases this one does not include requirement changes. However in some scenarios you
might encounter the following error while installing or upgrading this version of CKAN:

Error: could not determine PostgreSQL version from '10.2'

This is due to a bug in the psycopg2 version pinned to the release. To solve it, upgrade psycopg2 with the
following command:

508 Chapter 8. Changelog

https://github.com/ckan/ckan/issues/4608
https://github.com/ckan/ckan/issues/4665
https://github.com/ckan/ckan/issues/4672
https://github.com/ckan/ckan/issues/4684
https://github.com/ckan/ckan/issues/4838
https://github.com/ckan/ckan/issues/4827
https://github.com/ckan/ckan/issues/4874
https://github.com/ckan/ckan/issues/4878
https://github.com/ckan/ckan/issues/4382
https://github.com/ckan/ckan/issues/4236
https://github.com/ckan/ckan/issues/4379
https://github.com/ckan/ckan/issues/4414
https://github.com/ckan/ckan/issues/4416
https://github.com/ckan/ckan/issues/4421
https://github.com/ckan/ckan/issues/4426
https://github.com/ckan/ckan/issues/4495
https://github.com/ckan/ckan/issues/4505
https://github.com/ckan/ckan/issues/4521
https://github.com/ckan/ckan/issues/4557


CKAN documentation, Release 2.10.0a0

pip install --upgrade psycopg2==2.8.2

• This release does not require a Solr schema upgrade, but if you are having the issues described in #3863
(datasets wrongly indexed in multilingual setups), you can upgrade the Solr schema and reindex to solve
them.

• #3422 (implemented in #3425) introduced a major bug where if a resource was deleted and the DataStore
was active extras from all resources on the site where changed. This is now fixed as part of this release but
if your database is already affected you will need to run a script to restore the extras to their previous state.
Remember, you only need to run the script if all the following are true:

1. You are currently running CKAN 2.7.0 or 2.7.2, and

2. You have enabled the DataStore, and

3. One or more resources with data on the DataStore have been deleted (or you suspect they might have
been)

If all these are true you can run the following script to restore the extras to their previous state:

https://github.com/ckan/ckan/blob/dev-v2.7/scripts/4042_fix_resource_extras.py

This issue is described in #4042

Fixes:

• Fix toggle bars header icon (#3880)

• Change CORS header keys and values to string instead of unicode (#3855)

• Fix cors header when all origins are allowed (#3898)

• Update SOLR schema.xml reference in Dockerfile

• Build local SOLR container by default

• Create datastore indexes only if they are not exist

• Properly close file responses

• Use javascript content-type for jsonp responses (#4022)

• Add Data Dictionary documentation (#3989)

• Fix SOLR index delete_package implementation

• Add second half of DataStore set-permissions command(Docs)

• Fix extras overriding for removed resources (#4042)

• Return a 403 if not authorized on the search page (#4081)

• Add support for user/pass for Solr as ENV var

• Change permission_labels type to string in schema.xml (#3863)

• Disallow solr local parameters

• Improve text view rendering

• Update Orgs/Groups logic for custom fields delete and update (#4094)

• Upgrade Solr Docker image

8.27. v2.7.3 2018-03-15 509

https://github.com/ckan/ckan/blob/dev-v2.7/scripts/4042_fix_resource_extras.py


CKAN documentation, Release 2.10.0a0

8.28 v2.7.2 2017-09-28

• Include missing minified JavaScript files

8.29 v2.7.1 2017-09-27

• add field_name to image_upload macro when uploading resources (#3766)

• Add some missing major changes to change log. (#3799)

• _mail_recipient header override (#3781)

• skip url parsing in redirect (#3499)

• Fix multiple errors in i18n of JS modules (#3590)

• Standardize on url_for on popup (#3831)

8.30 v2.7.0 2017-08-02

General notes:

• Starting from this version, CKAN requires at least Postgres 9.3

• Starting from this version, CKAN requires a Redis database. Please refer to the new ckan.redis.url config-
uration option.

• This version requires a requirements upgrade on source installations

• This version requires a database upgrade

• This version requires a Solr schema upgrade

• There are several old features being officially deprecated starting from this version. Check the Deprecations
section to be prepared.

Major changes:

• New datatables_view resource view plugin for tabular data (#3444)

• IDataStoreBackend plugins for replacing the default DataStore Postgres backend (#3437)

• datastore_search new result formats and performance improvements (#3523)

• PL/PGSQL triggers for DataStore tables (#3428)

• DataStore dump CLI commands (#3384)

• Wrap/override actions defined in other plugins (#3494)

• DataStore table data dictionary stored as postgres comments (#3414)

• Common session object for Flask and Pylons (#3208)

• Rename deleted datasets when they conflict with new ones (#3370)

• DataStore dump more formats: CSV, TSV, XML, JSON; BOM option (#3390)

• Common requests code for Flask and Pylons so you can use Flask views via the new IBlueprint interface
(#3212)

• Generate complete datastore dump files (#3344)

510 Chapter 8. Changelog

http://docs.ckan.org/en/ckan-2.7.0/maintaining/configuration.html#ckan-redis-url


CKAN documentation, Release 2.10.0a0

• A new system for asynchronous background jobs (#3165)

• Chaining of action functions (#3494)

Minor changes:

• Renamed example theme plugin (#3576)

• Localization support for groups (#3559)

• Create new resource views when format changes (#3515)

• Email field validation (#3568)

• datastore_run_triggers sysadmin-only action to apply triggers to existing data (#3565)

• Docs updated for Ubuntu 16.04 (#3544)

• Upgrade leaflet to 0.7.7 (#3534)

• Datapusher CLI always-answer-yes option (#3524)

• Added docs for all plugin interfaces (#3519)

• DataStore dumps nested columns as JSON (#3487)

• Faster/optional datastore_search total calculation (#3467)

• Faster group_activity_query (#3466)

• Faster query performance (#3430)

• Marked remaining JS strings translatable (#3423)

• Upgrade font-awesome to 4.0.3 (#3400)

• group/organization_show include_dataset_count option (#3385)

• image_formats config option for image viewer (#3380)

• click may now be used for CLI interfaces: use load_config instead of CkanCommand (#3384)

• package_search option to return only names/ids (#3427)

• user_list all_fields option (#3353)

• Error controller may now be overridden (#3340)

• Plural translations in JS (#3211)

• Support JS translations in extensions (#3272)

• Requirements upgraded (#3305)

• Dockerfile updates (#3295)

• Fix activity test to use utcnow (#3644)

• Changed required permission from ‘update’ to ‘manage_group’ (#3631)

• Catch invalid sort param exception (#3630)

• Choose direction of recreated package relationship depending on its type (#3626)

• Fix render_datetime for dates before year 1900 (#3611)

• Fix KeyError in ‘package_create’ (#3027)

• Allow slug preview to work with autocomplete fields (#2501)

• Fix filter results button not working for organization/group (#3620)

8.30. v2.7.0 2017-08-02 511



CKAN documentation, Release 2.10.0a0

• Allow underscores in URL slug preview on create dataset (#3612)

• Fallback to po file translations on h.get_translated() (#3577)

• Fix Fanstatic URL on non-root installs (#3618)

• Fixed escaping issues with helpers.mail_to and datapusher logs

• Autocomplete fields are more responsive - 300ms timeout instead of 1s (#3693)

• Fixed dataset count display for groups (#3711)

• Restrict access to form pages (#3684)

• Render_datetime can handle dates before year 1900 (#2228)

API changes:

• organization_list_for_user (and the h.organizations_available() helper) now return all or-
ganizations a user belongs to regardless of capacity (Admin, Editor or Member), not just the ones where
she is an administrator (#2457)

• organization_list_for_user (and the h.organizations_available() helper) now default to not
include package_count. Pass include_dataset_count=True if you need the package_count values.

• resource['size'] will change from string to long integer (#3205)

• Font Awesome has been upgraded from version 3.2.1 to 4.0.3 .Please refer to https://github.com/
FortAwesome/Font-Awesome/wiki/Upgrading-from-3.2.1-to-4 to upgrade your code accordingly if you
are using custom themes.

Deprecations:

• The API versions 1 and 2 (also known as the REST API, ie /api/rest/* will removed in favour of the
version 3 (action API, /api/action/*), which was introduced in CKAN 2.0. The REST API will be
removed on CKAN 2.8.

• The default theme included in CKAN core will switch to use Bootstrap 3 instead of Bootstrap 2 in CKAN
2.8. The current Bootstrap 2 based templates will still be included in the next CKAN versions, so existing
themes will still work. Bootstrap 2 templates will be eventually removed though, so instances are encour-
aged to update their themes using the available documentation (https://getbootstrap.com/migration/)

• The activity stream related actions ending with *_list (eg package_activity_list) and *_html (eg
package_activity_list_html) will be removed in CKAN 2.8 in favour of more efficient alternatives
and are now deprecated.

• The legacy revisions controller (ie /revisions/*) will be completely removed in CKAN 2.8.

• The old Celery based background jobs will be removed in CKAN 2.8 in favour of the new RQ based
jobs (http://docs.ckan.org/en/latest/maintaining/background-tasks.html). Extensions can still of course use
Celery but they will need to handle the management themselves.

8.31 v.2.6.9 2020-04-15

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

512 Chapter 8. Changelog

https://github.com/FortAwesome/Font-Awesome/wiki/Upgrading-from-3.2.1-to-4
https://github.com/FortAwesome/Font-Awesome/wiki/Upgrading-from-3.2.1-to-4
https://getbootstrap.com/migration/
http://docs.ckan.org/en/latest/maintaining/background-tasks.html


CKAN documentation, Release 2.10.0a0

• Fix for number of datasets displayed on the My organizations tab (#3580)

• Fix datetime comparison in resource_dict_save (#5033)

• Fetch less data for get_all_entity_ids (#5201)

• Show error in text view if xhr failed (#5271)

• Allow vocabulary_id in /api/2/util/tag/autocomplete (#5071)

• Fix code injection in autocomplete module (#5064)

• Fix broken translation in image view placeholder (#5099)

• Filter revisions shown according to dataset permissions

• Update JS vendor libraries

• Use returned facets in group controller (#2713)

• Samesite support in auth cookie (#5255)

• Handle missing resources in case we have a race condition with the DataPusher (#3980)

• Add the g object to toolkit

8.32 v.2.6.8 2019-07-03

General notes:

• Note: This version does not requires a requirements upgrade on source installations

• Note: This version does not requires a database upgrade

• Note: This version does not require a Solr schema upgrade

Fixes:

• Fix broken div nesting in the user/read_base.html (#4672)

• Strip local path when uploading file in IE (#4608)

• Increase size of h1 headings to 1.8em (#4665)

• Fix ValueError in url_validator (#4629)

• More robust auth functions for resource_view_show (#4827)

• Allow to customize the DataProxy URL (#4874)

• Allow custom CKAN callback URL for the DataPusher (#4878)

8.33 v2.6.7 2018-12-12

• Fix for Resouce View Re-order (#4416)

• autocomplete.js: fix handling of comma key codes (#4421)

• group_patch does not reset packages (#4557)

8.32. v.2.6.8 2019-07-03 513

https://github.com/ckan/ckan/pull/3580
https://github.com/ckan/ckan/pull/5033
https://github.com/ckan/ckan/pull/5201
https://github.com/ckan/ckan/pull/5271
https://github.com/ckan/ckan/pull/5071
https://github.com/ckan/ckan/pull/5064
https://github.com/ckan/ckan/pull/5116
https://github.com/ckan/ckan/pull/5167
https://github.com/ckan/ckan/pull/5255
https://github.com/ckan/ckan/pull/4918
https://github.com/ckan/ckan/issues/4672
https://github.com/ckan/ckan/issues/4608
https://github.com/ckan/ckan/issues/4665
https://github.com/ckan/ckan/issues/4629
https://github.com/ckan/ckan/issues/4827
https://github.com/ckan/ckan/issues/4874
https://github.com/ckan/ckan/issues/4878
https://github.com/ckan/ckan/issues/4416
https://github.com/ckan/ckan/issues/4421
https://github.com/ckan/ckan/issues/4557


CKAN documentation, Release 2.10.0a0

8.34 v2.6.6 2018-05-09

• Adding filter at resoruce preview doesn’t work while site is setup with ckan.root_path param (#4140)

• Stable version URLs CKAN for documentation (#4209)

• Add Warning in docs sidebar (#4209)

8.35 v2.6.5 2018-03-15

Note: This version requires a database upgrade

• Activity Time stored in UTC (#2882)

• Migration script to adjust current activity timestamps to UTC

• Change CORS header keys and values to string instead of unicode (#3855)

• Fix cors header when all origins are allowed (#3898)

• Update SOLR schema.xml reference in Dockerfile

• Build local SOLR container by default

• Create datastore indexes only if they don’t exist

• Properly close file responses

• Use javascript content-type for jsonp responses (#4022)

• Fix SOLR index delete_package implementation

• Add second half of DataStore set-permissions command (Docs)

• Return a 403 if not authorized on the search page (#4081)

• Add support for user/pass for Solr as ENV var

• Disallow solr local parameters

• Improve text view rendering

• Update Orgs/Groups logic for custom fields delete and update (#4094)

8.36 v2.6.4 2017-09-27

• Mail recepient header override (#3781)

• Skip url parsing in redirect (#3499)

• Support non root for fanstatic (#3618)

514 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.37 v2.6.3 2017-08-02

• Fix in organization / group form image URL field (#3661)

• Fix activity test to use utcnow (#3644)

• Changed required permission from ‘update’ to ‘manage_group’ (#3631)

• Catch invalid sort param exception (#3630)

• Choose direction of recreated package relationship depending on its type (#3626)

• Fix render_datetime for dates before year 1900 (#3611)

• Fix KeyError in ‘package_create’ (#3027)

• Allow slug preview to work with autocomplete fields (#2501)

• Fix filter results button not working for organization/group (#3620)

• Allow underscores in URL slug preview on create dataset (#3612)

• Create new resource view if resource format changed (#3515)

• Fixed escaping issues with helpers.mail_to and datapusher logs

• Autocomplete fields are more responsive - 300ms timeout instead of 1s (#3693)

• Fixed dataset count display for groups (#3711)

• Restrict access to form pages (#3684)

8.38 v2.6.2 2017-03-22

• Use fully qualified urls for reset emails (#3486)

• Fix edit_resource for resource with draft state (#3480)

• Tag fix for group/organization pages (#3460)

• Setting of datastore_active flag moved to separate function (#3481)

8.39 v2.6.1 2017-02-22

• Fix DataPusher being fired multiple times (#3245)

• Use the url_for() helper for datapusher URLs (#2866)

• Resource creation date use datetime.utcnow() (#3447)

• Fix locale error when using fix ckan.root_path

• render_markdown breaks links with ampersands

• Check group name and id during package creation

• Use utcnow() on dashboard_mark_activities_old (#3373)

• Fix encoding error on DataStore exception

• Datastore doesn’t add site_url to resource created via API (#3189)

• Fix memberships after user deletion (#3265)

8.37. v2.6.3 2017-08-02 515

https://github.com/ckan/ckan/issues/3245
https://github.com/ckan/ckan/issues/2866
https://github.com/ckan/ckan/issues/3447
https://github.com/ckan/ckan/issues/3373
https://github.com/ckan/ckan/issues/3189
https://github.com/ckan/ckan/issues/3265


CKAN documentation, Release 2.10.0a0

• Remove idle database connection (#3260)

• Fix package_owner_org_update action when called via the API (#2661)

• Fix French locale (#3327)

• Updated translations

8.40 v2.6.0 2016-11-02

Note: Starting from this version, CKAN requires at least Python 2.7 and Postgres 9.2

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version does not require a Solr schema upgrade (You may want to upgrade the schema if you want to
target Solr>=5, see #2914)

Major:

• Private datasets are now included in the default dataset search results (#3191)

• package_search API action now has an include_private parameter (#3191)

Minor:

• Make resource name default to file name (#1372)

• Customizable email templates (#1527)

• Change solrpy library to pysolr (#2352)

• Cache SQL query results (#2353)

• File Upload UX improvements (#2604)

• Helpers for multilingual fields (#2678)

• Improve Extension translation docs (#2783)

• Decouple configuration from Pylons (#3163)

• toolkit: add h, StopOnError, DefaultOrganizationForm (#2835)

• Remove Genshi support (#2833)

• Make resource URLs optional (#2844)

• Use 403 when actions are forbidden, not 401 (#2846)

• Upgrade requirements version (#3004, #3005)

• Add icons sources (#3048)

• Remove lib/dumper (#2879)

• ckan.__version__ available as template helper (#3103)

• Remove site_url_nice from app_globals (#3117)

• Remove e.message deprecation warning when running tests (#3121)

• Drop Python 2.6 support (#3126)

• Update Recline version (#3184)

• Refactor config/middleware.py to more closely match poc-flask-views (#3116)

516 Chapter 8. Changelog

https://github.com/ckan/ckan/issues/3260
https://github.com/ckan/ckan/issues/2661
https://github.com/ckan/ckan/issues/3327
https://github.com/ckan/ckan/issues/2914
https://github.com/ckan/ckan/pull/3191
https://github.com/ckan/ckan/pull/3191
https://github.com/ckan/ckan/issues/1372
https://github.com/ckan/ckan/issues/1527
https://github.com/ckan/ckan/pull/2352
https://github.com/ckan/ckan/issues/2353
https://github.com/ckan/ckan/issues/2604
https://github.com/ckan/ckan/issues/2678
https://github.com/ckan/ckan/pull/2783
https://github.com/ckan/ckan/pull/3163
https://github.com/ckan/ckan/pull/2835
https://github.com/ckan/ckan/issues/2833
https://github.com/ckan/ckan/pull/2844
https://github.com/ckan/ckan/pull/2846
https://github.com/ckan/ckan/pull/3004
https://github.com/ckan/ckan/pull/3005
https://github.com/ckan/ckan/pull/3048
https://github.com/ckan/ckan/pull/2879
https://github.com/ckan/ckan/pull/3103
https://github.com/ckan/ckan/pull/3117
https://github.com/ckan/ckan/pull/3121
https://github.com/ckan/ckan/issues/3126
https://github.com/ckan/ckan/pull/3184
https://github.com/ckan/ckan/pull/3116


CKAN documentation, Release 2.10.0a0

• Creation of datasets sources with no organization specified (#3046)

Bug fixes:

• DataPusher called multiple times when creating a dataset (#2856)

• Default view is re-added when removed before DataStore upload is complete (#3011)

• “Data API” button disappears on resource page after empty update (#3012)

• Uncaught email exceptions on user invite (#3077)

• Resource view description is not rendered as Markdown (#3128)

• Fix broken html5lib dependency (#3180)

• ZH_cn translation formatter fix (#3238)

• Incorrect i18n-paths in extension’s setup.cfg (#3275)

• Changing your user name produces an error and logs you out (#2394)

• Fix “Load more” functionality in the dashboard (#2346)

• Fix filters not working when embedding a resource view (#2657)

• Proper sanitation of header name on SlickGrid view (#2923)

• Fix unicode error when indexing field of type JSON (#2969)

• Fix group feeds returning no datasets (#2955)

• Replace MapQuest tiles in Recline with Stamen Terrain (#3162)

• Fix bulk operations not taking effect (#3199)

• Raise validation errors on group/org_member_create (#3108)

• Incorrect warnings when ckan.views.default_views is empty (#3093)

• Don’t show deleted users/datasets on member_list (#3078)

• Fix Tag pagination widget styling (#2399)

• Fix package_owner_org_update standalone (#2661)

• Don’t template fanstatic error pages (#2770)

• group_controller() on IGroupForm not in interface (#2771)

• Fix assert_true to test for message in response (#2802)

• Add user parameter to paster profile command (#2815)

• make context[‘user’] always username or None (#2817)

• remove some deprecated compatibility hacks (#2818)

• Param use_default_schema does not work on package_search (#2848)

• Sanitize offset when listing group activity (#2859)

• Incorrect ‘download resource’ hyperlink when a resource is unable to upload to datastore (#2873)

• Resolve datastore_delete erasing the database when filters was blank. (#2885)

• DomainObject.count() doesn’t return count (#2919)

• Fix response code test failures (#2931)

• Fixed the url_for_* helpers when both SCRIPT_NAME and ckan.root_path are defined (#2936)

8.40. v2.6.0 2016-11-02 517

https://github.com/ckan/ckan/issues/3046
https://github.com/ckan/ckan/issues/2856
https://github.com/ckan/ckan/issues/3011
https://github.com/ckan/ckan/issues/3012
https://github.com/ckan/ckan/pull/3077
https://github.com/ckan/ckan/issues/3128
https://github.com/ckan/ckan/pull/3180
https://github.com/ckan/ckan/pull/3238
https://github.com/ckan/ckan/issues/3275
https://github.com/ckan/ckan/issues/2394
https://github.com/ckan/ckan/issues/2346
https://github.com/ckan/ckan/issues/2657
https://github.com/ckan/ckan/issues/2923
https://github.com/ckan/ckan/issues/2969
https://github.com/ckan/ckan/issues/2955
https://github.com/ckan/ckan/issues/3162
https://github.com/ckan/ckan/pull/3199
https://github.com/ckan/ckan/pull/3108
https://github.com/ckan/ckan/issues/3093
https://github.com/ckan/ckan/pull/3078
https://github.com/ckan/ckan/issues/2399
https://github.com/ckan/ckan/issues/2661
https://github.com/ckan/ckan/pull/2770
https://github.com/ckan/ckan/issues/2771
https://github.com/ckan/ckan/pull/2802
https://github.com/ckan/ckan/pull/2815
https://github.com/ckan/ckan/pull/2817
https://github.com/ckan/ckan/pull/2818
https://github.com/ckan/ckan/pull/2848
https://github.com/ckan/ckan/issues/2859
https://github.com/ckan/ckan/issues/2873
https://github.com/ckan/ckan/pull/2885
https://github.com/ckan/ckan/pull/2919
https://github.com/ckan/ckan/pull/2931
https://github.com/ckan/ckan/pull/2936


CKAN documentation, Release 2.10.0a0

• Escape special characters in password while db loading (#2952)

• Fix redirect not working with non-root (#2968)

• Group pagination does not preserve sort order (#2981)

• Remove LazyJSONObject (#2983)

• Deleted users appear in sysadmin user lists (#2988)

• Server error at /organization if not authorized to list organizations (#2990)

• Slow page rendering when using lots of snippets (#3000)

• Only allow JSONP callbacks on GET requests (#3002)

• Attempting to access non-existing helpers should raise HelperException (#3041)

• Deprecate h.url, make it use h.url_for internally (#3055)

• Tests fail when LANG environment variable is set to German (#3060)

• Fix pagination style (CSS) (#3067)

• Login fails with 404 when using root_path (#3089)

• Resource view description is not rendered as Markdown (#3128)

• Clarify package_relationship_update documentation (#3132)

• q parameter in followee_list action has no effect (#3167)

• Zh cn translation formatter fix (#3238)

• Users are not removed in related tables if the main user entry is deleted (#3265)

API changes and deprecations:

• Replace c.__version__ with new helper h.ckan_version() (#3103)

8.41 v2.5.9 2018-05-09

• Adding filter at resoruce preview doesn’t work while site is setup with ckan.root_path param (#4140)

• Add Warning in docs sidebar (#4209)

• Point API docs to stable URL (#4209)

8.42 v2.5.8 2018-03-15

Note: This version requires a database upgrade

• Fix language switcher

• Activity Time stored in UTC (#2882)

• Migration script to adjust current activity timestamps to UTC

• Change CORS header keys and values to string instead of unicode (#3855)

• Fix cors header when all origins are allowed (#3898)

• Create datastore indexes only if they are not exist

• Use javascript content-type for jsonp responses (#4022)

518 Chapter 8. Changelog

https://github.com/ckan/ckan/issues/2952
https://github.com/ckan/ckan/pull/2968
https://github.com/ckan/ckan/issues/2981
https://github.com/ckan/ckan/pull/2983
https://github.com/ckan/ckan/issues/2988
https://github.com/ckan/ckan/issues/2990
https://github.com/ckan/ckan/pull/3000
https://github.com/ckan/ckan/pull/3002
https://github.com/ckan/ckan/issues/3041
https://github.com/ckan/ckan/pull/3055
https://github.com/ckan/ckan/issues/3060
https://github.com/ckan/ckan/pull/3067
https://github.com/ckan/ckan/issues/3089
https://github.com/ckan/ckan/issues/3128
https://github.com/ckan/ckan/pull/3132
https://github.com/ckan/ckan/pull/3167
https://github.com/ckan/ckan/pull/3238
https://github.com/ckan/ckan/issues/3265
https://github.com/ckan/ckan/pull/3103


CKAN documentation, Release 2.10.0a0

• Fix SOLR index delete_package implementation

• Add second half of DataStore set-permissions command(Docs)

• Update SOLR client (pysolr -> solrpy)

• Return a 403 if not authorized on the search page (#4081)

• Add support for user/pass for Solr as ENV var

• Disallow solr local parameters

• Improve text view rendering

• Update Orgs/Groups logic for custom fields delete and update (#4094)

8.43 v2.5.7 2017-09-27

• Allow overriding email headers (#3781)

• Support non-root instances on fanstatic (#3618)

• Add missing close button on organization page (#3814)

8.44 v2.5.6 2017-08-02

• Fix in organization / group form image URL field (#3661)

• Fix activity test to use utcnow (#3644)

• Changed required permission from ‘update’ to ‘manage_group’ (#3631)

• Catch invalid sort param exception (#3630)

• Choose direction of recreated package relationship depending on its type (#3626)

• Fix render_datetime for dates before year 1900 (#3611)

• Fix KeyError in ‘package_create’ (#3027)

• Allow slug preview to work with autocomplete fields (#2501)

• Fix filter results button not working for organization/group (#3620)

• Allow underscores in URL slug preview on create dataset (#3612)

• Create new resource view if resource format changed (#3515)

• Fixed incorrect escaping in mail_to and datapusher’s log

• Autocomplete fields are more responsive - 300ms timeout instead of 1s (#3693)

• Fixed dataset count display for groups (#3711)

• Restrict access to form pages (#3684)

8.43. v2.5.7 2017-09-27 519



CKAN documentation, Release 2.10.0a0

8.45 v2.5.5 2017-03-22

• Use fully qualified urls for reset emails (#3486)

• Fix edit_resource for resource with draft state (#3480)

• Tag fix for group/organization pages (#3460)

• Setting of datastore_active flag moved to separate function (#3481)

8.46 v2.5.4 2017-02-22

• Fix DataPusher being fired multiple times (#3245)

• Use the url_for() helper for datapusher URLs (#2866)

• Resource creation date use datetime.utcnow() (#3447)

• Fix locale error when using fix ckan.root_path

• render_markdown breaks links with ampersands

• Check group name and id during package creation

• Use utcnow() on dashboard_mark_activities_old (#3373)

• Fix encoding error on DataStore exception

• Datastore doesn’t add site_url to resource created via API (#3189)

• Fix memberships after user deletion (#3265)

• Remove idle database connection (#3260)

• Fix package_owner_org_update action when called via the API (#2661)

8.47 v2.5.3 2016-11-02

• DataPusher called multiple times when creating a dataset (#2856)

• Default view is re-added when removed before DataStore upload is complete (#3011)

• “Data API” button disappears on resource page after empty update (#3012)

• Uncaught email exceptions on user invite (#3077)

• Resource view description is not rendered as Markdown (#3128)

• Fix broken html5lib dependency (#3180)

• ZH_cn translation formatter fix (#3238)

• Incorrect i18n-paths in extension’s setup.cfg (#3275)

• Changing your user name produces an error and logs you out (#2394)

• Fix “Load more” functionality in the dashboard (#2346)

• Fix filters not working when embedding a resource view (#2657)

• Proper sanitation of header name on SlickGrid view (#2923)

• Fix unicode error when indexing field of type JSON (#2969)

520 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Fix group feeds returning no datasets (#2955)

• Replace MapQuest tiles in Recline with Stamen Terrain (#3162)

• Fix bulk operations not taking effect (#3199)

• Raise validation errors on group/org_member_create (#3108)

• Incorrect warnings when ckan.views.default_views is empty (#3093)

• Don’t show deleted users/datasets on member_list (#3078)

8.48 v2.5.2 2016-03-31

Bug fixes:

• Avoid submitting resources to the DataPusher multiple times (#2856)

• Use resource.url as raw_resource_url (#2873)

• Fix DomainObject.count() to return count (#2919)

• Prevent unicode/ascii conversion errors in DataStore

• Fix datastore_delete erasing the db when filters is blank (#2885)

• Avoid package_search exception when using use_default_schema (#2848)

• Encode EXPLAIN SQL before sending to datastore

• Use ckan.site_url to generate urls of resources (#2592)

• Fixed the url for the organization_item template

8.49 v2.5.1 2015-12-17

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version does not require a Solr schema upgrade

Major:

• CKAN extension language translations integrated using ITranslations interface (#2461, #2643)

• Speed improvements for displaying a dataset (#2234), home page (#2554), searching (#2382, #2724) and
API actions: package_show (#1078) and user_list (#2752).

• An interface to replace the file uploader, allowing integration with other cloud storage providers (IUploader
interface) (#2510)

Minor:

• package_purge API action added (#1572)

• revision_list API action now has paging (#1431)

• Official Ubuntu 14.04 LTS support (#1651)

• Require/validate current password before allowing a password change (#1940)

• recline_map_view now recognizes GeoJSON fileds (#2387)

8.48. v2.5.2 2016-03-31 521



CKAN documentation, Release 2.10.0a0

• Timezone setting (#2494)

• Updating a resource via upload now saves the last_modified value in the resource (#2519)

• DataPusher can be customized using the new IDataPusher interface (#2571)

• Exporting and importing users, with their passwords (if sysadmin) (#2647)

Bug fixes:

• Fix to allow uppercase letters in local part of email when sending user invitations (#2415)

• License pick-list changes would cause old values in datasets to be overwritten when edited (#2472)

• Schema was being passed to package_create_default_resource_views (#2484)

• Arabic translation format string issue (#2493)

• Error when deleting organizations (#2512)

• When DataPusher had an error storing a resource in Data Store, the resource data page gave an error (#2518)

• Data preview failed when it comes from a server that gives 403 error from a HEAD request (#2530)

• ‘paster views create’ failed for non-default dataset types (#2532)

• DataPusher didn’t work for TSV files (#2553)

• DataPusher failed sometimes due to ‘type mismatch’ (#2581)

• IGroupForm wasn’t allowing new groups (of type ‘group’) to use group_form (#2617, #2640)

• group_purge left behind a Member if it has a parent group/org (#2631)

• organization_purge left orphaned datasets still with owner_id (#2632)

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.49.1 Changes and deprecations

• The old RDF templates to output a dataset in RDF/XML or N3 format have been removed. These can be now
enabled using the dcat plugin on ckanext-dcat:

https://github.com/ckan/ckanext-dcat#rdf-dcat-endpoints

• The library used to render markdown has been changed to python-markdown. This introduces both
python-markdown and bleach as dependencies, as bleach is used to clean any HTML provided to the mark-
down processor.

• This is the last version of CKAN to support Postgresql 8.x, 9.0 and 9.1. The next minor version of CKAN will
require Postgresql 9.2 or later.

522 Chapter 8. Changelog

https://github.com/ckan/ckanext-dcat#rdf-dcat-endpoints


CKAN documentation, Release 2.10.0a0

8.50 v2.5.0 2015-12-17

Cancelled release

8.51 v2.4.9 2017-09-27

• Allow overriding email headers (#3781)

• Support non-root instances on fanstatic (#3618)

• Add missing close button on organization page (#3814)

8.52 v2.4.8 2017-08-02

• Fix in organization / group form image URL field (#3661)

• Fix activity test to use utcnow (#3644)

• Changed required permission from ‘update’ to ‘manage_group’ (#3631)

• Catch invalid sort param exception (#3630)

• Choose direction of recreated package relationship depending on its type (#3626)

• Fix render_datetime for dates before year 1900 (#3611)

• Fix KeyError in ‘package_create’ (#3027)

• Allow slug preview to work with autocomplete fields (#2501)

• Fix filter results button not working for organization/group (#3620)

• Allow underscores in URL slug preview on create dataset (#3612)

• Create new resource view if resource format changed (#3515)

• Fixed incorrect escaping in mail_to

• Autocomplete fields are more responsive - 300ms timeout instead of 1s (#3693)

• Fixed dataset count display for groups (#3711)

• Restrict access to form pages (#3684)

8.53 v2.4.7 2017-03-22

• Use fully qualified urls for reset emails (#3486)

• Fix edit_resource for resource with draft state (#3480)

• Tag fix for group/organization pages (#3460)

• Fix for package_search context (#3489)

8.50. v2.5.0 2015-12-17 523



CKAN documentation, Release 2.10.0a0

8.54 v2.4.6 2017-02-22

• Use the url_for() helper for datapusher URLs (#2866)

• Resource creation date use datetime.utcnow() (#3447)

• Fix locale error when using fix ckan.root_path

• render_markdown breaks links with ampersands

• Check group name and id during package creation

• Use utcnow() on dashboard_mark_activities_old (#3373)

• Fix encoding error on DataStore exception

• Datastore doesn’t add site_url to resource created via API (#3189)

• Fix memberships after user deletion (#3265)

• Remove idle database connection (#3260)

• Fix package_owner_org_update action when called via the API (#2661)

8.55 v2.4.5 2017-02-22

Cancelled release

8.56 v2.4.4 2016-11-02

• Changing your user name produces an error and logs you out (#2394)

• Fix “Load more” functionality in the dashboard (#2346)

• Fix filters not working when embedding a resource view (#2657)

• Proper sanitation of header name on SlickGrid view (#2923)

• Fix unicode error when indexing field of type JSON (#2969)

• Fix group feeds returning no datasets (#2955)

• Replace MapQuest tiles in Recline with Stamen Terrain (#3162)

• Fix bulk operations not taking effect (#3199)

• Raise validation errors on group/org_member_create (#3108)

• Incorrect warnings when ckan.views.default_views is empty (#3093)

• Don’t show deleted users/datasets on member_list (#3078)

524 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.57 v2.4.3 2016-03-31

Bug fixes:

• Use resource.url as raw_resource_url (#2873)

• Fix DomainObject.count() to return count (#2919)

• Add offset param to organization_activity (#2640)

• Prevent unicode/ascii conversion errors in DataStore

• Fix datastore_delete erasing the db when filters is blank (#2885)

• Avoid package_search exception when using use_default_schema (#2848)

• resource_edit incorrectly setting action to new instead of edit

• Encode EXPLAIN SQL before sending to datastore

• Use ckan.site_url to generate urls of resources (#2592)

• Don’t hide actual exception on paster commands

8.58 v2.4.2 2015-12-17

Note: This version requires a requirements upgrade on source installations

Bug fixes:

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.59 v2.4.1 2015-09-02

Note: #2554 fixes a regression where group_list and organization_list where returning extra additional
fields by default, causing performance issues. This is now fixed, so the output for these actions no longer returns
users, extras, etc. Also, on the homepage template the c.groups and c.group_package_stuff context
variables are no longer available.

Bug fixes:

• Fix dataset count in templates and show datasets on featured org/group (#2557)

• Fix autodetect for TSV resources (#2553)

• Improve character escaping in DataStore parameters

• Fix “paster db init” when celery is configured with a non-database backend

• Fix severe performance issues with groups and orgs listings (#2554)

8.57. v2.4.3 2016-03-31 525



CKAN documentation, Release 2.10.0a0

8.60 v2.4.0 2015-07-22

Note: This version requires a database upgrade

Note: This version requires a Solr schema upgrade

Major:

• CKAN config can now be set from environment variables and via the API (#2429)

Minor:

• API calls now faster: group_show, organization_show, user_show, package_show,
vocabulary_show & tag_show (#1886, #2206, #2207, #2376)

• Require/validate current password before allowing a password change (#1940)

• Added organization_autocomplete action (#2125)

• Default authorization no longer allows anyone to create datasets etc (#2164)

• organization_list_for_user now returns organizations in hierarchy if they exist for roles set in ckan.
auth.roles_that_cascade_to_sub_groups (#2199)

• Improved accessibility (text based browsers) focused on the page header (#2258)

• Improved IGroupForm for better customizing groups and organization behaviour (#2354)

• Admin page can now be extended to have new tabs (#2351)

Bug fixes:

• Command line paster user failed for non-ascii characters (#1244)

• Memory leak fixed in datastore API (#1847)

• Modifying resource didn’t update it’s last updated timestamp (#1874)

• Datastore didn’t update if you uploaded a new file of the same name as the existing file (#2147)

• Files with really long file were skipped by datapusher (#2057)

• Multi-lingual Solr schema is now updated so it works again (#2161)

• Resource views didn’t display when embedded in another site (#2238)

• resource_update failed if you supplied a revision_id (#2340)

• Recline could not plot GeoJSON on a map (#2387)

• Dataset create form 404 error if you added a resource but left it blank (#2392)

• Editing a resource view for a file that was UTF-8 and had a BOM gave an error (#2401)

• Email invites had the email address changed to lower-case (#2415)

• Default resource views not created when using a custom dataset schema (#2421, #2482)

• If the licenses pick-list was customized to remove some, datasets with old values had them overwritten
when edited (#2472)

• Recline views failed on some non-ascii characters (#2490)

• Resource proxy failed if HEAD responds with 403 (#2530)

• Resource views for non-default dataset types couldn’t be created (#2532)

526 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.60.1 Changes and deprecations

• The default of allowing anyone to create datasets, groups and organizations has been changed to False. It is
advised to ensure you set all of the Authorization Settings options explicitly in your CKAN config. (#2164)

• The package_show API call does not return the tracking_summary, keys in the dataset or resources by default
any more.

Any custom templates or users of this API call that use these values will need to pass:
include_tracking=True.

• The legacy tests directory has moved to tests/legacy, the new_tests directory has moved to tests and the
new_authz.py module has been renamed authz.py. Code that imports names from the old locations will con-
tinue to work in this release but will issue a deprecation warning. (#1753)

• group_show and organization_show API calls no longer return the datasets by default (#2206)

Custom templates or users of this API call will need to pass include_datasets=True to include datasets in
the response.

• The vocabulary_show and tag_show API calls no longer returns the packages key - i.e. datasets that use the
vocabulary or tag. However tag_show now has an include_datasets option. (#1886)

• Config option site_url is now required - CKAN will not abort during start-up if it is not set. (#1976)

8.61 v2.3.5 2016-11-02

• Fix “Load more” functionality in the dashboard (#2346)

• Fix filters not working when embedding a resource view (#2657)

• Proper sanitation of header name on SlickGrid view (#2923)

• Fix unicode error when indexing field of type JSON (#2969)

• Fix group feeds returning no datasets (#2955)

• Replace MapQuest tiles in Recline with Stamen Terrain (#3162)

• Fix bulk operations not taking effect (#3199)

• Raise validation errors on group/org_member_create (#3108)

• Incorrect warnings when ckan.views.default_views is empty (#3093)

• Don’t show deleted users/datasets on member_list (#3078)

8.62 v2.3.4 2016-03-31

Bug fixes:

• Use resource.url as raw_resource_url (#2873)

• Fix DomainObject.count() to return count (#2919)

• Prevent unicode/ascii conversion errors in DataStore

• Fix datastore_delete erasing the db when filters is blank (#2885)

• Avoid package_search exception when using use_default_schema (#2848)

• resource_edit incorrectly setting action to new instead of edit

8.61. v2.3.5 2016-11-02 527



CKAN documentation, Release 2.10.0a0

• Use ckan.site_url to generate urls of resources (#2592)

• Don’t hide actual exception on paster commands

8.63 v2.3.3 2015-12-17

Note: This version requires a requirements upgrade on source installations

Bug fixes:

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.64 v2.3.2 2015-09-02

Bug fixes: * Fix autodetect for TSV resources (#2553) * Improve character escaping in DataStore parameters * Fix
“paster db init” when celery is configured with a non-database backend

8.65 v2.3.1 2015-07-22

Bug fixes:

• Resource views won’t display when embedded in another site (#2238)

• resource_update failed if you supplied a revision_id (#2340)

• Recline could not plot GeoJSON on a map (#2387)

• Dataset create form 404 error if you added a resource but left it blank (#2392)

• Editing a resource view for a file that was UTF-8 and had a BOM gave an error (#2401)

• Email invites had the email address changed to lower-case (#2415)

• Default resource views not created when using a custom dataset schema (#2421, #2482)

• If the licenses pick-list was customized to remove some, datasets with old values had them overwritten
when edited (#2472)

• Recline views failed on some non-ascii characters (#2490)

• Resource views for non-default dataset types couldn’t be created (#2532)

528 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.66 v2.3 2015-03-04

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version requires a Solr schema upgrade

Note: This version requires a DataPusher upgrade on source installations. You should target Data-
Pusher=>0.0.6 and upgrade its dependencies.

Major:

• Completely refactored resource data visualizations, allowing multiple persistent views of the same data
an interface to manage and configure them. (#1251, #1851, #1852, #2204, #2205) Check the updated
documentation to know more, and the “Changes and deprecations” section for migration details:

http://docs.ckan.org/en/latest/maintaining/data-viewer.html

• Responsive design for the default theme, that allows nicer rendering across different devices (#1935)

• Improved DataStore filtering and full text search capabilities (#1792, #1830, #1838, #1815)

• Added new extension points to modify the DataStore behaviour (#1725)

• Simplified two-step dataset creation process (#1659)

• Ability for users to regenerate their own API keys (#1412)

• New package_patch action to allow individual fields dataset updates (#1416, #1679)

• Changes on the authentication mechanism to allow more secure setups (httponly and secure cookies,
disable CORS, etc). (#2004. #2050, #2052 . . . ) See “Changes and deprecations” section for more details
and “Troubleshooting” for migration instructions.

• Better support for custom dataset types (#1795, #2083)

• Extensions can combine free-form extras and convert_to_extras fields (#1894)

• Updated documentation theme, now clearer and responsive (#1845)

Minor:

• Adding custom fields tutorial (#790)

• Add metadata created and modified fields to the dataset page (#655)

• Improve IFacets plugin interface docstrings (#781)

• Remove help string from API calls (#1318)

• Add “datapusher submit” command to upload existing resources data (#1792)

• More template blocks to allow for easier extension maintenance (#1301)

• CKAN API - remove help string from standard calls (#1318)

• Hide activity by selected users on activity stream (#1330)

• Documentation and clarification about “CKAN Flavored Markdown” (#1332)

• Resource formats are now guessed automatically (#1350)

• New JavaScript modules tutorial (#1377)

• Allow overriding dataset, group, org validation (#1400)

• Remove ResourceGroups, show package_id on resources (#1407)

8.66. v2.3 2015-03-04 529

http://docs.ckan.org/en/latest/maintaining/data-viewer.html


CKAN documentation, Release 2.10.0a0

• Better errors for NAVL junk (#1418)

• DataPusher integration improvements (#1446)

• Allow people to create unowned datasets when they belong to an org (#1473)

• Add res_type to Solr schema (#1495)

• Separate data and metadata licenses on create dataset page (#1503)

• Allow CKAN (and paster) to find config from envvar (#1597)

• Added xlsx and tsv to the defaults for ckan.datapusher.formats. (#1644)

• Add resource extras to Solr search index (#1709)

• Prevent packages update in organization_update (#1711)

• Programatically log user in after registration (#1721)

• New plugin interfaces: IValidators.get_validators and IConverters.get_converters (#1841)

• Index resource name in Solr (#1905)

• Update search index after membership changes (#1917)

• resource_show: use package_show to get validated data (#1921)

• Serve placeholder images locally (#1951)

• Don’t get all datasets when loading the org in the dataset page (#1978)

• Text file preview - lack of vertical scroll bar for long files (#1982)

• Changes to allow better use of custom group types in IGroupForm extensions (#1987)

• Remove moderated edits (#2006)

• package_create: allow sysadmins to set package ids (#2102)

• Enable a logged in user to move dataset to another organization (#2218)

• Move PDF views into a separate extension (#2270)

• Do not provide email configuration in default config file (#2273)

• Add custom DataStore SQLAlchemy properties (#2279)

Bug fixes:

• Set up stats extension as namespace plugin (#291)

• Fix visibility validator for datasets (#1188)

• Select boxes with autocomplete are clearing their placeholders (#1278)

• Default search ordering on organization home page is broken (#1368)

• related_list logic function throws a 503 without any parameters (#1384)

• Exception on group dictize due to ‘with_capacity’ on context (#1390)

• Wrong template on Add member page (#1392)

• Overflowing email address on user page (#1398)

• The reset password e-mail is using an incorrect translation string (#1409)

• You can’t view a group when there is an IGroupForm (#1420)

• Disabling activity_streams borks editing groups and user (#1421)

530 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Use a more secure default for the repoze secret key (#1422)

• Duplicated Required Fields notice on Group form (#1426)

• UI language reset after account creation (#1429)

• num_followers and package_count not in default_group_schema (#1434)

• Fix extras deletion (#1449)

• Fix resource reordering (#1450)

• Datastore callback fails when browser url is different from site_url (#1451)

• sysadmins should not create datasets wihout org when config is set (#1453)

• Member Editing Fixes (#1454)

• Bulk editing broken on IE7 (#1455)

• Fix group deletion on IE7 (#1460)

• Organization ATOM feed is broken (#1463)

• Users can not delete a dataset that not belongs to an organization (#1471)

• Error during authorization in datapusher_hook (#1487)

• Wrong datapusher hook callback URL on non-root deployments (#1490)

• Wrong breadcrumbs on new dataset form and resource pages (#1491)

• Atom feed Content-Type returned as ‘text/html’ (#1504)

• Invite to organization causes Internal Server error (#1505)

• Dataset tags autocomplete doesn’t work (#1512)

• Activity Stream from: Organization Error group not found (#1519)

• Improve password hashing algorithm (#1530)

• Can’t download resources with geojson extension (#1534)

• All datasets for featured group/organization shown on home page (#1569)

• Able to list private datasets via the API (#1580)

• Don’t lowercase the names of uploaded files (#1584)

• Show more facets only if there are more facts to show (#1612)

• resource_create should break when called without URL (#1641)

• Creating a DataStore resource with the package_id fails for a normal user (#1652)

• Fix package permission checks for create+update (#1664)

• bulk_process page for non-existent organization throws Exception (#1682)

• Catch NotFound error in resource_proxy (#1684)

• Fix int_validator (#1692)

• Current date indexed on empty “_date” fields (#1701)

• Possible to show a resource inside an arbitary dataset (#1707)

• Edit member page shows wrong fields (#1723)

• Insecure content warning when running Recline under SSL (#1729)

8.66. v2.3 2015-03-04 531



CKAN documentation, Release 2.10.0a0

• Flash messages not displayed as part of page.html (#1743)

• package_show response includes solr rubbish when using ckan.cache_validated_datasets (#1764)

• “Add some resources” link shown to unauthorized users (#1766)

• email notifications via paster plugin post erroneously demands authentication (#1767)

• Inserting empty arrays in JSON type fields in datastore fails (#1776)

• Ordering a dataset listing loses the existing filters (#1791)

• Don’t delete all cookies whose names start with “ckan” (#1793)

• Upgrade some major requirements (eg SQLAlchemy, Requests) (#1817, #1819)

• list of member roles disappears on add member page (#1873)

• Stats plugin should only show active datasets (#1936)

• Featured group on homepage not linking to group (#1996)

• –reload doesn’t work on the ‘paster serve’ command (#2013)

• Can not override auth config options from tests (#2035)

• Fix resource_create authorization (#2037)

• package_search gives internal server error if page < 1 (#2042)

• Fix organization pagination (#2141)

• Resource extras can not be updated (#2158)

• package_show doesn’t validate when a custom schema is used (#2175)

• Update jQuery minified version to match the unminified one (#1750)

• Fix exception during database upgrade (#2029)

• Fix resources disappearing on dataset upate (#1779)

• Fix activity stream queries performance on large instances (#2008)

• Only link to http, https and ftp resource urls (#2085)

• Avoid private and deleted datasets on stats plugin (#1936)

• Fix tags count and group links in stats extension (#1649)

• Make resource_create auth work against package_update (#2037)

• Fix DataStore permissions check on startup (#1374)

• Fix datastore docs link (#2044)

• Clean up field names before rendering the Recline table (#2319)

• Don’t “normalize” resource URL in recline view (#2324)

• Don’t assume resource format is there on text preview (#2320)

• And many, many more!

532 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.66.1 Changes and deprecations

• By convention, view plugin names now end with _view rather than _preview (eg recline_view rather than
recline_preview). You will need to update them on the ckan.plugins setting.

• The way resource visualizations are created by default has changed. You might need to set the
ckan.views.default_views configuration option and run a migration command on existing instances. Please refer
to the migration guide for more details:

http://docs.ckan.org/en/latest/maintaining/data-viewer.html#migrating-from-previous-ckan-versions

• The PDF Viewer extension has been moved to a separate extension: https://github.com/ckan/ckanext-pdfview.
Please install it separately if you are using the pdf_view plugin (or the old pdf_preview one).

• The action API (v3) no longer returns the full help for the action on each request. It rather includes a link to a
separate call to get the action help string.

• The user_show API call does not return the datasets, num_followers or activity keys by default any
more.

Any custom templates or users of this API call that use these values will need to specify parameters:
include_datasets or include_num_followers.

activity has been removed completely as it was actually a list of revisions, rather than the activity stream. If
you want the actual activity stream for a user, call user_activity_list instead.

• The output of resource_show now contains a package_id key that links to the parent dataset.

• helpers.get_action() (or h.get_action() in templates) is deprecated.

Since action functions raise exceptions and templates cannot catch exceptions, it’s not a good idea to call action
functions from templates.

Instead, have your controller method call the action function and pass the result to your template using the
extra_vars param of render().

Alternatively you can wrap individual action functions in custom template helper functions that handle any ex-
ceptions appropriately, but this is likely to make your the logic in your templates more complex and templates
are difficult to test and debug.

Note that logic.get_action() and toolkit.get_action() are not deprecated, core code and plugin code should still
use get_action().

• Cross-Origin Resource Sharing (CORS) support is no longer enabled by default. Previously, Access-Control-
Allow-* response headers were added for all requests, with Access-Control-Allow-Origin set to the wildcard
value *. To re-enable CORS, use the new ckan.cors configuration settings (ckan.cors.origin_allow_all and
ckan.cors.origin_whitelist).

• The HttpOnly flag will be set on the authorization cookie by default. For enhanced security, we recommend
using the HttpOnly flag, but this behaviour can be changed in the Repoze.who settings detailed in the Config
File Options documentation (who.httponly).

• The OpenID login option has been removed and is no longer supported. See “Troubleshooting” if you are up-
grading an existing CKAN instance as you may need to update your who.ini file.

8.66. v2.3 2015-03-04 533

http://docs.ckan.org/en/latest/maintaining/data-viewer.html#migrating-from-previous-ckan-versions
https://github.com/ckan/ckanext-pdfview


CKAN documentation, Release 2.10.0a0

8.66.2 Template changes

• Note to people with custom themes: If you’ve changed the {% block secondary_content %} in tem-
plates/package/search.html pay close attention as this pull request changes the structure of that template block a
little.

Also: There’s a few more bootstrap classes (especially for grid layout) that are now going to be in the templates.
Take a look if any of the following changes might effect your content blocks:

https://github.com/ckan/ckan/pull/1935

8.66.3 Troubleshooting:

• Login does not work, for existing and new users.

You need to update your existing who.ini file.

– In the [plugin:auth_tkt] section, replace:

use = ckan.config.middleware:ckan_auth_tkt_make_app

with:

use = ckan.lib.auth_tkt:make_plugin

– In [authenticators], add the auth_tkt plugin

Also see the next point for OpenID related changes.

• Exception on first load after upgrading from a previous CKAN version:

ImportError: <module 'ckan.lib.authenticator' from '/usr/lib/ckan/default/src/ckan/
→˓ckan/lib/authenticator.py'> has no 'OpenIDAuthenticator' attribute

or:

ImportError: No module named openid

There are OpenID related configuration options in your who.ini file which are no longer supported.

This file is generally located in /etc/ckan/default/who.ini but its location may vary if you used a custom
deployment.

The options that you need to remove are:

– The whole [plugin:openid] section

– In [general], replace:

challenge_decider = repoze.who.plugins.openid.classifiers:openid_challenge_
→˓decider

with:

challenge_decider = repoze.who.classifiers:default_challenge_decider

– In [identifiers], remove openid

– In [authenticators], remove ckan.lib.authenticator:OpenIDAuthenticator

534 Chapter 8. Changelog

https://github.com/ckan/ckan/pull/1935


CKAN documentation, Release 2.10.0a0

– In [challengers], remove openid

This is a diff with the whole changes:

https://github.com/ckan/ckan/pull/2058/files#diff-2

Also see the previous point for other who.ini changes.

8.67 v2.2.4 2015-12-17

Note: This version requires a requirements upgrade on source installations

Bug fixes:

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.68 v2.2.3 2015-07-22

Bug fixes:

• Allow uppercase emails on user invites (#2415)

• Fix broken boolean validator (#2443)

• Fix auth check in resources_list.html (#2037)

• Key error on resource proxy (#2425)

• Ignore revision_id passed to resources (#2340)

• Add reset for reset_key on successful password change (#2379)

8.69 v2.2.2 2015-03-04

Bug fixes:

• Update jQuery minified version to match the unminified one (#1750)

• Fix exception during database upgrade (#2029)

• Fix resources disappearing on dataset upate (#1779)

• Fix activity stream queries performance on large instances (#2008)

• Only link to http, https and ftp resource urls (#2085)

• Avoid private and deleted datasets on stats plugin (#1936)

• Fix tags count and group links in stats extension (#1649)

• Make resource_create auth work against package_update (#2037)

• Fix DataStore permissions check on startup (#1374)

• Fix datastore docs link (#2044)

• Fix resource extras getting lost on resource update (#2158)

8.67. v2.2.4 2015-12-17 535

https://github.com/ckan/ckan/pull/2058/files#diff-2


CKAN documentation, Release 2.10.0a0

• Clean up field names before rendering the Recline table (#2319)

• Don’t “normalize” resource URL in recline view (#2324)

• Don’t assume resource format is there on text preview (#2320)

8.70 v2.2.1 2014-10-15

Bug fixes:

• Organization image_url is not displayed in the dataset view. (#1934)

• list of member roles disappears on add member page if you enter a user that doesn’t exist (#1873)

• group/organization_member_create do not return a value. (#1878)

• i18n: Close a tag in French translation in Markdown syntax link (#1919)

• organization_list_for_user() fixes (#1918)

• Don’t show private datasets to group members (#1902)

• Incorrect link in Organization snippet on dataset page (#1882)

• Prevent reading system tables on DataStore SQL search (#1871)

• Ensure that the DataStore is running on legacy mode when using PostgreSQL < 9.x (#1879)

• Select2 in the Tags field is broken(#1864)

• Edit user encoding error (#1436)

• Able to list private datasets via the API (#1580)

• Insecure content warning when running Recline under SSL (#1729)

• Add quotes to package ID in Solr query in _bulk_update_dataset to prevent Solr errors with custom dataset
IDs. (#1853)

• Ordering a dataset listing loses the existing filters (#1791)

• Inserting empty arrays in JSON type fields in datastore fails (#1776)

• email notifications via paster plugin post erroneously demands authentication (#1767)

• “Add some resources” link shown to unauthorized users (#1766)

• Current date indexed on empty “*_date” fields (#1701)

• Edit member page shows wrong fields (#1723)

• programatically log user in after registration (#1721)

• Dataset tags autocomplete doesn’t work (#1512)

• Deleted Users bug (#1668)

• UX problem with previous and next during dataset creation (#1598)

• Catch NotFound error in resources page (#1685)

• _tracking page should only respond to POST (#1683)

• bulk_process page for non-existent organization throws Exception (#1682)

• Fix package permission checks for create+update (#1664)

• Creating a DataStore resource with the package_id fails for a normal user (#1652)

536 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Trailing whitespace in resource URLs not stripped (#1634)

• Move the closing div inside the block (#1620)

• Fix open redirect (#1419)

• Show more facets only if there are more facts to show (#1612)

• Fix breakage in package groups page (#1594)

• Fix broken links in RSS feed (#1589)

• Activity Stream from: Organization Error group not found (#1519)

• DataPusher and harvester collision (#1500)

• Can’t download resources with geojson extension (#1534)

• Oversized Forgot Password button and field (#1508)

• Invite to organization causes Internal Server error (#1505)

8.71 v2.2 2014-02-04

Note: This version does not require a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version requires a Solr schema upgrade (The Solr schema file has been renamed, the schema file from the
previous release is compatible with this version, but users are encouraged to point to the new one, see “API changes
and deprecations”)

Major:

• Brand new automatic importer of tabular data to the DataStore, the DataPusher. This is much more robust
and simple to deploy and maintain than its predecesor (ckanext-datastorer). Whole new UI for re-importing
data to the DataStore and view the import logs (#932, #938, #940, #981, #1196, #1200 . . . )

• Completely revamped file uploads that allow closer integration with resources and the DataStore, as well
as making easir to integrate file uploads in other features. For example users can now upload images for
organizations and groups. See “API changes and deprecations” if you are using the current FileStore.
(#1273, #1173 . . . )

• UI and API endpoints for resource reordering (#1277)

• Backend support for organization hierarchy, allowing parent and children organizations. Frontend needs to
be implemented in extensions (#1038)

• User invitations: it is now possible to create new users with just their email address. An invite email is sent
to them, allowing to change their user name and password (#1178)

• Disable user registration with a configuration option (#1226)

• Great effort in improving documentation, specially for customizing CKAN, with a complete tutorial for
writing extensions and customizing the theme. User and sysadmin guides have also been moved to the
main documentation (#943, #847, #1253)

Minor:

• Homepage modules to allow predefined layouts (#1126)

• Ability to delete users (#1163)

• Dedicated dataset groups page for displaying and managing them (#1102)

8.71. v2.2 2014-02-04 537



CKAN documentation, Release 2.10.0a0

• Implement organization_purge and group_purge action functions (#707)

• Improve package_show performance (#1078)

• Support internationalization of rendered dates and times (#1041)

• Improve plugin load handling (#549)

• Authorization function auditing for action functions (#1060)

• Improve datetime rendering (#518)

• New SQL indexes to improve performance (#1164)

• Changes in requirements management (#1149)

• Add offset/limit to package_list action (#1179)

• Document all available configuraton options (#848)

• Make CKAN sqlalchemy 0.8.4 compatible (#1427)

• UI labelling and cleanup (#1030)

• Better UX for empty groups/orgs (#1094)

• Improve performance of group_dictize when the group has a lot of packages (#1208)

• Hide __extras from extras on package_show (#1218)

• “Clear all” link within each facet block is unnecessary (#1263)

• Term translations of organizations (#1274)

• ‘–reset-db’ option for when running tests (#1304)

Bug fixes:

• Fix plugins load/unload issues (#547)

• Improve performance when new_activities not needed (#1013)

• Resource preview breaks when CSV headers include percent sign (#1067)

• Package index not rebuilt when resources deleted (#1081)

• Don’t accept invalid URLs in resource proxy (#1106)

• UI language reset after account creation (#1429)

• Catch non-integer facet limits (#1118)

• Error when deleting custom tags (#1114)

• Organization images do not display on Organization user dashboard page (#1127)

• Can not reactivate a deleted dataset from the UI (#607)

• Non-existent user profile should give error (#1068)

• Recaptcha not working in CKAN 2.0 (jinja templates) (#1070)

• Groups and organizations can be visited with interchangeable URLs (#1180)

• Dataset Source (url) and Version fields missing (#1187)

• Fix problems with private / public datasets and organizations (#1188)

• group_show should never return private data (#1191)

• When editing a dataset, the organization field is not set (#1199)

538 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Fix resource_delete action (#1216)

• Fix trash purge action redirect broken for CKAN instances not at / (#1217)

• Title edit for existing dataset changes the URL (#1232)

• ‘facet.limit’ in package_search wrongly handled (#1237)

• h.SI_number_span doesn’t close <span /> correctly (#1238)

• CkanVersionException wrongly raised (#1241)

• (group|organization)_member_create only accepts username (and not id) (#1243)

• package_create uses the wrong parameter for organization (#1257)

• ValueError for non-int limit and offset query params (#1258)

• Visibility field value not kept if there are errors on the form (#1265)

• package_list should not return private datasets (#1295)

• Fix 404 on organization activity stream and about page (#1298)

• Fix placeholder images broken on non-root locations (#1309)

• “Add Dataset” button shown on org pages when not authorized (#1348)

• Fix exception when visiting organization history page (#1359)

• Fix search ordering on organization home page (#1368)

• datastore_search_sql failing for some anonymous users (#1373)

• related_list logic function throws a 503 without any parameters (#1384)

• Disabling activity_streams borks editing groups and user (#1421)

• Member Editing Fixes (#1454)

• Bulk editing broken in IE7 (#1455)

• Fix group deletion in IE7 (#1460)

• And many, many more!

API changes and deprecations:

• The Solr schema file is now always named schema.xml regardless of the CKAN version. Old schema
files have been kept for backwards compatibility but users are encouraged to point to the new unified one
(#1314)

• The FileStore and file uploads have been completely refactored and simplified to only support local storage
backend. The links from previous versions of the FileStore to hosted files will still work, but there is a
command available to migrate the files to new Filestore. See this page for more details: http://docs.ckan.
org/en/latest/filestore.html#filestore-21-to-22-migration

• By default, the authorization for any action defined from an extension will require a logged in user, otherwise
a ckan.logic.NotAuthorized exception will be raised. If an action function allows anonymous access
(eg search, show status, etc) the auth_allow_anonymous_access decorator (available on the plugins
toolkit) must be used (#1210)

• package_search now returns results with custom schemas applied like package_show, a
use_default_schema parameter was added to request the old behaviour, this change may affect
customized search result templates (#1255)

• The ckan.api_url configuration option has been completely removed and it can no longer be used (#960)

8.71. v2.2 2014-02-04 539

http://docs.ckan.org/en/latest/filestore.html#filestore-21-to-22-migration
http://docs.ckan.org/en/latest/filestore.html#filestore-21-to-22-migration


CKAN documentation, Release 2.10.0a0

• The edit and after_update methods of IPackageController plugins are now called when updating a
resource using the web frontend or the resource_update API action (#1052)

• Dataset moderation has been deprecated, and the code will probably be removed in later CKAN versions
(#1139)

• Some front end libraries have been updated, this may affect existing custom themes: Bootstrap 2.0.3 >
2.3.2, Font Awesome 3.0.2 > 3.2.1, jQuery 1.7.2 > 1.10.2 (#1082)

• SQLite is officially no longer supported as the tests backend

Troubleshooting:

• Exception on startup after upgrading from a previous CKAN version:

AttributeError: 'instancemethod' object has no attribute 'auth_audit_exempt'

Make sure that you are not loading a 2.1-only plugin (eg datapusher-ext) and update all the plugin in
your configuration file to the latest stable version.

• Exception on startup after upgrading from a previous CKAN version:

File "/usr/lib/ckan/default/src/ckan/ckan/lib/dictization/model_dictize.py",␣
→˓line 330, in package_dictize

result_dict['metadata_modified'] = pkg.metadata_modified.isoformat()
AttributeError: 'NoneType' object has no attribute 'isoformat'

One of the database changes on this version is the addition of a metadata_modified field in the package
table, that was filled during the DB migration process. If you have previously migrated the database and
revert to an older CKAN version the migration process may have failed at this step, leaving the fields empty.
Also make sure to restart running processes like harvesters after the update to make sure they use the new
code base.

8.72 v2.1.6 2015-12-17

Note: This version requires a requirements upgrade on source installations

Bug fixes:

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.73 v2.1.5 2015-07-22

Bug fixes:

• Fix broken boolean validator (#2443)

• Key error on resource proxy (#2425)

• Ignore revision_id passed to resources (#2340)

• Add reset for reset_key on successful password change (#2379)

540 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.74 v2.1.4 2015-03-04

Bug fixes:

• Only link to http, https and ftp resource urls (#2085)

• Avoid private and deleted datasets on stats plugin (#1936)

• Fix tags count and group links in stats extension (#1649)

• Make resource_create auth work against package_update (#2037)

• Fix DataStore permissions check on startup (#1374)

• Fix datastore docs link (#2044)

• Fix resource extras getting lost on resource update (#2158)

• Clean up field names before rendering the Recline table (#2319)

• Don’t “normalize” resource URL in recline view (#2324)

• Don’t assume resource format is there on text preview (#2320)

8.75 v2.1.3 2014-10-15

Bug fixes:

• Organization image_url is not displayed in the dataset view. (#1934)

• i18n: Close a tag in French translation in Markdown syntax link (#1919)

• organization_list_for_user() fixes (#1918)

• Incorrect link in Organization snippet on dataset page (#1882)

• Prevent reading system tables on DataStore SQL search (#1871)

• Ensure that the DataStore is running on legacy mode when using PostgreSQL < 9.x (#1879)

• Edit user encoding error (#1436)

• Able to list private datasets via the API (#1580)

• Insecure content warning when running Recline under SSL (#1729)

• Add quotes to package ID in Solr query in _bulk_update_dataset to prevent Solr errors with custom dataset
IDs. (#1853)

• Ordering a dataset listing loses the existing filters (#1791)

• Inserting empty arrays in JSON type fields in datastore fails (#1776)

• programatically log user in after registration (#1721)

• Deleted Users bug (#1668)

• Catch NotFound error in resources page (#1685)

• bulk_process page for non-existent organization throws Exception (#1682)

• Default search ordering on organization home page is broken (#1368)

• Term translations of organizations (#1274)

• Preview fails on private datastore resources (#1221)

8.74. v2.1.4 2015-03-04 541



CKAN documentation, Release 2.10.0a0

• Strip whitespace from title in model dictize (#1228)

8.76 v2.1.2 2014-02-04

Bug fixes:

• Fix context for group/about setup_template_variables (#1433)

• Call setup_template_variables in group/org read, about and bulk_process (#1281)

• Remove repeated sort code in package_search (#1461)

• Ensure that check_access is called on activity_create (#1421)

• Fix visibility validator (#1188)

• Remove p.toolkit.auth_allow_anonymous_access as it is not available on 2.1.x (#1373)

• Add organization_revision_list to avoid exception on org history page (#1359)

• Fix activity and about organization pages (#1298)

• Show 404 instead of login page on user not found (#1068)

• Don’t show Add Dataset button on org pages unless authorized (#1348)

• Fix datastore_search_sql authorization function (#1373)

• Fix extras deletion (#1449)

• Better word breaking on long words (#1398)

• Fix activity and about organization pages (#1298)

• Remove limit of number of arguments passed to user add command.

• Fix related_list logic function (#1384)

• Avoid UnicodeEncodeError on feeds when params contains non ascii characters

8.77 v2.1.1 2013-11-8

Bug fixes:

• Fix errors on preview on non-root locations (#960)

• Fix place-holder images on non-root locations (#1309)

• Don’t accept invalid URLs in resource proxy (#1106)

• Make sure came_from url is local (#1039)

• Fix logout redirect in non-root locations (#1025)

• Wrong auth checks for sysadmins on package_create (#1184)

• Don’t return private datasets on package_list (#1295)

• Stop tracking failing when no lang/encoding headers (#1192)

• Fix for paster db clean command getting frozen

• Fix organization not set when editing a dataset (#1199)

• Fix PDF previews (#1194)

542 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Fix preview failing on private datastore resources (#1221)

8.78 v2.1 2013-08-13

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version does not require a Solr schema upgrade

Note: The json_preview plugin has been renamed to text_preview (see #266). If you are upgrading CKAN
from a previous version you need to change the plugin name on your CKAN config file after upgrading to avoid a
PluginNotFound exception.

Major:

• Bulk updates of datasets within organizations (delete, make public/private) (#278)

• Organizations and Groups search (#303)

• Generic text preview extension for JSON, XML and plain text files (#226)

• Improve consistency of the Action API (#473)

• IAuthenticator interface for plugging into authorization platforms (Work in progress) (#1007)

• New clearer dashboard with more information easier to access (#626)

• New rebuild_fast command to speed up reindex using multiple cores (#700)

• Complete restructure of the documentation, with updated sections on installation, upgrading, release pro-
cess, etc and guidelines on how to write new documentation (#769 and multiple others)

Minor:

• Add group members page to templates (#844)

• Show search facets on organization page (#776)

• Changed default sort ordering (#869)

• More consistent display of buttons across pages (#890)

• History page ported to new templates (#368)

• More blocks to templates to allow furhter customization (#688)

• Improve imports from lib.helpers (#262)

• Add support for callback parameter on Action API (#414)

• Create site_user at startup (#952)

• Add warning before deleting an organization (#803)

• Remove flags from language selector (#822)

• Hide the Data API button when datastore is disabled (#752)

• Pin all requirements and separate minimal requirements in a separate file (#491, #1149)

• Better preview plugin selection (#1002)

• Add new functions to the plugins toolkit (#1015)

8.78. v2.1 2013-08-13 543



CKAN documentation, Release 2.10.0a0

• Improve ExampleIDatasetFormPlugin (#2750)

• Extend h.sorted_extras() to do substitutions and auto clean keys (#440)

• Separate default database for development and testing (#517)

• More descriptive Solr exceptions when indexing (#674)

• Validate datastore input through schemas (#905)

Bug fixes:

• Fix 500 on password reset (#264)

• Fix exception when indexing a wrong date on a _date field (#267)

• Fix datastore permissions issues (#652)

• Placeholder images are not linked with h.url_for_static (#948)

• Explore dropdown menu is hidden behind other resources in IE (#915)

• Buttons interrupt file uploading (#902)

• Fix resource proxy encoding errors (#896)

• Enable streaming in resource proxy (#989)

• Fix cache_dir and beaker paths on deployment.ini_tmpl (#888)

• Fix multiple issues on create dataset form on IE (#881)

• Fix internal server error when adding member (#869)

• Fix license faceting (#853)

• Fix exception in dashboard (#830)

• Fix Google Analytics integration (#827)

• Fix ValueError when resource size is not an integer (#1009)

• Catch NotFound on new resource when package does not exist (#1010)

• Fix Celery configuration to allow overriding from config (#1027)

• came_from after login is validated to not redidirect to another site (#1039)

• And many, many more!

Deprecated and removed:

• The json_preview plugin has been replaced by a new text_preview one. Please update your config
files if using it. (#226)

Known issues:

• Under certain authorization setups the frontend for the groups functionality may not work as expected (See
#1176 #1175).

544 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.79 v2.0.8 2015-12-17

Note: This version requires a requirements upgrade on source installations

Bug fixes:

• Fix Markdown rendering issue

• Return default error page on fanstatic errors

• Prevent authentication when using API callbacks

8.80 v2.0.7 2015-07-22

Bug fixes:

• Fix broken boolean validator (#2443)

• Key error on resource proxy (#2425)

• Ignore revision_id passed to resources (#2340)

• Add reset for reset_key on successful password change (#2379)

8.81 v2.0.6 2015-03-04

Bug fixes:

• Only link to http, https and ftp resource urls (#2085)

• Avoid private and deleted datasets on stats plugin (#1936)

• Fix tags count and group links in stats extension (#1649)

• Make resource_create auth work against package_update (#2037)

• Fix datastore docs link (#2044)

• Fix resource extras getting lost on resource update (#2158)

• Clean up field names before rendering the Recline table (#2319)

• Don’t “normalize” resource URL in recline view (#2324)

• Don’t assume resource format is there on text preview (#2320)

8.82 v2.0.5 2014-10-15

Bug fixes:

• organization_list_for_user() fixes (#1918)

• Incorrect link in Organization snippet on dataset page (#1882)

• Prevent reading system tables on DataStore SQL search (#1871)

• Ensure that the DataStore is running on legacy mode when using PostgreSQL < 9.x (#1879)

• Current date indexed on empty “*_date” fields (#1701)

8.79. v2.0.8 2015-12-17 545



CKAN documentation, Release 2.10.0a0

• Able to list private datasets via the API (#1580)

• Insecure content warning when running Recline under SSL (#1729)

• Inserting empty arrays in JSON type fields in datastore fails (#1776)

• Deleted Users bug (#1668)

8.83 v2.0.4 2014-02-04

Bug fixes:

• Fix extras deletion (#1449)

• Better word breaking on long words (#1398)

• Fix activity and about organization pages (#1298)

• Show 404 instead of login page on user not found (#1068)

• Remove limit of number of arguments passed to user add command.

• Fix related_list logic function (#1384)

8.84 v2.0.3 2013-11-8

Bug fixes:

• Fix errors on preview on non-root locations (#960)

• Don’t accept invalid URLs in resource proxy (#1106)

• Make sure came_from url is local (#1039)

• Fix logout redirect in non-root locations (#1025)

• Don’t return private datasets on package_list (#1295)

• Stop tracking failing when no lang/encoding headers (#1192)

• Fix for paster db clean command getting frozen

8.85 v2.0.2 2013-08-13

Bug fixes:

• Fix markdown in group descriptions (#303)

• Fix resource proxy encoding errors (#896)

• Fix datastore exception on first run (#907)

• Enable streaming in resource proxy (#989)

• Fix in user search (#1024)

• Fix Celery configuration to allow overriding from config (#1027)

• Undefined function on organizations controller (#1036)

• Fix license not translated in orgs/groups (#1040)

546 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Fix link to documentation from the footer (#1062)

• Fix missing close breadcrumb tag in org templates (#1071)

• Fix recently_changed_packages_activity_stream function (#1159)

• Fix Recline map sidebar not showing in IE 7-8 (#1133)

8.86 v2.0.1 2013-06-11

Bug fixes:

• Use IDatasetForm schema for resource_update (#897)

• Fixes for CKAN being run on a non-root URL (#948, #913)

• Fix resource edit errors losing info (#580)

• Fix Czech translation (#900)

• Allow JSON filters for datastore_search on GET requests (#917)

• Install vdm from the Python Package Index (#764)

• Allow extra parameters on Solr queries (#739)

• Create site user at startup if it does not exist (#952)

• Fix modal popups positioning (#828)

• Fix wrong redirect on dataset form on IE (#963)

8.87 v2.0 2013-05-10

Note: Starting on v2.0, issue numbers with four digits refer to the old ticketing system at http://trac.ckan.org and the
ones with three digits refer to GitHub issues. For example:

• #3020 is http://trac.ckan.org/ticket/3020

• #271 is https://github.com/ckan/ckan/issues/271

Some GitHub issues URLs will redirect to GitHub pull request pages.

Note: v2.0 is a huge release so the changes listed here are just the highlights. Bug fixes are not listed.

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version requires a Solr schema upgrade

Organizations based authorization (see Organizations and authorization): CKAN’s new “organizations” feature
replaces the old authorization system with a new one based on publisher organizations. It replaces the “Pub-
lisher Profile and Workflow” feature from CKAN 1.X, any instances relying on it will need to be updated.

• New organization-based authorization and organization of datasets

• Supports private datasets

8.86. v2.0.1 2013-06-11 547

http://trac.ckan.org
http://trac.ckan.org/ticket/3020
https://github.com/ckan/ckan/issues/271


CKAN documentation, Release 2.10.0a0

• Publisher workflow

• New authorization ini file options

New frontend (see Theming guide): CKAN’s frontend has been completely redesigned, inside and out. There is a
new default theme and the template engine has moved from Genshi to Jinja2. Any custom templates using
Genshi will need to be updated, although there is a ckan.legacy_templates setting to aid in the migration.

• Block-based template inheritance

• Custom jinja tags: {% ckan_extends %}, {% snippet %} and {% url_for %} (#2502, #2503)

• CSS “primer” page for theme developers

• We’re now using LESS for CSS

• Scalable font icons (#2563)

• Social sharing buttons (google plus, facebook, twitter) (this replaces the ckanext-social extension)

• Three-stage dataset creation form (#2501)

• New paster front-end-build command does everything needed to build the frontend for a production CKAN
site (runs paster less to compile the css files, paster minify to minify the css and js files, etc.)

Plugins & Extensions:

• New plugins toolkit provides a stable set of utility and helper functions for CKAN plugins to depend on.

• The IDatasetForm plugin interface has been redesigned (note: this breaks backwards-compatibility with
existing IDatasetForm plugins) (#649)

• Many IDatasetForm bugs were fixed

• New example extensions in core, and better documentation for the relevant plugin interfaces: exam-
ple_itemplatehelpers (#447), example_idatasetform (#2750), hopefully more to come in 2.1!

• New IFacets interface that allows to modify the facets shown on various pages. (#400)

• The get_action() function now automatically adds ‘model’ and ‘session’ to the context dict (this saves on
boiler-plate code, and means plugins don’t have to import ckan.model in order to call get_action()) (#172)

Activity Streams, Following & User Dashboard:

• New visual design for activity streams (#2941)

• Group activity streams now include activities for changes to any of the group’s datasets (#1664)

• Group activity streams now appear on group pages (previously they could only be retrieved via the api)

• Dataset activity streams now appear on dataset pages (previously they could only be retrieved via the api)
(#3024)

• Users can now follow groups (previously you could only follow users or datasets) (#3005)

• Activity streams and following are also supported for organizations (#505)

• When you’re logged into CKAN, you now get a notifications count in the top-right corner of the site, telling
you how many new notifications you have on your dashboard. Clicking on the count takes you to your
dashboard page to view your notifications. (#3009)

• Optionally, you can also receive notifications by email when you have new activities on your dashboard
(#1635)

• Infinite scrolling of activity streams (if you scroll to the bottom of a an activity stream, CKAN will auto-
matically load more activities) (#3018)

• Redesigned user dashboard (#3028):

548 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

– New dropdown-menu enables you to filter you dashboard activity stream to show only activities from
a particular user, dataset, group or organization that you’re following

– New sidebar shows previews and unfollow buttons (when the activity stream is filtered)

• New ckan.activity_streams_enabled config file setting allows you to disable the generation of activity
streams (#654)

Data Preview:

• PDF files preview (#2203)

• JSON files preview

• HTML pages preview (in an iframe) (#2888)

• New plugin extension point that allows plugins to add custom data previews for different data types (#2961)

• Improved Recline Data Explorer previews (CSV files, Excel files..)

• Plain text files preview

API:

• The Action API is now CKAN’s default API, and the API documentation has been rewritten (#357)

Other highlights:

• CKAN now has continuous integration testing at https://travis-ci.org/ckan/ckan/

• Dataset pages now have <link rel=”alternate” type=”application/rdf+xml” links in the HTML headers, al-
lows linked-data tools to find CKAN’s RDF rendering of a dataset’s metadata (#413)

• CKAN’s DataStore and Data API have been rewritten, and now use PostgreSQL instead of elasticsearch,
so there’s no need to install elasticsearch anymore (this feature was also back-ported to CKAN 1.8) (#2733)

• New Config page for sysadmins (/ckan-admin/config) enables sysadmins to set the site title, tag line, logo,
the intro text shown on the front page, the about text shown on the /about page, select a theme, and add
custom CSS (#2302, #2781)

• New paster color command for creating color schemes

• Fanstatic integration (#2371):

– CKAN now uses Fanstatic to specify required static resource files (js, css..) for web pages

– Enables each page to only include the static files that it needs, reducing page loads

– Enables CKAN to use bundled and minified static files, further reducing page loads

– CKAN’s new paster minify command is used to create minified js and css files (#2950) (also see paster
front-end-build)

• CKAN will now recognise common file format strings such as “application/json”, “JSON”, “.json” and
“json” as a single file type “json” (#2416)

• CKAN now supports internalization of strings in javascript files, the new paster trans command is used to
pull translatable strings out of javascript files (#2774, #2750)

• convert_to/from_extras have been fixed to not add quotes around strings (#2930)

• Updated CKAN coding standards (#3020) and CONTRIBUTING.rst file

• Built-in page view counting and ‘popular’ badges on datasets and resources There’s also a paster command
to export the tracking data to a csv file (#195)

• Updated CKAN Coding Standards and new CONTRIBUTING.rst file

8.87. v2.0 2013-05-10 549

https://travis-ci.org/ckan/ckan/


CKAN documentation, Release 2.10.0a0

• You can now change the sort ordering of datasets on the dataset search page

Deprecated and removed:

• The IGenshiStreamFilter plugin interface is deprecated (#271), use the ITemplateHelpers plugin interface
instead

• The Model, Search and Util APIs are deprecated, use the Action API instead

• Removed restrict_template_vars config setting (#2257)

• Removed deprecated facet_title() template helper function, use get_facet_title() instead (#2257)

• Removed deprecated am_authorized() template helper function, use check_access() instead (#2257)

• Removed deprecated datetime_to_datestr() template helper function (#2257)

8.88 v1.8.2 2013-08-13

Bug fixes:

• Fix for using harvesters with organization setup

• Refactor for user update logic

• Tweak resources visibility query

8.89 v1.8.1 2013-05-10

Bug fixes:

• Fixed possible XSS vulnerability on html input (#703)

• Fix unicode template 500 error (#808)

• Fix error on related controller

8.90 v1.8 2012-10-19

Note: This version requires a requirements upgrade on source installations

Note: This version requires a database upgrade

Note: This version does not require a Solr schema upgrade

Major

• New ‘follow’ feature that allows logged in users to follow other users or datasets (#2304)

• New user dashboard that shows an activity stream of all the datasets and users you are following. Thanks
to Sven R. Kunze for his work on this (#2305)

• New version of the Datastore. It has been completely rewritten to use PostgreSQL as backend, it is more
stable and fast and supports SQL queries (#2733)

• Clean up and simplifyng of CKAN’s dependencies and source install instructions. Ubuntu 12.04 is now
supported for source installs (#2428,#2592)

• Big speed improvements when indexing datasets (#2788)

550 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• New action API reference docs, which individually document each function and its arguments and return
values (#2345)

• Updated translations, added Japanese and Korean translations

Minor

• Add source install upgrade docs (#2757)

• Mark more strings for translation (#2770)

• Allow sort ordering of dataset listings on group pages (#2842)

• Reenable simple search option (#2844)

• Editing organization removes all datasets (#2845)

• Accessibility enhancements on templates

Bug fixes

• Fix for relative url being used when doing file upload to local storage

• Various fixes on IGroupFrom (#2750)

• Fix group dataset sort (#2722)

• Fix adding existing datasets to organizations (#2843)

• Fix 500 error in related controller (#2856)

• Fix for non-open licenses appearing open

• Editing organization removes all datasets (#2845)

API changes and deprecation:

• Template helper functions are now restricted by default. By default only those helper functions listed in
lib.helpers.__allowed_functions__ are available to templates. The full functions can still be made available
by setting ckan.restrict_template_vars = false in your ini file. Only restricted functions will be allowed in
future versions of CKAN.

• Deprecated functions related to the old faceting data structure have been removed: helpers.py:facet_items(),
facets.html:facet_sidebar(), facets.html:facet_list_items(). Internal use of the old facets datastructure
(attached to the context, c.facets) has been superseded by use of the improved facet data structure,
c.search_facets. The old data structure is still available on c.facets, but is deprecated, and will be removed
in future versions. (#2313)

8.91 v1.7.4 2013-08-13

Bug fixes:

• Refactor for user update logic

• Tweak resources visibility query

8.91. v1.7.4 2013-08-13 551



CKAN documentation, Release 2.10.0a0

8.92 v1.7.3 2013-05-10

Bug fixes:

• Fixed possible XSS vulnerability on html input (#703)

8.93 v1.7.2 2012-10-19

Minor:

• Documentation enhancements regarding file uploads

Bug fixes:

• Fixes for lincences i18n

• Remove sensitive data from user dict (#2784)

• Fix bug in feeds controller (#2869)

• Show dataset author and maintainer names even if they have no emails

• Fix URLs for some Amazon buckets

• Other minor fixes

8.94 v1.7.1 2012-06-20

Minor:

• Documentation enhancements regarding install and extensions (#2505)

• Home page and search results speed improvements (#2402,#2403)

• I18n: Added Greek translation and updated other ones (#2506)

Bug fixes:

• UI fixes (#2507)

• Fixes for i18n login and logout issues (#2497)

• Date on add/edit resource breaks if offset is specified (#2383)

• Fix in organizations read page (#2509)

• Add synchronous_search plugin to deployment.ini template (#2521)

• Inconsistent language on license dropdown (#2575)

• Fix bug in translating lists in multilingual plugin

• Group autocomplete doesn’t work with multiple words (#2373)

• Other minor fixes

552 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.95 v1.7 2012-05-09

Major:

• Updated SOLR schema (#2327). Note: This will require and update of the SOLR schema file and a reindex.

• Support for Organization based workflow, with membership determinig access permissions to datasets
(#1669,#2255)

• Related items such as visualizations, applications or ideas can now be added to datasets (#2204)

• Restricted vocabularies for tags, allowing grouping related tags together (#1698)

• Internal analytics that track number of views and downloads for datasets and resources (#2251)

• Consolidated multilingual features in an included extension (#1821,#1820)

• Atom feeds for publishers, tags and search results (#1593,#2277)

• RDF dump paster command (#2303)

• Better integration with the DataStore, based on ElasticSearch, with nice helper docs (#1797)

• Updated the Recline data viewer with new features such as better graphs and a map view (#2236,#2283)

• Improved and redesigned documentation (#2226,#2245,#2248)

Minor:

• Groups can have an image associated (#2275)

• Basic resource validation (#1711)

• Ability to search without accents for accented words (#906)

• Weight queries so that title is more important than rest of body (#1826)

• Enhancements in the dataset and resource forms (#1506)

• OpenID can now be disabled (#1830)

• API and forms use same validation (#1792)

• More robust bulk search indexing, with options to ignore exceptions and just refresh (#1616i,#2232)

• Modify where the language code is placed in URLs (#2261)

• Simplified licenses list (#1359)

• Add extension point for dataset view (#1741)

Bug fixes:

• Catch exceptions on the QA archiver (#1809)

• Error when changing language when CKAN is mounted in URL (#1804)

• Naming of a new package/group can clash with a route (#1742)

• Can’t delete all of a package’s resources over REST API (#2266)

• Group edit form didn’t allow adding multiple datasets at once (#2292)

• Fix layout bugs in IE 7 (#1788)

• Bug with Portugese translation and Javascript (#2318)

• Fix broken parse_rfc_2822 helper function (#2314)

8.95. v1.7 2012-05-09 553



CKAN documentation, Release 2.10.0a0

8.96 v1.6 2012-02-24

Major:

• Resources now have their own pages, as well as showing in the Dataset (#1445, #1449)

• Group pages enhanced, including in-group search (#1521)

• User pages enhanced with lists of datasets (#1396) and recent activity (#1515)

• Dataset view page decluttered (#1450)

• Tags not restricted to just letters and dashes (#1453)

• Stats Extension and Storage Extension moved into core CKAN (#1576, #1608)

• Ability to mounting CKAN at a sub-URL (#1401, #1659)

• 5 Stars of Openness ratings show by resources, if ckanext-qa is installed (#1583)

• Recline Data Explorer (for previewing and plotting data) improved and v2 moved into core CKAN (#1602,
#1630)

Minor:

• ‘About’ page rewritten and easily customisable in the config (#1626)

• Gravatar picture displayed next to My Account link (#1528)

• ‘Delete’ button for datasets (#1425)

• Relationships API more RESTful, validated and documented (#1695)

• User name displayed when logged in (#1529)

• Database dumps now exclude deleted packages (#1623)

• Dataset/Tag name length now limited to 100 characters in API (#1473)

• ‘Status’ API call now includes installed extensions (#1488)

• Command-line interface for list/read/deleting datasets (#1499)

• Slug API calls tidied up and documented (#1500)

• Users nagged to add email address if missing from their account (#1413)

• Model and API for Users to become Members of a Group in a certain Capacity (#1531, #1477)

• Extension interface to adjust search queries, indexing and results (#1547, #1738)

• API for changing permissions (#1688)

Bug fixes:

• Group deletion didn’t work (#1536)

• metadata_created used to return an entirely wrong date (#1546)

• Unicode characters in field-specific API search queries caused exception (since CKAN 1.5) (#1798)

• Sometimes task_status errors weren’t being recorded (#1483)

• Registering or Logging in failed silently when already logged in (#1799)

• Deleted packages were browseable by administrators and appeared in dumps (#1283, #1623)

• Facicon was a broken link unless corrected in config file (#1627)

• Dataset search showed last result of each page out of order (#1683)

554 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• ‘Simple search’ mode showed 0 packages on home page (#1709)

• Occasionally, ‘My Account’ shows when user is not logged in (#1513)

• Could not change language when on a tag page that had accented characters or dataset creation page (#1783,
#1791)

• Editing package via API deleted its relationships (#1786)

8.97 v1.5.1 2012-01-04

Major:

• Background tasks (#1363, #1371, #1408)

• Fix for security issue affecting CKAN v1.5 (#1585)

Minor:

• Language support now excellent for European languages: en de fr it es no sv pl ru pt cs sr ca

• Web UI improvements:

– Resource editing refreshed

– Group editing refreshed

– Indication that group creation requires logging-in (#1004)

– Users’ pictures displayed using Gravatar (#1409)

– ‘Welcome’ banner shown to new users (#1378)

– Group package list now ordered alphabetically (#1502)

• Allow managing a dataset’s groups also via package entity API (#1381)

• Dataset listings in API standardised (#1490)

• Search ordering by modification and creation date (#191)

• Account creation disallowed with Open ID (create account in CKAN first) (#1386)

• User name can be modified (#1386)

• Email address required for registration (for password reset) (#1319)

• Atom feeds hidden for now

• New config options to ease CSS insertion into the template (#1380)

• Removed ETag browser cache headers (#1422)

• CKAN version number and admin contact in new ‘status_show’ API (#1087)

• Upgrade SQLAlchemy to 0.7.3 (compatible with Postgres up to 9.1) (#1433)

• SOLR schema is now versioned (#1498)

Bug fixes:

• Group ordering on main page was alphabetical but should be by size (since 1.5) (#1487)

• Package could get added multiple times to same Group, distorting Group size (#1484)

• Search index corruption when multiple CKAN instances on a server all storing the same object (#1430)

• Dataset property metadata_created had wrong value (since v1.3) (#1546)

8.97. v1.5.1 2012-01-04 555



CKAN documentation, Release 2.10.0a0

• Tag browsing showed tags for deleted datasets (#920)

• User name change field validation error (#1470)

• You couldn’t edit a user with a unicode email address (#1479)

• Package search API results missed the extra fields (#1455)

• OpenID registration disablement explained better (#1532)

• Data upload (with ckanext-storage) failed if spaces in the filename (#1518)

• Resource download count fixed (integration with ckanext-googleanalytics) (#1451)

• Multiple CKANs with same dataset IDs on the same SOLR core would conflict (#1462)

8.98 v1.5 2011-11-07

Deprecated due to security issue #1585

Major:

• New visual theme (#1108)

– Package & Resource edit overhaul (#1294/#1348/#1351/#1368/#1296)

– JS and CSS reorganization (#1282, #1349, #1380)

• Apache Solr used for search in core instead of Postgres (#1275, #1361, #1365)

• Authorization system now embedded in the logic layer (#1253)

• Captcha added for user registration (#1307, #1431)

• UI language translations refreshed (#1292, #1350, #1418)

• Action API improved with docs now (#1315, #1302, #1371)

Minor:

• Cross-Origin Resource Sharing (CORS) support (#1271)

• Strings to translate into other languages tidied up (#1249)

• Resource format autocomplete (#816)

• Database disconnection gives better error message (#1290)

• Log-in cookie is preserved between sessions (#78)

• Extensions can access formalchemy forms (#1301)

• ‘Dataset’ is the new name for ‘Package’ (#1293)

• Resource standard fields added: type, format, size (#1324)

• Listing users speeded up (#1268)

• Basic data preview functionality moved to core from QA extension (#1357)

• Admin Extension merged into core CKAN (#1264)

• URLs in the Notes field are automatically linked (#1320)

• Disallow OpenID for account creation (but can be linked to accounts) (#1386)

• Tag name now validated for max length (#1418)

556 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

Bug fixes:

• Purging of revisions didn’t work (since 1.4.3) (#1258)

• Search indexing wasn’t working for SOLR (since 1.4.3) (#1256)

• Configuration errors were being ignored (since always) (#1172)

• Flash messages were temporarily held-back when using proxy cache (since 1.3.2) (#1321)

• On login, user told ‘welcome back’ even if he’s just registered (#1194)

• Various minor exceptions cropped up (mostly since 1.4.3) (#1334, #1346)

• Extra field couldn’t be set to original value when key deleted (#1356)

• JSONP callback parameter didn’t work for the Action API (since 1.4.3) (#1437)

• The same tag could be added to a package multiple times (#1331)

8.99 v1.4.3.1 2011-09-30

Minor:

• Added files to allow debian packaging of CKAN

• Added Catalan translation

Bug fixes:

• Incorrect Group creation form parameter caused exception (#1347)

• Incorrect AuthGroup creation form parameter caused exception (#1346)

8.100 v1.4.3 2011-09-13

Major:

• Action API (API v3) (beta version) provides powerful RPC-style API to CKAN data (#1335)

• Documentation overhaul (#1142, #1192)

Minor:

• Viewing of a package at a given date (as well as revision) with improved UI (#1236)

• Extensions can now add functions to the logic layer (#1211)

• Refactor all remaining database code out of the controllers and into the logic layer (#1229)

• Any OpenID log-in errors that occur are now displayed (#1228)

• ‘url’ field added to search index (e9214)

• Speed up tag reading (98d72)

• Cope with new WebOb version 1 (#1267)

• Avoid exceptions caused by bots hitting error page directly (#1176)

• Too minor to mention: #1234,

Bug fixes:

• Re-adding tags to a package failed (since 1.4.1 in Web UI, 1.4 in API) (#1239)

8.99. v1.4.3.1 2011-09-30 557



CKAN documentation, Release 2.10.0a0

• Modified revisions retrieved over API caused exception (since 1.4.2) (#1310)

• Whichever language you changed to, it announced “Language set to: English” (since 1.3.1) (#1082)

• Incompatibilities with Python 2.5 (since 1.3.4.1 and maybe earlier) (#1325)

• You could create an authorization group without a name, causing exceptions displaying it (#1323)

• Revision list wasn’t showing deleted packages (b21f4)

• User editing error conditions handled badly (#1265)

8.101 v1.4.2 2011-08-05

Major:

• Packages revisions can be marked as ‘moderated’ (#1141, #1147)

• Password reset facility (#1186/#1198)

Minor:

• Viewing of a package at any revision (#1236)

• API POSTs can be of Content-Type “application/json” as alternative to existing “application/x-www-form-
urlencoded” (#1206)

• Caching of static files (#1223)

Bug fixes:

• When you removed last row of resource table, you could’t add it again - since 1.0 (#1215)

• Adding a tag to package that had it previously didn’t work - since 1.4.1 in UI and 1.4.0 in API (#1239)

• Search index was not updated if you added a package to a group - since 1.1 (#1140)

• Exception if you had any Groups and migrated between CKAN v1.0.2 to v1.2 (migration 29) - since v1.0.2
(#1205)

• API Package edit requests returned the Package in a different format to usual - since 1.4 (#1214)

• API error responses were not all JSON format and didn’t have correct Content-Type (#1214)

• API package delete doesn’t require a Content-Length header (#1214)

8.102 v1.4.1 2011-06-27

Major:

• Refactor Web interface to use logic layer rather than model objects directly. Forms now defined in navl
schema and designed in HTML template. Forms use of Formalchemy is deprecated. (#1078)

Minor:

• Links in user-supplied text made less attractive to spammers (nofollow) #1181

• Package change notifications - remove duplicates (#1149)

• Metadata dump linked to (#1169)

• Refactor authorization code to be common across Package, Group and Authorization Group (#1074)

Bug fixes

558 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

• Duplicate authorization roles were difficult to delete (#1083)

8.103 v1.4 2011-05-19

Major:

• Authorization forms now in grid format (#1074)

• Links to RDF, N3 and Turtle metadata formats provided by semantic.ckan.net (#1088)

• Refactor internal logic to all use packages in one format - a dictionary (#1046)

• A new button for administrators to change revisions to/from a deleted state (#1076)

Minor:

• Etags caching can now be disabled in config (#840)

• Command-line tool to check search index covers all packages (#1073)

• Command-line tool to load/dump postgres database (#1067)

Bug fixes:

• Visitor can’t create packages on new CKAN install - since v1.3.3 (#1090)

• OpenID user pages couldn’t be accessed - since v1.3.2 (#1056)

• Default site_url configured to ckan.net, so pages obtains CSS from ckan.net- since v1.3 (#1085)

8.104 v1.3.3 2011-04-08

Major:

• Authorization checks added to editing Groups and PackageRelationships (#1052)

• API: Added package revision history (#1012, #1071)

Minor:

• API can take auth credentials from cookie (#1001)

• Theming: Ability to set custom favicon (#1051)

• Importer code moved out into ckanext-importlib repo (#1042)

• API: Group can be referred to by ID (in addition to name) (#1045)

• Command line tool: rights listing can now be filtered (#1072)

Bug fixes:

• SITE_READ role setting couldn’t be overridden by sysadmins (#1044)

• Default ‘reader’ role too permissive (#1066)

• Resource ordering went wrong when editing and adding at same time (#1054)

• GET followed by PUTting a package stored an incorrect license value (#662)

• Sibling package relationships were shown for deleted packages (#664)

• Tags were displayed when they only apply to deleted packages (#920)

• API: ‘Last modified’ time was localised - now UTC (#1068)

8.103. v1.4 2011-05-19 559



CKAN documentation, Release 2.10.0a0

8.105 v1.3.2 2011-03-15

Major:

• User list in the Web interface (#1010)

• CKAN packaged as .deb for install on Ubuntu

• Resources can have extra fields (although not in web interface yet) (#826)

• CSW Harvesting - numerous of fixes & improvements. Ready for deployment. (#738 etc)

• Language switcher (82002)

Minor:

• Wordpress integration refactored as a Middleware plugin (#1013)

• Unauthorized actions lead to a flash message (#366)

• Resources Groups to group Resources in Packages (#956)

• Plugin interface for authorization (#1011)

• Database migrations tested better and corrected (#805, #998)

• Government form moved out into ckanext-dgu repo (#1018)

• Command-line user authorization tools extended (#1038, #1026)

• Default user roles read from config file (#1039)

Bug fixes:

• Mounting of filesystem (affected versions since 1.0.1) (#1040)

• Resubmitting a package via the API (affected versions since 0.6?) (#662)

• Open redirect (affected v1.3) (#1026)

8.106 v1.3 2011-02-18

http://ckan.org/milestone/ckan-v1.3

Highlights of changes:

• Package edit form improved:

– field instructions (#679)

– name autofilled from title (#778)

• Group-based access control - Authorization Groups (#647)

• Metadata harvest job management (#739, #884, #771)

• CSW harvesting now uses owslib (#885)

• Package creation authorization is configurable (#648)

• Read-only maintenance mode (#777)

• Stats page (#832) and importer (#950) moved out into CKAN extensions

Minor:

• site_title and site_description config variables (#974)

560 Chapter 8. Changelog

http://ckan.org/milestone/ckan-v1.3


CKAN documentation, Release 2.10.0a0

• Package creation/edit timestamps (#806)

• Caching configuration centralised (#828)

• Command-line tools - sysadmin management (#782)

• Group now versioned (#231)

8.107 v1.2 2010-11-25

http://ckan.org/milestone/ckan-v1.2

Highlights of changes:

• Package edit form: attach package to groups (#652) & revealable help

• Form API - Package/Harvester Create/New (#545)

• Authorization extended: user groups (#647) and creation of packages (#648)

• Plug-in interface classes (#741)

• WordPress twentyten compatible theming (#797)

• Caching support (ETag) (#693)

• Harvesting GEMINI2 metadata records from OGC CSW servers (#566)

Minor:

• New API key header (#466)

• Group metadata now revisioned (#231)

8.108 v1.1 2010-08-10

http://ckan.org/milestone/v1.1

Highlights of changes:

• Changes to the database cause notifications via AMQP for clients (#325)

• Pluggable search engines (#317), including SOLR (#353)

• API is versioned and packages & groups can be referred to by invariant ID (#313)

• Resource search in API (#336)

• Visual theming of CKAN now easy (#340, #320)

• Greater integration with external Web UIs (#335, #347, #348)

• Plug-ins can be configured to handle web requests from specified URIs and insert HTML into pages.

Minor:

• Search engine optimisations e.g. alphabetical browsing (#350)

• CSV and JSON dumps improved (#315)

8.107. v1.2 2010-11-25 561

http://ckan.org/milestone/ckan-v1.2
http://ckan.org/milestone/v1.1


CKAN documentation, Release 2.10.0a0

8.109 v1.0.2 2010-08-27

• Bugfix: API returns error when creating package (#432)

8.110 v1.0.1 2010-06-23

Functionality:

• API: Revision search ‘since id’ and revision model in API

• API: Basic API versioning - packages specified by ID (#313)

• Pluggable search - initial hooks

• Customisable templates (#340) and external UI hooks (#335)

Bugfixes:

• Revision primary key lost in migrating data (#311)

• Local authority license correction in migration (#319)

• I18n formatting issues

• Web i/f searches foreign characters (#319)

• Data importer timezone issue (#330)

8.111 v1.0 2010-05-11

CKAN comes of age, having been used successfully in several deployments around the world. 56 tickets covered in
this release. See: http://ckan.org/milestone/v1.0

Highlights of changes:

• Package edit form: new pluggable architecture for custom forms (#281, #286)

• Package revisions: diffs now include tag, license and resource changes (#303)

• Web interface: visual overhaul (#182, #206, #214-#227, #260) including a tag cloud (#89)

• i18n: completion in Web UI - now covers package edit form (#248)

• API extended: revisions (#251, #265), feeds per package (#266)

• Developer documentation expanded (#289, #290)

• Performance improved and CKAN stress-tested (#201)

• Package relationships (Read-Write in API, Read-Only in Web UI) (#253-257)

• Statistics page (#184)

• Group edit: add multiple packages at once (#295)

• Package view: RDF and JSON formatted metadata linked to from package page (#247)

Bugfixes:

• Resources were losing their history (#292)

• Extra fields now work with spaces in the name (#278, #280) and international characters (#288)

562 Chapter 8. Changelog

http://ckan.org/milestone/v1.0


CKAN documentation, Release 2.10.0a0

• Updating resources in the REST API (#293)

Infrastructural:

• Licenses: now uses external License Service (‘licenses’ Python module)

• Changesets introduced to support distributed revisioning of CKAN data - see doc/distributed.rst for more infor-
mation.

8.112 v0.11 2010-01-25

Our biggest release so far (55 tickets) with lots of new features and improvements. This release also saw a major new
production deployment with the CKAN software powering http://data.gov.uk/ which had its public launch on Jan 21st!

For a full listing of tickets see: <http://ckan.org/milestone/v0.11>. Main highlights:

• Package Resource object (multiple download urls per package): each package can have multiple ‘resources’ (urls)
with each resource having additional metadata such as format, description and hash (#88, #89, #229)

• “Full-text” searching of packages (#187)

• Semantic web integration: RDFization of all data plus integration with an online RDF store (e.g. for http:
//www.ckan.net/ at http://semantic.ckan.net/ or Talis store) (#90 #163)

• Package ratings (#77 #194)

• i18n: we now have translations into German and French with deployments at http://de.ckan.net/ and http://fr.
ckan.net/ (#202)

• Package diffs available in package history (#173)

• Minor:

– Package undelete (#21, #126)

– Automated CKAN deployment via Fabric (#213)

– Listings are sorted alphabetically (#195)

– Add extras to rest api and to ckanclient (#158 #166)

• Infrastructural:

– Change to UUIDs for revisions and all domain objects

– Improved search performance and better pagination

– Significantly improved performance in API and WUI via judicious caching

8.113 v0.10 2009-09-30

• Switch to repoze.who for authentication (#64)

• Explicit User object and improved user account UI with recent edits etc (#111, #66, #67)

• Generic Attributes for Packages (#43)

• Use sqlalchemy-migrate to handle db/model upgrades (#94)

• “Groups” of packages (#105, #110, #130, #121, #123, #131)

• Package search in the REST API (#108)

8.112. v0.11 2010-01-25 563

http://data.gov.uk/
http://ckan.org/milestone/v0.11
http://www.ckan.net/
http://www.ckan.net/
http://semantic.ckan.net/
http://de.ckan.net/
http://fr.ckan.net/
http://fr.ckan.net/


CKAN documentation, Release 2.10.0a0

• Full role-based access control for Packages and Groups (#93, #116, #114, #115, #117, #122, #120)

• New CKAN logo (#72)

• Infrastructural:

– Upgrade to Pylons 0.9.7 (#71)

– Convert to use formalchemy for all forms (#76)

– Use paginate in webhelpers (#118)

• Minor:

– Add author and maintainer attributes to package (#91)

– Change package state in the WUI (delete and undelete) (#126)

– Ensure non-active packages don’t show up (#119)

– Change tags to contain any character (other than space) (#62)

– Add Is It Open links to package pages (#74)

8.114 v0.9 2009-07-31

• (DM!) Add version attribute for package

• Fix purge to use new version of vdm (0.4)

• Link to changed packages when listing revision

• Show most recently registered or updated packages on front page

• Bookmarklet to enable easy package registration on CKAN

• Usability improvements (package search and creation on front page)

• Use external list of licenses from license repository

• Convert from py.test to nosetests

8.115 v0.8 2009-04-10

• View information about package history (ticket:53)

• Basic datapkg integration (ticket:57)

• Show information about package openness using icons (ticket:56)

• One-stage package create/registration (r437)

• Reinstate package attribute validation (r437)

• Upgrade to vdm 0.4

564 Chapter 8. Changelog



CKAN documentation, Release 2.10.0a0

8.116 v0.7 2008-10-31

• Convert to use SQLAlchemy and vdm v0.3 (v. major)

• Atom/RSS feed for Recent Changes

• Package search via name and title

• Tag lists show number of associated packages

8.117 v0.6 2008-07-08

• Autocompletion (+ suggestion) of tags when adding tags to a package.

• Paginated lists for packages, tags, and revisions.

• RESTful machine API for package access, update, listing and creation.

• API Keys for users who wish to modify information via the REST API.

• Update to vdm v0.2 (SQLObject) which fixes ordering of lists.

• Better immunity to SQL injection attacks.

8.118 v0.5 2008-01-22

• Purging of a Revision and associated changes from cli and wui (ticket:37)

• Make data available in machine-usable form via sql dump (ticket:38)

• Upgrade to Pylons 0.9.6.* and deploy (ticket:41)

• List and search tags (ticket:33)

• (bugfix) Manage reserved html characters in urls (ticket:40)

• New spam management utilities including (partial) blacklist support

8.119 v0.4 2007-07-04

• Preview support when editing a package (ticket:36).

• Correctly list IP address of of not logged in users (ticket:35).

• Improve read action for revision to list details of changed items (r179).

• Sort out deployment using modpython.

8.116. v0.7 2008-10-31 565



CKAN documentation, Release 2.10.0a0

8.120 v0.3 2007-04-12

• System now in a suitable state for production deployment as a beta

• Domain model versioning via the vdm package (currently released separately)

• Basic Recent Changes listing log messages

• User authentication (login/logout) via open ID

• License page

• Myriad of small fixes and improvements

8.121 v0.2 2007-02

• Complete rewrite of ckan to use pylons web framework

• Support for full CRUD on packages and tags

• No support for users (authentication)

• No versioning of domain model objects

8.122 v0.1 2006-05

NB: not an official release

• Almost functional system with support for persons, packages

• Tag support only half-functional (tags are per package not global)

• Limited release and file support

566 Chapter 8. Changelog



PYTHON MODULE INDEX

c
ckan.lib.helpers, 359
ckan.lib.navl.validators, 294
ckan.logic.action.create, 197
ckan.logic.action.delete, 213
ckan.logic.action.get, 180
ckan.logic.action.patch, 212
ckan.logic.action.update, 205
ckan.logic.converters, 301
ckan.logic.validators, 297
ckan.plugins.interfaces, 255
ckan.plugins.toolkit, 280
ckan.tests.controllers, 447
ckan.tests.factories, 430
ckan.tests.helpers, 433
ckan.tests.lib, 448
ckan.tests.logic.action, 444
ckan.tests.logic.auth, 444
ckan.tests.logic.test_schema, 447
ckan.tests.model, 448
ckan.tests.plugins, 448
ckan.tests.pytest_ckan.fixtures, 438
ckanext.datastore.backend, 104
ckanext.datastore.logic.action, 96

567



CKAN documentation, Release 2.10.0a0

568 Python Module Index



INDEX

Symbols
_()

built-in function, 357

A
abort() (ckan.plugins.interfaces.IAuthenticator

method), 274
action_succeeded (in module ckan.lib.signals), 310
actions (built-in class), 358
add_extra_fields() (ckan.plugins.interfaces.IApiToken

method), 277
add_url_param() (in module ckan.lib.helpers), 366
after_dataset_create()

(ckan.plugins.interfaces.IPackageController
method), 259

after_dataset_delete()
(ckan.plugins.interfaces.IPackageController
method), 259

after_dataset_search()
(ckan.plugins.interfaces.IPackageController
method), 259

after_dataset_show()
(ckan.plugins.interfaces.IPackageController
method), 259

after_dataset_update()
(ckan.plugins.interfaces.IPackageController
method), 259

after_load() (ckan.plugins.interfaces.IPluginObserver
method), 260

after_resource_create()
(ckan.plugins.interfaces.IResourceController
method), 268

after_resource_delete()
(ckan.plugins.interfaces.IResourceController
method), 269

after_resource_update()
(ckan.plugins.interfaces.IResourceController
method), 268

after_unload() (ckan.plugins.interfaces.IPluginObserver
method), 260

all_jobs() (ckan.tests.helpers.RQTestBase method),
436

am_following_dataset() (in module
ckan.logic.action.get), 194

am_following_group() (in module
ckan.logic.action.get), 194

am_following_user() (in module
ckan.logic.action.get), 194

api_create() (ckan.tests.factories.CKANFactory class
method), 432

api_token_create() (in module
ckan.logic.action.create), 205

api_token_list() (in module ckan.logic.action.get),
197

api_token_revoke() (in module
ckan.logic.action.delete), 217

APIToken (class in ckan.tests.factories), 432
APITokenFactory (class in

ckan.tests.pytest_ckan.fixtures), 439
app() (in module ckan.tests.pytest_ckan.fixtures), 439
app_globals (built-in variable), 356
as_list() (in module ckan.logic.converters), 303
assert_log() (ckan.tests.helpers.RecordingLogHandler

method), 438

B
base (ckan.plugins.toolkit.ckan.plugins.toolkit attribute),

282
before_dataset_index()

(ckan.plugins.interfaces.IPackageController
method), 259

before_dataset_search()
(ckan.plugins.interfaces.IPackageController
method), 259

before_dataset_view()
(ckan.plugins.interfaces.IPackageController
method), 259

before_fork() (ckan.plugins.interfaces.IForkObserver
method), 276

before_load() (ckan.plugins.interfaces.IPluginObserver
method), 260

before_resource_create()
(ckan.plugins.interfaces.IResourceController
method), 268

569



CKAN documentation, Release 2.10.0a0

before_resource_delete()
(ckan.plugins.interfaces.IResourceController
method), 268

before_resource_show()
(ckan.plugins.interfaces.IResourceController
method), 269

before_resource_update()
(ckan.plugins.interfaces.IResourceController
method), 268

before_unload() (ckan.plugins.interfaces.IPluginObserver
method), 260

before_view() (ckan.plugins.interfaces.IGroupController
method), 258

before_view() (ckan.plugins.interfaces.IOrganizationController
method), 258

before_view() (ckan.plugins.interfaces.ITagController
method), 271

blanket (ckan.plugins.toolkit.ckan.plugins.toolkit
attribute), 282

boolean_validator() (in module
ckan.logic.validators), 297

both_not_empty() (in module ckan.lib.navl.validators),
294

build_extra_admin_nav() (in module
ckan.lib.helpers), 362

build_nav() (in module ckan.lib.helpers), 362
build_nav_icon() (in module ckan.lib.helpers), 362
build_nav_main() (in module ckan.lib.helpers), 361
built-in function

_(), 357
N_(), 357
ungettext(), 357

bulk_update_delete() (in module
ckan.logic.action.update), 211

bulk_update_private() (in module
ckan.logic.action.update), 211

bulk_update_public() (in module
ckan.logic.action.update), 211

C
c (built-in variable), 356
c (ckan.plugins.toolkit.ckan.plugins.toolkit attribute), 285
call_action() (in module ckan.tests.helpers), 433
call_auth() (in module ckan.tests.helpers), 434
can_update_owner_org() (in module

ckan.lib.helpers), 369
can_view() (ckan.plugins.interfaces.IResourceView

method), 267
chained_helper() (in module ckan.lib.helpers), 359
change_config() (in module ckan.tests.helpers), 436
changed_config() (in module ckan.tests.helpers), 436
check_access() (in module ckan.lib.helpers), 364
check_ckan_version() (in module ckan.lib.helpers),

369

check_config_permission() (in module
ckan.lib.helpers), 369

check_data_dict() (ckan.plugins.interfaces.IGroupForm
method), 270

ckan (ckan.plugins.toolkit.ckan.plugins.toolkit attribute),
287

ckan.lib.helpers
module, 359

ckan.lib.navl.validators
module, 294

ckan.logic.action.create
module, 197

ckan.logic.action.delete
module, 213

ckan.logic.action.get
module, 180

ckan.logic.action.patch
module, 212

ckan.logic.action.update
module, 205

ckan.logic.converters
module, 301

ckan.logic.validators
module, 297

ckan.plugins.interfaces
module, 255

ckan.plugins.toolkit
module, 280

ckan.plugins.toolkit._() (in module
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.abort() (in module
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.add_ckan_admin_tab() (in
module ckan.plugins.toolkit), 281

ckan.plugins.toolkit.add_public_directory()
(in module ckan.plugins.toolkit), 281

ckan.plugins.toolkit.add_resource() (in module
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.add_template_directory()
(in module ckan.plugins.toolkit), 282

ckan.plugins.toolkit.asbool() (in module
ckan.plugins.toolkit), 282

ckan.plugins.toolkit.asint() (in module
ckan.plugins.toolkit), 282

ckan.plugins.toolkit.aslist() (in module
ckan.plugins.toolkit), 282

ckan.plugins.toolkit.auth_allow_anonymous_access()
(in module ckan.plugins.toolkit), 282

ckan.plugins.toolkit.auth_disallow_anonymous_access()
(in module ckan.plugins.toolkit), 282

ckan.plugins.toolkit.auth_sysadmins_check()
(in module ckan.plugins.toolkit), 282

ckan.plugins.toolkit.chained_action() (in mod-
ule ckan.plugins.toolkit), 285

570 Index



CKAN documentation, Release 2.10.0a0

ckan.plugins.toolkit.chained_auth_function()
(in module ckan.plugins.toolkit), 285

ckan.plugins.toolkit.chained_helper() (in mod-
ule ckan.plugins.toolkit), 286

ckan.plugins.toolkit.check_access() (in module
ckan.plugins.toolkit), 286

ckan.plugins.toolkit.check_ckan_version() (in
module ckan.plugins.toolkit), 287

ckan.plugins.toolkit.DefaultDatasetForm (class
in ckan.plugins.toolkit), 280

ckan.plugins.toolkit.DefaultGroupForm (class in
ckan.plugins.toolkit), 280

ckan.plugins.toolkit.DefaultOrganizationForm
(class in ckan.plugins.toolkit), 280

ckan.plugins.toolkit.enqueue_job() (in module
ckan.plugins.toolkit), 287

ckan.plugins.toolkit.error_shout() (in module
ckan.plugins.toolkit), 287

ckan.plugins.toolkit.get_action() (in module
ckan.plugins.toolkit), 288

ckan.plugins.toolkit.get_converter() (in mod-
ule ckan.plugins.toolkit), 288

ckan.plugins.toolkit.get_endpoint() (in module
ckan.plugins.toolkit), 289

ckan.plugins.toolkit.get_or_bust() (in module
ckan.plugins.toolkit), 289

ckan.plugins.toolkit.get_validator() (in mod-
ule ckan.plugins.toolkit), 289

ckan.plugins.toolkit.HelperError (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.Invalid (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.literal (class in
ckan.plugins.toolkit), 289

ckan.plugins.toolkit.mail_recipient() (in mod-
ule ckan.plugins.toolkit), 289

ckan.plugins.toolkit.mail_user() (in module
ckan.plugins.toolkit), 290

ckan.plugins.toolkit.navl_validate() (in mod-
ule ckan.plugins.toolkit), 290

ckan.plugins.toolkit.NotAuthorized (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.ObjectNotFound (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.redirect_to() (in module
ckan.plugins.toolkit), 290

ckan.plugins.toolkit.render() (in module
ckan.plugins.toolkit), 291

ckan.plugins.toolkit.render_snippet() (in mod-
ule ckan.plugins.toolkit), 291

ckan.plugins.toolkit.requires_ckan_version()
(in module ckan.plugins.toolkit), 291

ckan.plugins.toolkit.side_effect_free() (in
module ckan.plugins.toolkit), 291

ckan.plugins.toolkit.StopOnError (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.ungettext() (in module
ckan.plugins.toolkit), 291

ckan.plugins.toolkit.UnknownValidator (class in
ckan.plugins.toolkit), 281

ckan.plugins.toolkit.url_for() (in module
ckan.plugins.toolkit), 292

ckan.plugins.toolkit.ValidationError (class in
ckan.plugins.toolkit), 281

ckan.tests.controllers
module, 447

ckan.tests.factories
module, 430

ckan.tests.helpers
module, 433

ckan.tests.lib
module, 448

ckan.tests.logic.action
module, 444

ckan.tests.logic.auth
module, 444

ckan.tests.logic.test_schema
module, 447

ckan.tests.model
module, 448

ckan.tests.plugins
module, 448

ckan.tests.pytest_ckan.fixtures
module, 438

ckan_config() (in module
ckan.tests.pytest_ckan.fixtures), 439

ckan_version() (in module ckan.lib.helpers), 361
CKANCliRunner (class in ckan.tests.helpers), 434
ckanext.datastore.backend

module, 104
ckanext.datastore.logic.action

module, 96
CKANFactory (class in ckan.tests.factories), 431
CKANOptions (class in ckan.tests.factories), 431
CKANResponse (class in ckan.tests.helpers), 435
CKANTestApp (class in ckan.tests.helpers), 435
CKANTestClient (class in ckan.tests.helpers), 435
clean_db() (in module ckan.tests.pytest_ckan.fixtures),

440
clean_format() (in module ckan.logic.validators), 300
clean_html() (in module ckan.lib.helpers), 369
clean_index() (in module

ckan.tests.pytest_ckan.fixtures), 440
clear() (ckan.tests.helpers.RecordingLogHandler

method), 438
cli() (in module ckan.tests.pytest_ckan.fixtures), 440
collect_prefix_validate() (in module

ckan.logic.validators), 301

Index 571



CKAN documentation, Release 2.10.0a0

config (ckan.plugins.toolkit.ckan.plugins.toolkit at-
tribute), 287

config_option_list() (in module
ckan.logic.action.get), 196

config_option_show() (in module
ckan.logic.action.get), 196

config_option_update() (in module
ckan.logic.action.update), 211

configure() (ckan.plugins.interfaces.IConfigurable
method), 260

configure() (ckanext.datastore.backend.DatastoreBackend
method), 104

configured_default() (in module
ckan.lib.navl.validators), 295

content_type (ckan.tests.pytest_ckan.fixtures.FakeFileStorage
attribute), 441

convert_from_extras() (in module
ckan.logic.converters), 302

convert_from_tags() (in module
ckan.logic.converters), 302

convert_group_name_or_id_to_id() (in module
ckan.logic.converters), 302

convert_int() (in module ckan.lib.navl.validators),
296

convert_package_name_or_id_to_id() (in module
ckan.logic.converters), 302

convert_to_dict() (in module ckan.lib.helpers), 365
convert_to_extras() (in module

ckan.logic.converters), 301
convert_to_json_if_string() (in module

ckan.logic.converters), 303
convert_to_list_if_string() (in module

ckan.logic.converters), 303
convert_to_tags() (in module ckan.logic.converters),

302
convert_user_name_or_id_to_id() (in module

ckan.logic.converters), 302
core_helper() (in module ckan.lib.helpers), 359
create() (ckan.plugins.interfaces.IGroupController

method), 258
create() (ckan.plugins.interfaces.IOrganizationController

method), 258
create() (ckan.plugins.interfaces.IPackageController

method), 259
create() (ckanext.datastore.backend.DatastoreBackend

method), 104
create_api_token_schema()

(ckan.plugins.interfaces.IApiToken method),
276

create_function() (ck-
anext.datastore.backend.DatastoreBackend
method), 106

create_package_schema()
(ckan.plugins.interfaces.IDatasetForm

method), 262
create_with_upload() (in module

ckan.tests.pytest_ckan.fixtures), 441
current_package_list_with_resources() (in mod-

ule ckan.logic.action.get), 181
current_url() (in module ckan.lib.helpers), 361

D
Dataset (class in ckan.tests.factories), 432
dataset_display_name() (in module

ckan.lib.helpers), 365
dataset_facets() (ckan.plugins.interfaces.IFacets

method), 272
dataset_followee_count() (in module

ckan.logic.action.get), 194
dataset_followee_list() (in module

ckan.logic.action.get), 195
dataset_follower_count() (in module

ckan.logic.action.get), 193
dataset_follower_list() (in module

ckan.logic.action.get), 193
dataset_link() (in module ckan.lib.helpers), 365
dataset_purge() (in module ckan.logic.action.delete),

213
datasets_with_no_organization_cannot_be_private()

(in module ckan.logic.validators), 300
datastore_create() (in module ck-

anext.datastore.logic.action), 96
datastore_delete (in module ckan.lib.signals), 310
datastore_delete() (in module ck-

anext.datastore.logic.action), 98
datastore_function_create() (in module ck-

anext.datastore.logic.action), 101
datastore_function_delete() (in module ck-

anext.datastore.logic.action), 101
datastore_info() (in module ck-

anext.datastore.logic.action), 98
datastore_run_triggers() (in module ck-

anext.datastore.logic.action), 97
datastore_search() (in module ck-

anext.datastore.logic.action), 99
datastore_search_sql() (in module ck-

anext.datastore.logic.action), 100
datastore_upsert (in module ckan.lib.signals), 310
datastore_upsert() (in module ck-

anext.datastore.logic.action), 97
DatastoreBackend (class in ck-

anext.datastore.backend), 104
DatastoreException, 104
date_str_to_datetime() (in module

ckan.lib.helpers), 364
datetime_from_timestamp_validator() (in module

ckan.logic.validators), 297

572 Index



CKAN documentation, Release 2.10.0a0

db_to_form_schema()
(ckan.plugins.interfaces.IGroupForm method),
270

debug_inspect() (in module ckan.lib.helpers), 366
declare_config_options()

(ckan.plugins.interfaces.IConfigDeclaration
method), 260

decode_api_token() (ckan.plugins.interfaces.IApiToken
method), 276

decode_view_request_filters() (in module
ckan.lib.helpers), 369

default() (in module ckan.lib.navl.validators), 295
default_group_type() (in module ckan.lib.helpers),

362
default_package_type() (in module

ckan.lib.helpers), 362
delete() (ckan.plugins.interfaces.IGroupController

method), 258
delete() (ckan.plugins.interfaces.IOrganizationController

method), 258
delete() (ckan.plugins.interfaces.IPackageController

method), 259
delete() (ckanext.datastore.backend.DatastoreBackend

method), 105
dict_list_reduce() (in module ckan.lib.helpers), 364
dict_only() (in module ckan.logic.validators), 301
drop_function() (ck-

anext.datastore.backend.DatastoreBackend
method), 106

dump_json() (in module ckan.lib.helpers), 365
duplicate_extras_key() (in module

ckan.logic.validators), 298

E
edit() (ckan.plugins.interfaces.IGroupController

method), 258
edit() (ckan.plugins.interfaces.IOrganizationController

method), 258
edit() (ckan.plugins.interfaces.IPackageController

method), 259
edit_template() (ckan.plugins.interfaces.IDatasetForm

method), 264
edit_template() (ckan.plugins.interfaces.IGroupForm

method), 270
email_is_unique() (in module ckan.logic.validators),

301
email_validator() (in module ckan.logic.validators),

301
emit() (ckan.tests.helpers.RecordingLogHandler

method), 437
empty() (in module ckan.lib.navl.validators), 295
empty_if_not_sysadmin() (in module

ckan.logic.validators), 301

encode_api_token() (ckan.plugins.interfaces.IApiToken
method), 276

enqueue() (ckan.tests.helpers.RQTestBase method), 436
escape() (ckan.lib.helpers.literal class method), 359
escape_js() (in module ckan.lib.helpers), 367
extra_key_not_in_root_schema() (in module

ckan.logic.validators), 301
extras_unicode_convert() (in module

ckan.logic.converters), 302
extras_valid_json() (in module

ckan.logic.validators), 301

F
facets() (in module ckan.lib.helpers), 369
failed_login (in module ckan.lib.signals), 310
FakeFileStorage (class in

ckan.tests.pytest_ckan.fixtures), 441
FakeSMTP (class in ckan.tests.helpers), 438
featured_group_org() (in module ckan.lib.helpers),

368
filter_fields_and_values_exist_and_are_valid()

(in module ckan.logic.validators), 301
filter_fields_and_values_should_have_same_length()

(in module ckan.logic.validators), 300
flash_error() (in module ckan.lib.helpers), 361
flash_notice() (in module ckan.lib.helpers), 361
flash_success() (in module ckan.lib.helpers), 361
follow_button() (in module ckan.lib.helpers), 366
follow_count() (in module ckan.lib.helpers), 366
follow_dataset() (in module

ckan.logic.action.create), 204
follow_group() (in module ckan.logic.action.create),

205
follow_user() (in module ckan.logic.action.create),

204
followee_count() (in module ckan.logic.action.get),

194
followee_list() (in module ckan.logic.action.get),

195
form_template() (ckan.plugins.interfaces.IResourceView

method), 267
form_to_db_schema()

(ckan.plugins.interfaces.IGroupForm method),
270

format_autocomplete() (in module
ckan.logic.action.get), 188

format_resource_items() (in module
ckan.lib.helpers), 367

free_tags_only() (in module ckan.logic.converters),
302

full_current_url() (in module ckan.lib.helpers), 361
FunctionalRQTestBase (class in ckan.tests.helpers),

436
FunctionalTestBase (class in ckan.tests.helpers), 435

Index 573



CKAN documentation, Release 2.10.0a0

G
g (built-in variable), 356
g (ckan.plugins.toolkit.ckan.plugins.toolkit attribute), 287
get_actions() (ckan.plugins.interfaces.IActions

method), 261
get_active_backend() (ck-

anext.datastore.backend.DatastoreBackend
class method), 104

get_all_ids() (ckanext.datastore.backend.DatastoreBackend
method), 106

get_all_resources_ids_in_datastore() (in mod-
ule ckanext.datastore.backend), 104

get_allowed_view_types() (in module
ckan.lib.helpers), 368

get_auth_functions()
(ckan.plugins.interfaces.IAuthFunctions
method), 256

get_blueprint() (ckan.plugins.interfaces.IBlueprint
method), 275

get_collaborators() (in module ckan.lib.helpers),
369

get_commands() (ckan.plugins.interfaces.IClick
method), 277

get_dataset_labels()
(ckan.plugins.interfaces.IPermissionLabels
method), 275

get_display_timezone() (in module
ckan.lib.helpers), 364

get_facet_items_dict() (in module
ckan.lib.helpers), 363

get_featured_groups() (in module ckan.lib.helpers),
368

get_featured_organizations() (in module
ckan.lib.helpers), 368

get_feed_class() (ckan.plugins.interfaces.IFeed
method), 257

get_flashed_messages() (in module
ckan.lib.helpers), 361

get_helpers() (ckan.plugins.interfaces.ITemplateHelpers
method), 271

get_item_additional_fields()
(ckan.plugins.interfaces.IFeed method), 258

get_organization() (in module ckan.lib.helpers), 369
get_page_number() (in module ckan.lib.helpers), 364
get_param_int() (in module ckan.lib.helpers), 363
get_pkg_dict_extra() (in module ckan.lib.helpers),

367
get_request_param() (in module ckan.lib.helpers),

367
get_resource_uploader()

(ckan.plugins.interfaces.IUploader method),
275

get_rtl_css() (in module ckan.lib.helpers), 361
get_signal_subscriptions()

(ckan.plugins.interfaces.ISignal method),
278

get_site_protocol_and_host() (in module
ckan.lib.helpers), 360

get_site_statistics() (in module ckan.lib.helpers),
369

get_site_user() (in module ckan.logic.action.get),
192

get_translated() (in module ckan.lib.helpers), 369
get_uploader() (ckan.plugins.interfaces.IUploader

method), 274
get_user_dataset_labels()

(ckan.plugins.interfaces.IPermissionLabels
method), 275

get_validators() (ckan.plugins.interfaces.IValidators
method), 265

gravatar() (in module ckan.lib.helpers), 364
Group (class in ckan.tests.factories), 432
group_autocomplete() (in module

ckan.logic.action.get), 188
group_controller() (ckan.plugins.interfaces.IGroupForm

method), 270
group_create() (in module ckan.logic.action.create),

201
group_delete() (in module ckan.logic.action.delete),

215
group_facets() (ckan.plugins.interfaces.IFacets

method), 272
group_followee_count() (in module

ckan.logic.action.get), 195
group_followee_list() (in module

ckan.logic.action.get), 195
group_follower_count() (in module

ckan.logic.action.get), 193
group_follower_list() (in module

ckan.logic.action.get), 194
group_form() (ckan.plugins.interfaces.IGroupForm

method), 270
group_id_exists() (in module ckan.logic.validators),

298
group_id_or_name_exists() (in module

ckan.logic.validators), 298
group_link() (in module ckan.lib.helpers), 365
group_list() (in module ckan.logic.action.get), 182
group_list_authz() (in module ckan.logic.action.get),

183
group_member_create() (in module

ckan.logic.action.create), 204
group_member_delete() (in module

ckan.logic.action.delete), 216
group_name_to_title() (in module ckan.lib.helpers),

364
group_name_validator() (in module

ckan.logic.validators), 298

574 Index



CKAN documentation, Release 2.10.0a0

group_package_show() (in module
ckan.logic.action.get), 187

group_patch() (in module ckan.logic.action.patch), 213
group_purge() (in module ckan.logic.action.delete),

215
group_show() (in module ckan.logic.action.get), 186
group_types() (ckan.plugins.interfaces.IGroupForm

method), 269
group_update() (in module ckan.logic.action.update),

208
GroupFactory (class in ckan.tests.pytest_ckan.fixtures),

439
groups_available() (in module ckan.lib.helpers), 366

H
h (built-in variable), 357
h (ckan.plugins.toolkit.ckan.plugins.toolkit attribute), 289
has_more_facets() (in module ckan.lib.helpers), 363
help_show() (in module ckan.logic.action.get), 196
HelperAttributeDict (class in ckan.lib.helpers), 359
history_template() (ckan.plugins.interfaces.IDatasetForm

method), 264
history_template() (ckan.plugins.interfaces.IGroupForm

method), 270
html_auto_link() (in module ckan.lib.helpers), 367
humanize_entity_type() (in module

ckan.lib.helpers), 362

I
i18n_directory() (ckan.plugins.interfaces.ITranslation

method), 274
i18n_domain() (ckan.plugins.interfaces.ITranslation

method), 274
i18n_locales() (ckan.plugins.interfaces.ITranslation

method), 274
IActions (class in ckan.plugins.interfaces), 261
IApiToken (class in ckan.plugins.interfaces), 276
IAuthenticator (class in ckan.plugins.interfaces), 273
IAuthFunctions (class in ckan.plugins.interfaces), 256
IBlueprint (class in ckan.plugins.interfaces), 275
IClick (class in ckan.plugins.interfaces), 277
IConfigDeclaration (class in ckan.plugins.interfaces),

260
IConfigurable (class in ckan.plugins.interfaces), 260
IConfigurer (class in ckan.plugins.interfaces), 261
IDatasetForm (class in ckan.plugins.interfaces), 262
identify() (ckan.plugins.interfaces.IAuthenticator

method), 273
IDomainObjectModification (class in

ckan.plugins.interfaces), 257
if_empty_guess_format() (in module

ckan.logic.validators), 300
if_empty_same_as() (in module

ckan.lib.navl.validators), 294

IFacets (class in ckan.plugins.interfaces), 271
IFeed (class in ckan.plugins.interfaces), 257
IForkObserver (class in ckan.plugins.interfaces), 276
ignore() (in module ckan.lib.navl.validators), 295
ignore_empty() (in module ckan.lib.navl.validators),

296
ignore_missing() (in module ckan.lib.navl.validators),

296
ignore_not_group_admin() (in module

ckan.logic.validators), 299
ignore_not_package_admin() (in module

ckan.logic.validators), 299
ignore_not_sysadmin() (in module

ckan.logic.validators), 299
IGroupController (class in ckan.plugins.interfaces),

258
IGroupForm (class in ckan.plugins.interfaces), 269
IMiddleware (class in ckan.plugins.interfaces), 255
implemented_by() (ckan.plugins.interfaces.Interface

class method), 255
implements() (in module ckan.plugins), 255
index_template() (ckan.plugins.interfaces.IGroupForm

method), 270
info() (ckan.plugins.interfaces.IResourceView method),

266
int_validator() (in module ckan.logic.validators),

297
Interface (class in ckan.plugins.interfaces), 255
InvalidDataError, 104
invoke() (ckan.tests.helpers.CKANCliRunner method),

434
IOrganizationController (class in

ckan.plugins.interfaces), 258
IPackageController (class in ckan.plugins.interfaces),

259
IPermissionLabels (class in ckan.plugins.interfaces),

275
IPluginObserver (class in ckan.plugins.interfaces),

260
IResourceController (class in

ckan.plugins.interfaces), 268
IResourceUrlChange (class in ckan.plugins.interfaces),

262
IResourceView (class in ckan.plugins.interfaces), 265
is_fallback() (ckan.plugins.interfaces.IDatasetForm

method), 262
is_fallback() (ckan.plugins.interfaces.IGroupForm

method), 269
is_positive_integer() (in module

ckan.logic.validators), 297
is_rtl_language() (in module ckan.lib.helpers), 361
is_url() (in module ckan.lib.helpers), 361
ISignal (class in ckan.plugins.interfaces), 278
isodate() (in module ckan.logic.validators), 297

Index 575



CKAN documentation, Release 2.10.0a0

ITagController (class in ckan.plugins.interfaces), 271
ITemplateHelpers (class in ckan.plugins.interfaces),

271
ITranslation (class in ckan.plugins.interfaces), 274
IUploader (class in ckan.plugins.interfaces), 274
IValidators (class in ckan.plugins.interfaces), 265

J
job_cancel() (in module ckan.logic.action.delete), 217
job_clear() (in module ckan.logic.action.delete), 217
job_list() (in module ckan.logic.action.get), 196
job_show() (in module ckan.logic.action.get), 196
json_list_or_string() (in module

ckan.logic.converters), 303
json_object() (in module ckan.logic.validators), 301
json_or_string() (in module ckan.logic.converters),

303

K
keep_extras() (in module ckan.lib.navl.validators),

294

L
lang() (in module ckan.lib.helpers), 361
lang_native_name() (in module ckan.lib.helpers), 361
license_list() (in module ckan.logic.action.get), 184
license_options() (in module ckan.lib.helpers), 369
limit_to_configured_maximum() (in module

ckan.lib.navl.validators), 297
link_to() (in module ckan.lib.helpers), 361
linked_user() (in module ckan.lib.helpers), 364
list_dict_filter() (in module ckan.lib.helpers), 368
list_of_strings() (in module ckan.logic.validators),

300
literal (class in ckan.lib.helpers), 359
load_plugin_helpers() (in module ckan.lib.helpers),

369
login() (ckan.plugins.interfaces.IAuthenticator

method), 274
logout() (ckan.plugins.interfaces.IAuthenticator

method), 274

M
mail_server() (in module

ckan.tests.pytest_ckan.fixtures), 441
mail_to() (in module ckan.lib.helpers), 369
make_app() (in module ckan.tests.pytest_ckan.fixtures),

439
make_error_log_middleware()

(ckan.plugins.interfaces.IMiddleware method),
256

make_middleware() (ckan.plugins.interfaces.IMiddleware
method), 255

map_pylons_to_flask_route_name() (in module
ckan.lib.helpers), 362

markdown_extract() (in module ckan.lib.helpers), 364
member_create() (in module ckan.logic.action.create),

200
member_delete() (in module ckan.logic.action.delete),

214
member_list() (in module ckan.logic.action.get), 181
member_roles_list() (in module

ckan.logic.action.get), 196
migrate_db_for() (in module

ckan.tests.pytest_ckan.fixtures), 440
missing (ckan.plugins.toolkit.ckan.plugins.toolkit

attribute), 290
MockUser (class in ckan.tests.factories), 432
model() (ckan.tests.factories.CKANFactory class

method), 432
module

ckan.lib.helpers, 359
ckan.lib.navl.validators, 294
ckan.logic.action.create, 197
ckan.logic.action.delete, 213
ckan.logic.action.get, 180
ckan.logic.action.patch, 212
ckan.logic.action.update, 205
ckan.logic.converters, 301
ckan.logic.validators, 297
ckan.plugins.interfaces, 255
ckan.plugins.toolkit, 280
ckan.tests.controllers, 447
ckan.tests.factories, 430
ckan.tests.helpers, 433
ckan.tests.lib, 448
ckan.tests.logic.action, 444
ckan.tests.logic.auth, 444
ckan.tests.logic.test_schema, 447
ckan.tests.model, 448
ckan.tests.plugins, 448
ckan.tests.pytest_ckan.fixtures, 438
ckanext.datastore.backend, 104
ckanext.datastore.logic.action, 96

N
N_()

built-in function, 357
name_validator() (in module ckan.logic.validators),

298
natural_number_validator() (in module

ckan.logic.validators), 297
nav_link() (in module ckan.lib.helpers), 361
new_template() (ckan.plugins.interfaces.IDatasetForm

method), 263
new_template() (ckan.plugins.interfaces.IGroupForm

method), 270

576 Index



CKAN documentation, Release 2.10.0a0

no_loops_in_hierarchy() (in module
ckan.logic.validators), 300

non_clean_db() (in module
ckan.tests.pytest_ckan.fixtures), 441

not_empty() (in module ckan.lib.navl.validators), 294
not_missing() (in module ckan.lib.navl.validators),

294
notify() (ckan.plugins.interfaces.IDomainObjectModification

method), 257
notify() (ckan.plugins.interfaces.IResourceUrlChange

method), 262
notify_after_commit()

(ckan.plugins.interfaces.IDomainObjectModification
method), 257

O
one_of() (in module ckan.logic.validators), 301
open() (ckan.tests.helpers.CKANTestClient method), 435
Organization (class in ckan.tests.factories), 432
organization_autocomplete() (in module

ckan.logic.action.get), 188
organization_create() (in module

ckan.logic.action.create), 202
organization_delete() (in module

ckan.logic.action.delete), 215
organization_facets()

(ckan.plugins.interfaces.IFacets method),
273

organization_followee_list() (in module
ckan.logic.action.get), 195

organization_follower_count() (in module
ckan.logic.action.get), 193

organization_follower_list() (in module
ckan.logic.action.get), 194

organization_link() (in module ckan.lib.helpers),
365

organization_list() (in module
ckan.logic.action.get), 182

organization_list_for_user() (in module
ckan.logic.action.get), 183

organization_member_create() (in module
ckan.logic.action.create), 204

organization_member_delete() (in module
ckan.logic.action.delete), 216

organization_patch() (in module
ckan.logic.action.patch), 213

organization_purge() (in module
ckan.logic.action.delete), 215

organization_show() (in module
ckan.logic.action.get), 186

organization_update() (in module
ckan.logic.action.update), 209

organizations_available() (in module
ckan.lib.helpers), 367

owner_org_validator() (in module
ckan.logic.validators), 297

P
package_autocomplete() (in module

ckan.logic.action.get), 187
package_collaborator_create() (in module

ckan.logic.action.create), 200
package_collaborator_delete() (in module

ckan.logic.action.delete), 214
package_collaborator_list() (in module

ckan.logic.action.get), 181
package_collaborator_list_for_user() (in mod-

ule ckan.logic.action.get), 181
package_create() (in module

ckan.logic.action.create), 197
package_create_default_resource_views() (in

module ckan.logic.action.create), 199
package_delete() (in module

ckan.logic.action.delete), 213
package_form() (ckan.plugins.interfaces.IDatasetForm

method), 264
package_id_does_not_exist() (in module

ckan.logic.validators), 297
package_id_exists() (in module

ckan.logic.validators), 297
package_id_not_changed() (in module

ckan.logic.validators), 297
package_id_or_name_exists() (in module

ckan.logic.validators), 297
package_list() (in module ckan.logic.action.get), 180
package_name_exists() (in module

ckan.logic.validators), 297
package_name_validator() (in module

ckan.logic.validators), 298
package_owner_org_update() (in module

ckan.logic.action.update), 211
package_patch() (in module ckan.logic.action.patch),

212
package_relationship_create() (in module

ckan.logic.action.create), 200
package_relationship_delete() (in module

ckan.logic.action.delete), 214
package_relationship_update() (in module

ckan.logic.action.update), 208
package_relationships_list() (in module

ckan.logic.action.get), 185
package_resource_reorder() (in module

ckan.logic.action.update), 208
package_revise() (in module

ckan.logic.action.update), 206
package_search() (in module ckan.logic.action.get),

188
package_show() (in module ckan.logic.action.get), 185

Index 577



CKAN documentation, Release 2.10.0a0

package_types() (ckan.plugins.interfaces.IDatasetForm
method), 262

package_update() (in module
ckan.logic.action.update), 206

package_version_validator() (in module
ckan.logic.validators), 298

PackageFactory (class in
ckan.tests.pytest_ckan.fixtures), 439

pager_url() (in module ckan.lib.helpers), 364
parse_rfc_2822_date() (in module ckan.lib.helpers),

365
perform_password_reset (in module ckan.lib.signals),

310
Plugin (class in ckan.plugins), 255
popular() (in module ckan.lib.helpers), 366
postprocess_api_token()

(ckan.plugins.interfaces.IApiToken method),
277

prepare_dataset_blueprint()
(ckan.plugins.interfaces.IDatasetForm
method), 265

prepare_group_blueprint()
(ckan.plugins.interfaces.IGroupForm method),
271

prepare_resource_blueprint()
(ckan.plugins.interfaces.IDatasetForm
method), 265

preprocess_api_token()
(ckan.plugins.interfaces.IApiToken method),
277

provided_by() (ckan.plugins.interfaces.Interface class
method), 255

R
read() (ckan.plugins.interfaces.IGroupController

method), 258
read() (ckan.plugins.interfaces.IOrganizationController

method), 258
read() (ckan.plugins.interfaces.IPackageController

method), 259
read_template() (ckan.plugins.interfaces.IDatasetForm

method), 264
read_template() (ckan.plugins.interfaces.IGroupForm

method), 270
recorded_logs() (in module ckan.tests.helpers), 437
RecordingLogHandler (class in ckan.tests.helpers), 437
redirect_to() (in module ckan.lib.helpers), 359
register_backends() (ck-

anext.datastore.backend.DatastoreBackend
class method), 104

register_blueprint (in module ckan.lib.signals), 310
remove_linebreaks() (in module ckan.lib.helpers),

368
remove_url_param() (in module ckan.lib.helpers), 366

remove_whitespace() (in module
ckan.logic.converters), 303

render_datetime() (in module ckan.lib.helpers), 364
render_markdown() (in module ckan.lib.helpers), 367
rendered_resource_view() (in module

ckan.lib.helpers), 368
request (built-in variable), 357
request (ckan.plugins.toolkit.ckan.plugins.toolkit

attribute), 291
request_finished (in module ckan.lib.signals), 310
request_password_reset (in module ckan.lib.signals),

310
request_started (in module ckan.lib.signals), 310
reset_db() (in module ckan.tests.helpers), 433
reset_db() (in module ckan.tests.pytest_ckan.fixtures),

440
reset_index() (in module

ckan.tests.pytest_ckan.fixtures), 440
Resource (class in ckan.tests.factories), 432
resource_create() (in module

ckan.logic.action.create), 198
resource_create_default_resource_views() (in

module ckan.logic.action.create), 199
resource_delete() (in module

ckan.logic.action.delete), 214
resource_display_name() (in module

ckan.lib.helpers), 365
resource_download (in module ckan.lib.signals), 310
resource_exists() (ck-

anext.datastore.backend.DatastoreBackend
method), 105

resource_fields() (ck-
anext.datastore.backend.DatastoreBackend
method), 105

resource_form() (ckan.plugins.interfaces.IDatasetForm
method), 264

resource_formats() (in module ckan.lib.helpers), 369
resource_formats_default_file() (in module

ckan.lib.helpers), 369
resource_id_exists() (in module

ckan.logic.validators), 298
resource_id_from_alias() (ck-

anext.datastore.backend.DatastoreBackend
method), 106

resource_info() (ck-
anext.datastore.backend.DatastoreBackend
method), 106

resource_link() (in module ckan.lib.helpers), 365
resource_patch() (in module ckan.logic.action.patch),

212
resource_search() (in module ckan.logic.action.get),

190
resource_show() (in module ckan.logic.action.get),

185

578 Index



CKAN documentation, Release 2.10.0a0

resource_template()
(ckan.plugins.interfaces.IDatasetForm
method), 264

resource_update() (in module
ckan.logic.action.update), 205

resource_view_clear() (in module
ckan.logic.action.delete), 214

resource_view_create() (in module
ckan.logic.action.create), 199

resource_view_delete() (in module
ckan.logic.action.delete), 214

resource_view_display_preview() (in module
ckan.lib.helpers), 368

resource_view_full_page() (in module
ckan.lib.helpers), 368

resource_view_get_fields() (in module
ckan.lib.helpers), 368

resource_view_icon() (in module ckan.lib.helpers),
368

resource_view_is_filterable() (in module
ckan.lib.helpers), 368

resource_view_is_iframed() (in module
ckan.lib.helpers), 368

resource_view_list() (in module
ckan.logic.action.get), 185

resource_view_reorder() (in module
ckan.logic.action.update), 206

resource_view_show() (in module
ckan.logic.action.get), 185

resource_view_update() (in module
ckan.logic.action.update), 206

ResourceFactory (class in
ckan.tests.pytest_ckan.fixtures), 438

ResourceView (class in ckan.tests.factories), 432
ResourceViewFactory (class in

ckan.tests.pytest_ckan.fixtures), 438
response (built-in variable), 357
role_exists() (in module ckan.logic.validators), 300
roles_translated() (in module ckan.lib.helpers), 367
RQTestBase (class in ckan.tests.helpers), 436

S
sanitize_id() (in module ckan.lib.helpers), 369
sanitize_url() (in module ckan.lib.helpers), 364
search() (ckanext.datastore.backend.DatastoreBackend

method), 105
search_sql() (ckanext.datastore.backend.DatastoreBackend

method), 105
search_template() (ckan.plugins.interfaces.IDatasetForm

method), 264
sendmail() (ckan.tests.helpers.FakeSMTP method), 438
session (built-in variable), 357
set_active_backend() (ck-

anext.datastore.backend.DatastoreBackend

class method), 104
set_datastore_active_flag() (in module ck-

anext.datastore.logic.action), 101
setup() (ckan.tests.helpers.FunctionalRQTestBase

method), 436
setup() (ckan.tests.helpers.FunctionalTestBase

method), 436
setup() (ckan.tests.helpers.RQTestBase method), 436
setup_template_variables()

(ckan.plugins.interfaces.IDatasetForm
method), 263

setup_template_variables()
(ckan.plugins.interfaces.IGroupForm method),
270

setup_template_variables()
(ckan.plugins.interfaces.IResourceView
method), 267

show_package_schema()
(ckan.plugins.interfaces.IDatasetForm
method), 263

SI_number_span() (in module ckan.lib.helpers), 368
signals (ckan.plugins.toolkit.ckan.plugins.toolkit

attribute), 291
SingletonPlugin (class in ckan.plugins), 255
site_read() (in module ckan.logic.action.get), 180
snippet() (in module ckan.lib.helpers), 365
sorted_extras() (in module ckan.lib.helpers), 363
status_show() (in module ckan.logic.action.get), 193
strip_value() (in module ckan.logic.validators), 301
successful_login (in module ckan.lib.signals), 310
Sysadmin (class in ckan.tests.factories), 432
SystemInfo (class in ckan.tests.factories), 432
SystemInfoFactory (class in

ckan.tests.pytest_ckan.fixtures), 439

T
Tag (class in ckan.tests.factories), 432
tag_autocomplete() (in module ckan.logic.action.get),

192
tag_create() (in module ckan.logic.action.create), 204
tag_delete() (in module ckan.logic.action.delete), 216
tag_in_vocabulary_validator() (in module

ckan.logic.validators), 300
tag_length_validator() (in module

ckan.logic.validators), 298
tag_link() (in module ckan.lib.helpers), 365
tag_list() (in module ckan.logic.action.get), 184
tag_name_validator() (in module

ckan.logic.validators), 298
tag_not_in_vocabulary() (in module

ckan.logic.validators), 300
tag_not_uppercase() (in module

ckan.logic.validators), 298
tag_search() (in module ckan.logic.action.get), 191

Index 579



CKAN documentation, Release 2.10.0a0

tag_show() (in module ckan.logic.action.get), 187
tag_string_convert() (in module

ckan.logic.validators), 299
TagFactory (class in ckan.tests.pytest_ckan.fixtures),

439
task_status_delete() (in module

ckan.logic.action.delete), 216
task_status_show() (in module ckan.logic.action.get),

192
task_status_update() (in module

ckan.logic.action.update), 209
task_status_update_many() (in module

ckan.logic.action.update), 210
term_translation_show() (in module

ckan.logic.action.get), 192
term_translation_update() (in module

ckan.logic.action.update), 210
term_translation_update_many() (in module

ckan.logic.action.update), 210
test_request_context() (in module

ckan.tests.pytest_ckan.fixtures), 441
time_ago_from_timestamp() (in module

ckan.lib.helpers), 365
tmpl_context (built-in variable), 356
translator (built-in variable), 357

U
unfollow_dataset() (in module

ckan.logic.action.delete), 216
unfollow_group() (in module

ckan.logic.action.delete), 216
unfollow_user() (in module ckan.logic.action.delete),

216
ungettext()

built-in function, 357
unicode_only() (in module ckan.lib.navl.validators),

296
unicode_safe() (in module ckan.lib.navl.validators),

296
unified_resource_format() (in module

ckan.lib.helpers), 369
update_config() (ckan.plugins.interfaces.IConfigurer

method), 261
update_config_schema()

(ckan.plugins.interfaces.IConfigurer method),
261

update_package_schema()
(ckan.plugins.interfaces.IDatasetForm
method), 263

uploads_enabled() (in module ckan.lib.helpers), 368
upsert() (ckanext.datastore.backend.DatastoreBackend

method), 105
url_for() (in module ckan.lib.helpers), 360
url_for_static() (in module ckan.lib.helpers), 361

url_for_static_or_external() (in module
ckan.lib.helpers), 361

url_is_local() (in module ckan.lib.helpers), 361
url_validator() (in module ckan.logic.validators),

300
User (class in ckan.tests.factories), 432
user_about_validator() (in module

ckan.logic.validators), 299
user_autocomplete() (in module

ckan.logic.action.get), 188
user_both_passwords_entered() (in module

ckan.logic.validators), 299
user_create() (in module ckan.logic.action.create),

202
user_created (in module ckan.lib.signals), 310
user_delete() (in module ckan.logic.action.delete),

213
user_followee_count() (in module

ckan.logic.action.get), 194
user_followee_list() (in module

ckan.logic.action.get), 195
user_follower_count() (in module

ckan.logic.action.get), 193
user_follower_list() (in module

ckan.logic.action.get), 193
user_id_exists() (in module ckan.logic.validators),

298
user_id_or_name_exists() (in module

ckan.logic.validators), 298
user_image() (in module ckan.lib.helpers), 364
user_in_org_or_group() (in module

ckan.lib.helpers), 367
user_invite() (in module ckan.logic.action.create),

203
user_list() (in module ckan.logic.action.get), 184
user_name_exists() (in module ckan.logic.validators),

300
user_name_validator() (in module

ckan.logic.validators), 299
user_password_not_empty() (in module

ckan.logic.validators), 299
user_password_validator() (in module

ckan.logic.validators), 299
user_passwords_match() (in module

ckan.logic.validators), 299
user_patch() (in module ckan.logic.action.patch), 213
user_show() (in module ckan.logic.action.get), 187
user_update() (in module ckan.logic.action.update),

209
UserFactory (class in ckan.tests.pytest_ckan.fixtures),

438

V
validate() (ckan.plugins.interfaces.IDatasetForm

580 Index



CKAN documentation, Release 2.10.0a0

method), 264
validate() (ckan.plugins.interfaces.IGroupForm

method), 270
view_resource_url() (in module ckan.lib.helpers),

368
view_template() (ckan.plugins.interfaces.IResourceView

method), 267
Vocabulary (class in ckan.tests.factories), 432
vocabulary_create() (in module

ckan.logic.action.create), 203
vocabulary_delete() (in module

ckan.logic.action.delete), 216
vocabulary_id_exists() (in module

ckan.logic.validators), 300
vocabulary_id_not_changed() (in module

ckan.logic.validators), 300
vocabulary_list() (in module ckan.logic.action.get),

193
vocabulary_name_validator() (in module

ckan.logic.validators), 299
vocabulary_show() (in module ckan.logic.action.get),

193
vocabulary_update() (in module

ckan.logic.action.update), 210
VocabularyFactory (class in

ckan.tests.pytest_ckan.fixtures), 439

W
with_extended_cli() (in module

ckan.tests.pytest_ckan.fixtures), 441
with_plugins() (in module

ckan.tests.pytest_ckan.fixtures), 440
with_request_context() (in module

ckan.tests.pytest_ckan.fixtures), 441
with_test_worker() (in module

ckan.tests.pytest_ckan.fixtures), 441

Index 581


	User guide
	What is CKAN?
	Datasets and resources
	Users, organizations and authorization

	Using CKAN
	Registering and logging in
	Features for publishers
	Adding a new dataset
	Editing a dataset
	Adding, deleting and editing resources
	Deleting a dataset
	Creating an organization
	Managing an organization

	Finding data
	Searching the site
	Searching within an organization
	Exploring datasets

	Search in detail
	Simple Search
	Advanced Search

	Personalization
	Managing your news feed
	Managing your user profile



	Sysadmin guide
	Creating a sysadmin account
	Customizing look and feel
	Managing organizations and datasets
	Moving a dataset between organizations

	Permanently deleting datasets
	Managing users

	Maintainer’s guide
	Installing CKAN
	Installing CKAN from package
	1. Install the CKAN package
	2. Install and configure PostgreSQL
	3. Install and configure Solr
	Installing Solr using Docker
	Installing Solr manually
	Next steps with Solr

	4. Update the configuration and initialize the database
	5. Start the Web Server and restart Nginx
	6. You’re done!

	Installing CKAN from source
	1. Install the required packages
	2. Install CKAN into a Python virtual environment
	3. Setup a PostgreSQL database
	4. Create a CKAN config file
	5. Setup Solr
	Installing Solr using Docker
	Installing Solr manually
	Next steps with Solr

	6. Link to who.ini
	7. Create database tables
	8. Set up the DataStore
	9. You’re done!
	Source install troubleshooting
	Solr setup troubleshooting
	Unable to find a javac compiler
	AttributeError: ‘module’ object has no attribute ‘css/main.debug.css’
	ImportError: No module named ‘flask_debugtoolbar’



	Installing CKAN with Docker Compose
	1. Environment
	2. Build Docker images
	3. Datastore and datapusher
	4. Create CKAN admin user
	5. Migrate data
	6. Add extensions
	7. Environment variables
	8. Steps towards production

	Deploying a source install
	1. Install Nginx
	2. Create the WSGI script file
	3. Create the WSGI Server
	uwsgi

	4. Install Supervisor for the uwsgi
	uwsgi

	5. Install an email server
	6. Create the NGINX config file
	7. Access your CKAN site
	8. Setup a worker for background jobs
	Deployment changes for CKAN 2.9


	Upgrading CKAN
	CKAN releases
	Upgrading CKAN
	1. Backup your database
	2. Upgrade CKAN
	Upgrading a CKAN 1 package install to CKAN 2.x
	Upgrading a CKAN 2 package install to a new patch release
	Upgrading a CKAN 2 package install to a new minor release
	Upgrading a source install
	Upgrading Postgres for the CKAN 2.9 release
	What are CKAN’s PostgreSQL connection settings?
	What version are you running?
	Upgrading

	Upgrading a CKAN install from Python 2 to Python 3
	Preparation
	Upgrade




	Getting started
	Creating a sysadmin user
	Creating test data
	Config file

	Database Management
	Initialization
	Cleaning
	Import and Export
	Dumping and Loading databases to/from a file
	Exporting Datasets to JSON Lines
	Exporting User Accounts to JSON Lines

	Upgrading

	Command Line Interface (CLI)
	Troubleshooting ckan Commands
	Permission Error
	Virtualenv not activated, or not in ckan dir
	Running ckan commands provided by extensions
	Wrong config file path

	ckan Commands Reference
	asset: WebAssets commands
	config: Search, validate, describe config options
	config-tool: Tool for editing options in a CKAN config file
	datapusher: Perform commands in the datapusher
	dataset: Manage datasets
	datastore: Perform commands in the datastore
	db: Manage databases
	generate: Scaffolding for regular development tasks
	jobs: Manage background jobs
	Run a background job worker
	List enqueued jobs
	Show details about a job
	Cancel a job
	Clear job queues
	Enqueue a test job

	sass: Compile all root sass documents into their CSS counterparts
	notify: Send out modification notifications
	plugin-info: Provide info on installed plugins
	profile: Code speed profiler
	run: Start Development server
	Use --passthrough-errors to enable pdb

	search-index: Search index commands
	search-index: Rebuild search index
	sysadmin: Give sysadmin rights
	tracking: Update tracking statistics
	translation: Translation helper functions
	user: Create and manage users
	views: Create views on relevant resources


	Organizations and authorization
	Organizations
	Dataset collaborators
	Configuration File Options
	Extensions

	Data preview and visualization
	Overview
	Managing resource views
	Defining views to appear by default
	Available view plugins
	DataTables view
	Data Explorer
	DataStore Grid
	DataStore Graph
	DataStore Map
	Text view
	Image view
	Video view
	Audio view
	Web page view
	Other view plugins

	Resource Proxy
	Migrating from previous CKAN versions
	Command line interface

	FileStore and file uploads
	Setup file uploads
	FileStore API
	Migration from 2.1 to 2.2
	Custom Internet media types (MIME types)

	DataStore extension
	Relationship to FileStore
	Setting up the DataStore
	1. Enable the plugin
	2. Set-up the database
	Create users and databases
	Set URLs
	Set permissions

	3. Test the set-up

	DataPusher: Automatically Add Data to the DataStore
	Data Dictionary
	Downloading Resources
	The Data API
	Making a Data API request
	API reference
	Fields
	Records
	Field types
	Resource aliases
	Comparison of different querying methods
	Internal structure of the database


	Extending DataStore

	Apps & Ideas
	Tag Vocabularies
	Properties of Tag Vocabularies
	Using Vocabularies

	Form Integration
	Redirecting CKAN Forms
	Example


	Linked Data and RDF
	Background jobs
	Writing and enqueuing background jobs
	Accessing the database from background jobs

	Running background jobs
	Using Supervisor

	Managing background jobs
	List enqueues jobs
	Show details about a job
	Cancel a job
	Clear all enqueued jobs
	Logging

	Background job queues
	Testing code that uses background jobs
	Migrating from CKAN’s previous background job system
	Supporting both systems at once


	Email notifications
	Page View Tracking
	Enabling Page View Tracking
	Retrieving Tracking Data
	Sorting Datasets by Popularity
	Highlighting Popular Datasets and Resources

	Multilingual Extension
	Setup and Configuration
	Loading Test Translations
	Testing The Multilingual Extension

	Stats Extension
	Enabling the Stats Extension
	Viewing the Statistics

	Configuration Options
	Environment variables
	Updating configuration options during runtime
	Config declaration
	Declaring config options
	Accessing config options
	Command line interface

	CKAN configuration file
	General settings
	debug
	ckan.legacy_route_mappings
	config.mode

	Development settings
	ckan.devserver.host
	ckan.devserver.port
	ckan.devserver.threaded
	ckan.devserver.multiprocess
	ckan.devserver.watch_patterns
	ckan.devserver.ssl_cert
	ckan.devserver.ssl_key

	Session settings
	beaker.session.secret

	repoze.who settings
	who.config_file
	who.timeout
	who.httponly
	who.secure
	who.samesite

	Database settings
	sqlalchemy.url
	sqlalchemy.<OPTION>

	Site Settings
	ckan.site_url
	apikey_header_name
	ckan.cache_expires
	ckan.cache_enabled
	ckan.mimetype_guess
	ckan.static_max_age
	ckan.tracking_enabled
	ckan.valid_url_schemes
	ckan.requests.timeout
	ckan.hide_version

	Authorization Settings
	ckan.auth.anon_create_dataset
	ckan.auth.create_unowned_dataset
	ckan.auth.create_dataset_if_not_in_organization
	ckan.auth.user_create_groups
	ckan.auth.user_create_organizations
	ckan.auth.user_delete_groups
	ckan.auth.user_delete_organizations
	ckan.auth.create_user_via_api
	ckan.auth.create_user_via_web
	ckan.auth.roles_that_cascade_to_sub_groups
	ckan.auth.public_user_details
	ckan.auth.public_activity_stream_detail
	ckan.auth.allow_dataset_collaborators
	ckan.auth.allow_admin_collaborators
	ckan.auth.allow_collaborators_to_change_owner_org
	ckan.auth.create_default_api_keys

	API Token Settings
	api_token.nbytes
	api_token.jwt.encode.secret
	api_token.jwt.decode.secret
	api_token.jwt.algorithm

	Search Settings
	ckan.site_id
	solr_url
	ckan.search.remove_deleted_packages
	ckan.search.solr_commit
	ckan.search.show_all_types
	ckan.search.default_include_private
	ckan.search.default_package_sort
	search.facets.limit
	search.facets.default
	ckan.extra_resource_fields
	ckan.search.rows_max
	ckan.group_and_organization_list_max
	ckan.group_and_organization_list_all_fields_max
	solr_timeout

	Redis Settings
	ckan.redis.url

	CORS Settings
	ckan.cors.origin_allow_all
	ckan.cors.origin_whitelist

	Plugins Settings
	ckan.plugins

	Front-End Settings
	ckan.site_title
	ckan.site_description
	ckan.site_intro_text
	ckan.site_logo
	ckan.site_about
	ckan.main_css
	ckan.favicon
	ckan.datasets_per_page
	package_hide_extras
	ckan.dumps_url
	ckan.dumps_format
	ckan.recaptcha.publickey
	ckan.recaptcha.privatekey
	ckan.featured_groups
	ckan.featured_orgs
	ckan.default_group_sort
	ckan.gravatar_default
	ckan.debug_supress_header

	Resource Views Settings
	ckan.views.default_views

	Theming Settings
	ckan.template_head_end
	ckan.template_footer_end
	ckan.template_title_delimiter
	extra_template_paths
	extra_public_paths
	ckan.base_public_folder
	ckan.base_templates_folder

	Storage Settings
	ckan.storage_path
	ckan.max_resource_size
	ckan.max_image_size

	Uploader Settings
	ckan.upload.user.types
	ckan.upload.user.mimetypes
	ckan.upload.group.types
	ckan.upload.group.mimetypes

	Webassets Settings
	ckan.webassets.path
	ckan.webassets.use_x_sendfile

	User Settings
	ckan.user_list_limit
	ckan.user_reset_landing_page

	Activity Streams Settings
	ckan.activity_streams_enabled
	ckan.activity_streams_email_notifications
	ckan.activity_list_limit
	ckan.activity_list_limit_max
	ckan.email_notifications_since
	ckan.hide_activity_from_users

	Feeds Settings
	ckan.feeds.author_name
	ckan.feeds.author_link
	ckan.feeds.authority_name
	ckan.feeds.date

	Internationalisation Settings
	ckan.locale_default
	ckan.locales_offered
	ckan.locales_filtered_out
	ckan.locale_order
	ckan.i18n_directory
	ckan.i18n.extra_directory
	ckan.i18n.extra_gettext_domain
	ckan.i18n.extra_locales
	ckan.i18n.rtl_languages
	ckan.i18n.rtl_css
	ckan.display_timezone
	ckan.root_path
	ckan.resource_formats

	Form Settings
	ckan.dataset.create_on_ui_requires_resources
	package_new_return_url
	package_edit_return_url
	licenses_group_url

	Email settings
	smtp.server
	smtp.starttls
	smtp.user
	smtp.password
	smtp.mail_from
	smtp.reply_to
	email_to
	error_email_from

	Background Job Settings
	ckan.jobs.timeout

	Resource Proxy settings
	ckan.resource_proxy.max_file_size
	ckan.resource_proxy.chunk_size

	text_view settings
	ckan.preview.text_formats
	ckan.preview.xml_formats
	ckan.preview.json_formats

	image_view settings
	ckan.preview.image_formats

	recline_view settings
	ckan.recline.dataproxy_url

	datatables_view settings
	ckan.datatables.page_length_choices
	ckan.datatables.state_saving
	ckan.datatables.state_duration
	ckan.datatables.data_dictionary_labels
	ckan.datatables.ellipsis_length
	ckan.datatables.date_format
	ckan.datatables.default_view

	Datastore settings
	ckan.datastore.write_url
	ckan.datastore.read_url
	ckan.datastore.sqlsearch.allowed_functions_file
	ckan.datastore.sqlsearch.enabled
	ckan.datastore.search.rows_default
	ckan.datastore.search.rows_max
	ckan.datastore.sqlalchemy.<OPTION>
	ckan.datastore.default_fts_lang
	ckan.datastore.default_fts_index_method

	Datapusher settings
	ckan.datapusher.formats
	ckan.datapusher.url
	ckan.datapusher.callback_url_base
	ckan.datapusher.assume_task_stale_after




	API guide
	Legacy APIs
	Search API
	Search Resources
	Search Methods
	Search Formats

	Util API
	dataset autocomplete
	tag autocomplete
	resource format autocomplete
	munge package name
	munge title to package name
	munge tag

	Status Codes

	Making an API request
	Example: Importing datasets with the CKAN API
	API versions
	Authentication and API tokens
	GET-able API functions
	JSONP support
	API Examples
	Tags (not in a vocabulary)
	Tag Vocabularies
	Uploading a new version of a resource file

	Action API reference
	ckan.logic.action.get
	ckan.logic.action.create
	ckan.logic.action.update
	ckan.logic.action.patch
	ckan.logic.action.delete


	Extending guide
	Writing extensions tutorial
	Installing CKAN
	Creating a new extension
	Creating a plugin class
	Adding the plugin to setup.py
	Installing the extension
	Enabling the plugin
	Troubleshooting
	PluginNotFoundException
	ImportError

	Implementing the IAuthFunctions plugin interface
	Using the plugins toolkit
	context
	data_dict
	The plugins toolkit

	Exception handling
	We’re done!
	Troubleshooting
	AttributeError
	TypeError


	Using custom config settings in extensions
	Making configuration options runtime-editable
	Testing extensions
	Best practices for writing extensions
	Follow CKAN’s coding standards
	Use the plugins toolkit instead of importing CKAN
	Don’t edit CKAN’s database tables
	Use migrations when introducing new models
	Implement each plugin class in a separate Python module
	Avoid name clashes
	Internationalize user-visible strings
	Add third party libraries to requirements.txt
	Do not automatically modify the database structure

	Customizing dataset and resource metadata fields using IDatasetForm
	CKAN schemas and validation
	Adding custom fields to datasets
	Updating the CKAN schema
	Dataset types
	Updating templates
	Cleaning up the code

	Custom validators
	validator(value)
	validator(value, context)
	validator(key, flattened_data, errors, context)

	Tag vocabularies
	Adding tags to the schema
	Adding tags to templates

	Adding custom fields to resources
	Sorting by custom fields on the dataset search page

	Plugin interfaces reference
	Plugins toolkit reference
	Validator functions reference
	Built-in validators

	Internationalizing strings in extensions
	Extract strings
	Manually create translations
	Translations with Transifex
	Compiling the catalog
	The ITranslation interface
	Advanced ITranslation usage


	Migration from Pylons to Flask
	Always import methods and objects from the plugins toolkit if available

	Signals

	Theming guide
	Customizing CKAN’s templates
	Creating a CKAN extension
	Replacing a default template file
	Jinja2
	Expressions and variables
	Tags
	Comments

	Extending templates with {% ckan_extends %}
	Replacing template blocks with {% block %}
	Extending parent blocks with Jinja’s {{ super() }}
	Template helper functions
	Adding your own template helper functions
	Template snippets
	Adding your own template snippets
	HTML tags and CSS classes
	Accessing custom config settings from templates

	Adding static files
	Customizing CKAN’s CSS
	Adding CSS and JavaScript files using Webassets
	X-Sendfile

	Customizing CKAN’s JavaScript
	Overview
	Initializing a JavaScript module
	this.options and this.el
	Default values for options
	Ajax, event handling and CKAN’s JavaScript sandbox
	Error handling
	Pubsub
	jQuery plugins
	Internationalization
	Testing JavaScript modules

	Best practices for writing CKAN themes
	Don’t use c
	Use url_for()
	Use {% trans %}, {% pluralize %}, _() and ungettext()
	Avoid name clashes
	JavaScript modules should have docstrings
	JavaScript modules should unsubscribe from events in teardown()
	Don’t overuse pubsub
	Use {% snippet %}, not {% include %}
	Snippets should have docstrings

	Custom Jinja2 tags reference
	Variables and functions available to templates
	Objects and methods available to JavaScript modules
	Template helper functions reference
	Template snippets reference
	JavaScript sandbox reference
	JavaScript API client reference
	CKAN jQuery plugins reference

	Contributing guide
	Reporting issues
	Writing a good issue
	Issues process
	Old issues

	Translating CKAN
	Supported languages
	Adding a new language or improving an existing translation
	Transifex setup
	Transifex administration

	Manual setup
	1. Preparation
	2. Install Babel
	3. Create a ‘po’ file for your language
	2. Do the translation
	3. Commit the translation
	4. Compile a translation
	5. (optional) Deploy the translation
	6. Configure the language


	Translations management policy

	Testing CKAN
	Back-end tests
	Install additional dependencies
	Set up the test databases
	Configure Solr Multi-core
	Run the tests
	Common error messages
	OperationalError
	SolrError


	Front-end tests
	Automated JavaScript tests
	Manual tests
	Install browser virtual machines
	Testing methodology

	Common front-end pitfalls & their fixes
	Reserved JS keywords
	Unclosed JS arrays / objects



	Writing commit messages
	Making a pull request
	Reviewing and merging a pull request
	Merging a pull request

	Writing documentation
	Getting started
	Install CKAN into a virtualenv
	Build the docs
	Edit the reStructuredText files

	How the docs are organized
	Subdirectories
	Linear ordering

	Sphinx
	Don’t introduce any new Sphinx warnings
	Maximum line length
	versionadded and versionchanged
	Cross-references and links
	Cross-referencing to another file
	Cross-referencing a section within a file
	Cross-referencing to CKAN config settings
	Cross-referencing to a Python object
	Changing the link text of a cross-reference
	Cross-referencing to an external page

	Substitutions
	Parsed literals
	autodoc
	todo
	deprecated
	seealso

	Code examples
	Style
	Use American spelling
	Spellcheck
	Commonly used terms
	Section titles
	Be conversational
	Write clearly and concretely, not vaguely and abstractly
	Facilitate skimming


	Projects for beginner CKAN developers
	CKAN code architecture
	Blueprints
	Views
	Template helper functions
	Always go through the action functions
	Use get_action()
	Don’t pass ORM objects to templates

	Logic
	Action functions are exposed in the API
	Auth functions and check_access()
	logic.get_or_bust()
	Validation and ckan.logic.schema

	Models
	Deprecation

	CSS coding standards
	Formatting
	Naming
	Comments
	Modularity and specificity

	HTML coding standards
	Formatting
	Doctype and layout
	Forms
	Including meta data
	Targeting Internet Explorer
	i18n

	JavaScript coding standards
	Formatting
	White space
	Quotes
	Variable declarations

	Naming
	Comments
	JSHint
	Documentation
	Testing
	Best practices
	Forms
	Ajax
	Event handlers
	Templating


	Python coding standards
	Use single quotes
	Imports
	Logging
	String formatting
	Unicode handling
	Docstrings
	PEP 257 (Docstring Conventions)

	Referencing other code objects with :py:
	Documenting exceptions raised with :raises
	Sphinx field lists
	Action API docstrings

	Some helpful tools for Python code quality

	String internationalization
	Internationalizating strings in Jinja2 templates
	Internationalizing strings in Python code
	Internationalizing strings in JavaScript code
	General guidelines for internationalizing strings

	Unicode handling
	Overall Strategy
	Encoding of Python files
	String literals
	Best Practices
	Use io.open to open text files
	Normalize strings before comparing them
	Use the Unicode flag in regular expressions
	Filenames


	Testing coding standards
	Guidelines for writing tests
	How should tests be organized?
	Naming test methods

	Recipe for a test method
	How detailed should tests be?
	Creating test objects: ckan.tests.factories
	Test helper functions: ckan.tests.helpers
	Pytest fixtures
	Mocking: the mock library
	Writing ckan.logic.action tests
	Writing ckan.logic.auth tests
	Writing converter and validator tests
	No tests for ckan.logic.schema.py
	Writing ckan.controllers tests
	Writing ckan.model tests
	Writing ckan.lib tests
	Writing ckan.plugins tests
	Writing ckan.ckanext tests



	Frontend development guidelines
	Templating
	Legacy Templates
	File Structure
	Using the templating system
	Internationalisation
	Conventions
	Includes
	Snippets
	Macros

	Templating within extensions
	Custom Control Structures
	ckan_extends
	snippet
	url_for
	link_for
	url_for_static

	Form Macros
	form.input()
	form.checkbox()
	form.select()
	form.textarea()
	form.markdown()
	form.prepend()
	form.custom()
	form.autoform()


	Assets
	Assets within extensions
	webassets.yml
	Top level items
	[contents] (required)
	[output] (optional)
	[filters] (optional)
	[extra] (optional)


	Creating a new template
	Extending a base template
	Primary Content
	Secondary Content
	Breadcrumb and Actions
	Scripts and Stylesheets
	Summary

	Template Blocks
	Usage

	Blocks in page.html
	header
	content
	toolbar
	breadcrumb
	primary
	primary_content
	secondary
	secondary_content
	footer

	Blocks in base.html
	doctype
	htmltag
	headtag
	bodytag
	meta
	title
	links
	styles
	page
	scripts

	Building a JavaScript Module
	HTML
	JavaScript
	Initialisation
	Event Handling
	Internationalisation
	Notifications
	Options
	Error handling
	Module Scope
	Publish/Subscribe

	Unit Tests

	Install frontend dependencies
	File structure
	Stylesheets
	JavaScript
	Core
	Modules
	Publisher/subscriber
	Client
	Internationalization
	Life cycle
	jQuery plugins
	Unit tests


	Database migrations
	Manual checking
	Troubleshooting

	Upgrading CKAN’s dependencies
	Steps to upgrade

	Doing a CKAN release
	Process overview
	Doing the beta release
	Leading up to the release
	Doing the final release
	Preparing patch releases
	Doing the patch releases


	Changelog
	v.2.9.5 2022-01-19
	Major features
	Bugfixes
	Minor changes

	v.2.9.4 2021-09-22
	Bugfixes

	v.2.9.3 2021-05-19
	Bugfixes
	Minor changes

	v.2.9.2 2021-02-10
	Major features
	Bugfixes
	Minor changes

	v.2.9.1 2020-10-21
	Bugfixes
	Minor changes

	v.2.9.0 2020-08-05
	Migration notes
	Major features
	Minor changes
	Bugfixes
	Removals and deprecations

	v.2.8.10 2022-01-19
	v.2.8.9 2021-09-22
	v.2.8.8 2021-05-19
	v.2.8.7 2021-02-10
	v.2.8.6 2020-10-21
	v.2.8.5 2020-08-05
	v.2.8.4 2020-04-15
	v.2.8.3 2019-07-03
	v.2.8.2 2018-12-12
	v.2.8.1 2018-07-25
	v.2.8.0 2018-05-09
	v.2.7.12 2021-09-22
	v.2.7.11 2021-05-19
	v.2.7.10 2021-02-10
	v.2.7.9 2020-10-21
	v.2.7.8 2020-08-05
	v.2.7.7 2020-04-15
	v.2.7.6 2019-07-03
	v2.7.5 2018-12-12
	v2.7.4 2018-05-09
	v2.7.3 2018-03-15
	v2.7.2 2017-09-28
	v2.7.1 2017-09-27
	v2.7.0 2017-08-02
	v.2.6.9 2020-04-15
	v.2.6.8 2019-07-03
	v2.6.7 2018-12-12
	v2.6.6 2018-05-09
	v2.6.5 2018-03-15
	v2.6.4 2017-09-27
	v2.6.3 2017-08-02
	v2.6.2 2017-03-22
	v2.6.1 2017-02-22
	v2.6.0 2016-11-02
	v2.5.9 2018-05-09
	v2.5.8 2018-03-15
	v2.5.7 2017-09-27
	v2.5.6 2017-08-02
	v2.5.5 2017-03-22
	v2.5.4 2017-02-22
	v2.5.3 2016-11-02
	v2.5.2 2016-03-31
	v2.5.1 2015-12-17
	Changes and deprecations

	v2.5.0 2015-12-17
	v2.4.9 2017-09-27
	v2.4.8 2017-08-02
	v2.4.7 2017-03-22
	v2.4.6 2017-02-22
	v2.4.5 2017-02-22
	v2.4.4 2016-11-02
	v2.4.3 2016-03-31
	v2.4.2 2015-12-17
	v2.4.1 2015-09-02
	v2.4.0 2015-07-22
	Changes and deprecations

	v2.3.5 2016-11-02
	v2.3.4 2016-03-31
	v2.3.3 2015-12-17
	v2.3.2 2015-09-02
	v2.3.1 2015-07-22
	v2.3 2015-03-04
	Changes and deprecations
	Template changes
	Troubleshooting:

	v2.2.4 2015-12-17
	v2.2.3 2015-07-22
	v2.2.2 2015-03-04
	v2.2.1 2014-10-15
	v2.2 2014-02-04
	v2.1.6 2015-12-17
	v2.1.5 2015-07-22
	v2.1.4 2015-03-04
	v2.1.3 2014-10-15
	v2.1.2 2014-02-04
	v2.1.1 2013-11-8
	v2.1 2013-08-13
	v2.0.8 2015-12-17
	v2.0.7 2015-07-22
	v2.0.6 2015-03-04
	v2.0.5 2014-10-15
	v2.0.4 2014-02-04
	v2.0.3 2013-11-8
	v2.0.2 2013-08-13
	v2.0.1 2013-06-11
	v2.0 2013-05-10
	v1.8.2 2013-08-13
	v1.8.1 2013-05-10
	v1.8 2012-10-19
	v1.7.4 2013-08-13
	v1.7.3 2013-05-10
	v1.7.2 2012-10-19
	v1.7.1 2012-06-20
	v1.7 2012-05-09
	v1.6 2012-02-24
	v1.5.1 2012-01-04
	v1.5 2011-11-07
	v1.4.3.1 2011-09-30
	v1.4.3 2011-09-13
	v1.4.2 2011-08-05
	v1.4.1 2011-06-27
	v1.4 2011-05-19
	v1.3.3 2011-04-08
	v1.3.2 2011-03-15
	v1.3 2011-02-18
	v1.2 2010-11-25
	v1.1 2010-08-10
	v1.0.2 2010-08-27
	v1.0.1 2010-06-23
	v1.0 2010-05-11
	v0.11 2010-01-25
	v0.10 2009-09-30
	v0.9 2009-07-31
	v0.8 2009-04-10
	v0.7 2008-10-31
	v0.6 2008-07-08
	v0.5 2008-01-22
	v0.4 2007-07-04
	v0.3 2007-04-12
	v0.2 2007-02
	v0.1 2006-05

	Python Module Index
	Index

